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It has been suggested that stillbirths are part of the spectrum of infant deaths that
includes sudden infant death syndrome (SIDS). This paper examines the hypothesis that
risk factors associated with stillbirths might contribute to dysregulation of inflammatory
responses to infections that could trigger the physiological responses leading to fetal
loss. These include genetic factors (ethnic group, sex), environmental (infection, cigarette
smoke, obesity), and developmental (testosterone levels) factors. Interactions between
the genetic, environmental, and developmental risk factors are also considered, e.g.,
the excess of male stillborn infants in relation to the effects of testosterone levels
during development on pro-inflammatory responses. In contrast to SIDS, inflammatory
responses of both mother and fetus need to be considered. Approaches for examining
the hypothesis are proposed.
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Infection and Inflammation in Infant Deaths

There have been suggestions that stillbirths are part of the spectrum of infant deaths associated
with sudden infant death syndrome (SIDS) based on epidemiological parallels (1). Some of the
reported parallels included: ethnic background; maternal smoking; small for gestational age infants;
evidence of infection/inflammation in mother and/or fetus. Infections have been implicated in the
etiology of stillbirths in both developing and industrialized countries (2–4). As with SIDS and
sudden unexpected deaths in infancy (SUDI), no single organism has been implicated (5–7). The
common thread to be considered in this review is the inflammatory responses to infection and how
the risk factors identified in epidemiological studiesmight affect these responses in bothmother and
infant. Based on our previous work on SIDS, our hypothesis is that genetic and environmental risk
factors that result in dysregulation of inflammatory responses by mother and/or infant to infection
could contribute to events leading to some unexplained stillbirths.Table 1 lists themajor risk factors
for SIDS and for stillbirths and cites the supporting literature. In the following sections, the effects
of genetic and environmental factors on inflammatory responses will be assessed.

Infection in Stillbirths
The incidence of stillbirths ranges from as few as 3/1000 births in developed countries to as many
as 45/1000 in developing countries (25) where infection is more common.

Early studies implicated inflammation associated with infectious agents (26, 27). There are
usually no overt signs of infection prior to fetal loss including: maternal fever or chills; abdominal
discomfort; or fetal tachycardia. Ascending bacterial infection (before and after membrane rupture)
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TABLE 1 | Comparison of risk factors for SIDS/SUDI and stillbirths.

SIDS/SUDI Reference Stillbirths Reference

Ethnic group (8–10) Ethnic group (11–13)
Male gender (14, 15) Male gender (16, 17)
Cigarette smoke (18) Cigarette smoke (12)
Infection (5, 19) Infection (3, 4)
Prematurity (20) Prematurity (12)
Small baby (20) Small baby (12)
Overweight/maternal
obesity

(21, 22) Overweight/maternal
obesity

(23, 24)

was identified as the most common infectious cause of stillbirth.
Infection can also occur from hematogenous spread (4). The
most common organisms involved were Escherichia coli, group
B Streptococcus pyogenes, and Ureaplasma urealyticum. The two
most common viral infections associated with stillbirths were par-
vovirus andCoxsackie virus (3, 26). Amore recent study identified
cytomegalovirus (CMV) in 15% of stillbirths (28). Serological
studies have implicated Chlamydia trachomatis in a Scandinavian
study of stillbirths (29). Although infection is considered a com-
mon cause of stillbirth, it is often hard to attribute this causally
for a number of reasons. Several groups have studied the use of
polymerase chain reaction (PCR) to identify specific viral and
bacterial DNA and RNA and have found it to be more sensitive
than routine microbiological methods in detecting evidence of
infection in stillborn babies (28, 30).

Both invasive and toxigenic bacteria need to be considered as
bacterial exotoxins or their cellular components can act as super-
antigens eliciting strong pro-inflammatory responses. A compre-
hensive review of the literature relating to stillbirth/intrauterine
fetal death (IUFD) and infection suggested that between 10 and
25% of all cases of IUFD in developed countries were associated
with infection (4). We identified pyrogenic toxins of Staphylococ-
cus aureus in serum or tissues of over 50% of SIDS infants from
five different countries (31) and toxins of enteric organisms have
also been implicated (32); however, there has been no systematic
assessment of material from stillbirths for presence of bacterial
toxins.

Themechanisms proposed for the role of infection in stillbirths
include (1) maternal illness resulting in fever, respiratory distress,
or systemic responses to the infection; (2) infection of the placenta
resulting in reduced fetoplacental blood flow; (3) direct infection
of the fetus; (4) induction of pre-term labor (4). Inflammation
might contribute to all of these, and the inflammatory response
of the fetus also needs to be considered.

Inflammation and Infant Deaths
The inflammatory response is the major protective mechanism
evolved to deal with pathogenic micro-organisms. The pro-
inflammatory cytokines are involved in clearing the microorgan-
ism. The anti-inflammatory cytokines are involved in damping
down the pro-inflammatory responses to prevent collateral dam-
age of a too abundant response to infection; however, an innate
tendency to enhanced anti-inflammatory signaling is thought to
increase the risk of death through infection. Successful repro-
duction necessitates adequate immune tolerance to allow preg-
nancy to proceed without rejecting the fetus, half of whose

antigens are from the father. Pro-inflammatory responses have
been associated with increased resistance to infection and anti-
inflammatory responses with increased fertility (33). Genetic and
environmental factors that disturb the balance between pro- and
anti-inflammatory cytokines might result in fetal damage. There
is evidence that some ethnic groups at increased risk of infant
deaths due to infection, SIDS or stillbirths (12, 23, 34). These
include Indigenous communities in Canada and Australia and
African-Americans (13, 23, 34). In these populations at higher risk
of stillbirths, there is a general genetic predisposition to strong
pro-inflammatory responses (35–40).

Women with low capacity to respond to vaginal infection
through the production of pro-inflammatory cytokines, inter-
leukin (IL)-1β, IL-6, and IL-8 might have a more permis-
sive environment for pathogens to flourish and be at risk of
ascending uterine infection and chorioamnionitis (41). Enhanced
pro-inflammatory responses to vaginal infection or periodontal
disease (42) are suggested to be detrimental to pregnancy and ele-
vated levels of IL-6 have been found to be a predictor of pre-term
labor (43, 44).

As with SIDS, histopathological changes in the placenta or fetus
are not always consistent (45), and the presence of organisms
does not always imply causation, although it is more likely if
micro-organisms are found in fetal tissue compared with pla-
centa or fetal membranes. Examination of placentas from live
and stillborn infants found evidence of inflammation in 30.4%
of stillbirths compared with 12% of controls. Inflammation was
more common in placentas from early stillborn deliveries and also
in early live births (46). Chorioamnionitis without fetal inflam-
matory responses was associated with stillbirth in early pre-term
pregnancies (47).

It has been recommended that there is a need to assess the
molecular evidence for inflammation in these deaths (48). In the
case of SIDS, factors affecting the inflammatory responses of
the infant need to be considered; for stillbirths, factors affecting
the inflammatory responses of both mother and infant need to be
considered. The methodology is available and preliminary studies
on levels of cytokines in matched samples of maternal plasma,
cord blood, and amniotic fluid from late pregnancy are reported
in this issue (49). The levels of pro-inflammatory cytokines are
significantly higher in the amniotic fluid compared with the levels
in cord blood or maternal plasma (Figure 1).

Assessment of Inflammatory Responses in
Relation to Risk Factors

Ethnic Group
The incidences of infant mortality due to infection, SIDS and still-
births are higher among families of Indigenous groups (e.g., Abo-
riginal Australians and Native Americans) compared to families
of European origins in the same countries (Table 2).

Ethnicity was a significant risk for stillbirth in the United
Kingdom; those groups at increased risk included African, Afro-
Caribbean, Indian, and Pakistani mothers. In other countries,
Indigenous mothers have an increased risk for stillbirth. While
these disparities have been ascribed primarily to socio-economic
disadvantage, there is emerging evidence that genetic background
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FIGURE 1 |Median pro-inflammatory cytokine levels in maternal
plasma, cord blood and amniotic fluid of 24 mothers and infants
obtained from elective Caeserean delivery [adapted from
Burns et al. (49)].

TABLE 2 | Incidence of stillbirths among different ethnic groups.

Country No/1000 births

United kingdom (12)
European 3.2
Non-UK 4.0
African 7.4
Afro-Caribbean 6.7
Bangladeshi 4.2
Indian
UK 3.9
Non-UK 6.4

Pakistani
UK 4.1
Non-UK 6.9

Australia (11)
Non-Indigenous 5.9
Indigenous 9.1

United states (13)
Hispanic 5.44
Non-Hispanic white 4.75
Non-Hispanic black 11.13
Native American/Alaska Native 6.17

(40) and interactions between environmental factors such as
cigarette smoke might contribute to susceptibility to, and severity
of, inflammatory responses to infections (37, 50).

In relation to potential underlying factors affecting inflam-
matory responses and their role in stillbirths, it is important to
note that cytokine gene polymorphisms associated with high-level
responses of pro-inflammatory cytokines or low-level responses
of anti-inflammatory cytokines such as IL-10 are predominant
among some Indigenous groups, South Asians, and American
Black populations (36, 40, 51). There are experimental and epi-
demiological studies indicating that genetic polymorphisms in
the inflammatory response might contribute to poor pregnancy

outcome; however, the results are inconsistent. Pre-term labor
enhances the risk of stillbirth (4). Important risk factors include
intrauterine infection/inflammation and social factors (stress,
smoking, heavy work). The final common pathway appears to
be activation of the inflammatory cascade. Bacterial infection
and/or inflammation of the choriodecidual interface induces pro-
inflammatory cytokine responses leading to neutrophil activa-
tion, synthesis, and release of prostaglandins causing uterine
contractions and metalloproteinases weakening fetal membranes
(52). Polymorphisms associatedwith increased production of pro-
inflammatory and/or decreased production of anti-inflammatory
cytokines have been implicated in pre-term birth. Those enhanc-
ing the magnitude or duration of the responses were associated
with risk of pre-termbirth (53, 54). In vitro studies with leukocytes
from women with recurrent pregnancy loss found significantly
higher levels of interferon-γ (IFN-γ) and a trend toward increased
TNF-α production compared with women with no history of
pregnancy loss. In relation to IL-6 and TGF-β, no significant
differences were detected between the groups (55).

Modifiable Risk Factors and Inflammation
In relation to our previous studies on interactions between genetic
and environmental factors on inflammatory responses, it is rec-
ommended that assessments of the genetic predisposition to
inflammation need to control for environmental risk factors that
alter cytokine responses to infection or toxins (37, 39). The major
environmental factors to be considered in this review are co-
infections, smoking, and obesity.

Infections
Virus pandemics have been associated with increased risk of pre-
term labor and fetal loss (56, 57). There are a number of models
that indicate that virus infections can potentiate the effects of
bacterial toxins implicated in SIDS (58–60). There is also a mouse
model that found that while an asymptomatic infection with
the murine gamma herpes virus 68 did not disrupt pregnancy
outcome, the infection could upregulate the pro-inflammatory
responses to small quantities of endotoxin in both placenta
and decidua, resulting in pre-term labor and fetal loss. Similar
responses were observed for human primary trophoblast and
trophoblast cell lines infected with this virus prior to exposure to
endotoxin (61). The enhancement of pro-inflammatory responses
to endotoxin was attributed to priming by IFN-γ and TNF-α
responses to the virus infection. Additional evidence for the role
of IFN-γ was provided by in vitro studies with human monocytic
cells and the THP-1 cell line (50, 62) (Moscovis et al., this issue).

Chronic infections such as Helicobacter pylori, Chlamydia
pneumoniae, and CMV can also significantly increase pro-
inflammatory markers (63). H. pylori infection is significantly
higher among mothers with small for gestational age infants (64).
In a population in India, periodontal disease was associated with
increased levels of C-reactive protein (CRP) and also with pre-
term birth (65).

Cigarette Smoke
Both active smoking and passive exposure to cigarette smoke
have been reported to enhance risk of stillbirth (12). Cigarette
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smoke can influence infection and inflammation is several ways:
(1) enhanced susceptibility to respiratory virus infection and sub-
sequent enhanced colonization by potential bacterial pathogens;
(2) increase in the numbers and species of respiratory bacteria
due to enhanced “stickiness” of epithelial cells coated with smoke
components (66); (3) enhanced pro-inflammatory responses to
bacterial antigens (50); (4) reduction in anti-inflammatory IL-10
responses (37).

IL-10 appears to protect the fetus against pathogens. IL-10
knockout mice are at greater risk of some pregnancy pathologies
that occur in response to infection. Low doses of endotoxin given
to IL-10 knockout mice can cause fetal resorption in early preg-
nancy (67) and pre-term labor in late pregnancy (68). No effect on
pregnancywas observedwhenwild-typemicewere given the same
dose. IL-10 acts through inhibition of inflammatory cytokines
including TNFα, IFN-γ, and IL-6 (67, 69).

The IL10-1082A alleles have been associated with reduced pro-
duction of IL-10. One SNP (G-1082A) in the promoter sequence
of the IL10 gene associated with under-expression of plasma IL-
10 levels (70, 71) was present in a significantly greater proportion
of ethnic groups at increased risk of stillbirths: Black Americans
(45%) (36), Bangladeshis (84%), andAboriginal Australians (83%)
compared with Caucasian populations (31%) (40). Smokers had
significantly lower baseline levels of IL-10 and lower responses
to endotoxin than non-smokers (37). When assessed by geno-
type, the differences between smokers and non-smokers were
significant for individuals with the heterozygous variant (GA)
and the variant (AA). These data suggest interactions between
cigarette smoke and genetic factors that result in reduced control
of pro-inflammatory responses by IL-10.

Obesity

One of the latest meta-analyses of risk factors for stillbirths indi-
cated that maternal overweight/obesity [body mass index (BMI)
>25 kg/m2] was the highest modifiable risk factor with a popula-
tion attributable risk (PAR) of 8–18% contributing to >8000 still-
births across all high-income countries. Maternal smoking had a
PAR of 4–7% contributing to more than 2800 stillbirths across
all high-income countries (23). The physiological mechanisms
contributing to stillbirths are not well defined; however, obesity
increases the risk of gestational diabetes and hypertension. There
is evidence to suggest inflammation is also involved.

Adipose tissue from lean individuals preferentially secretes
anti-inflammatory adipokines such as adiponectin, transform-
ing growth factor beta (TGFβ), IL-10, IL-4, IL-13, IL-1 receptor
antagonist (IL-1Ra), and apelin. By contrast, obese adipose tissue
mainly releases pro-inflammatory cytokines among which are
TNF-α, IL-6, leptin, visfatin, resistin, angiotensin II, and plas-
minogen activator inhibitor 1 (72). In studies of obesity among
Indigenous groups in which the genotype associated with higher
levels of IL-6 responses is predominant, levels of this cytokinewere
associated with higher BMI (73, 74). Using CRP as a marker for
inflammation, there is a positive correlation between BMI and
CRP among adults (75). In our current studies, BMI correlated
with CRP levels among Indigenous Australian women during
pregnancy (Pringle, this issue).

Fetal Growth Restriction

Fetal growth restriction had the largest PAR for stillbirths in a
major study of still birth risk factors in the United Kingdom (12).
Down regulation of IL-10 in the placenta has been associated
with IUGR in studies of a Caucasian (Swedish) (76) and an
Asian (Pakistani) (77) population. Elevated CRP (≥25mg L−1)
was associated with lower estimated fetal weight in the third
trimester and lower weight at birth and an increased risk of a small
for gestational age infant (78). In a mouse model, IL-10-reduced
endotoxin-induced growth retardation and fetal deaths (79); and
we have found a significant correlation (r= 0.91) between levels
of maternal and cord blood IL-10 among matched samples from
elective Caesarian deliveries (49).

Both human recombinant IL-10 and the CMV IL-10 analog
down regulate matrix metalloprotein 9 (MMP 9) involved in
implantation. Reduced MMP 9 activity in early placenta forma-
tion has been suggested to affect cytotrophoblast remodeling of
the uterine vasculature and restrict fetal growth (80). There have
been no prospective studies on presence of the levels of IL-10 or
the presence of CMV IL-10 analog in human pregnancy outcome.
It needs to be determined if these might be associated with low-
birth weight or small for gestational age infants if there is a
parallel with the mouse models. The report that 15% of stillbirths
in one series had evidence of CMV infection warrants further
studies into the role of these infections in relation to infection and
inflammation on the outcome of pregnancy, fetal survival, and
health (28).

There is evidence from animal models that elevated testos-
terone during pregnancy results in intrauterine growth retar-
dation (81). Among women with polycystic ovary (PCO)
syndrome, maternal androgens are increased during pregnancy.
At 10–16weeks, the PCO group had higher levels of testosterone
and the differences were significant at 22–28weeks (82). In the
PCO mothers, there was a higher proportion of small for ges-
tational age infants (12.8%) compared with the control group
(2.8%); and the SGA infants of themothers with PCOwere signifi-
cantly smaller (83).Higher levels of testosterone during pregnancy
at 17 and 33weeks were associated with lower birth weight and
length of the infant. The levels ranged from 0.5 to 7.2 nMol L−1

at 13weeks and from 0.9 to 14.5 nMol L−1 at 33weeks (84). If
inflammatory responses are contributing to growth restrictions,
the effects of testosterone need to be considered in the context of
inflammation (62).

The Male Excess in Stillbirths

For both SIDS and stillbirths, there is a male excess. In an early
analysis of the sex ratio, the authors analyzed stillbirths in the
United States from 1922 to 1936. The proportion of males at
<16weeks was nearly 80% but fell to 67% at 16weeks, a low of
53.5% at 28weeks but rose to 57% by 36–40weeks (16) (Figure 2).
In a recently reported analysis of birth outcomes in Canada
between 2002 and 2007, 54.8% of males were stillborn compared
to 51.4% of live births (17). The greatest difference between males
and females appeared to between 20 and 24weeks gestation as
noted in the earlier study.
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FIGURE 2 | (A) Percentage of singleton stillbirths among all singleton
livebirths and stillbirths (prevalence approach). Data are for males (solid blue
line) and females (dashed red line), presented by gestational age. (B) Number
of stillbirths per 1000 singleton livebirths and stillbirths combined (incidence
approach). Data are for males (solid blue lines) and female (dashed red lines),
presented by gestational age. Reproduced with permission (17).

There is a rise in testosterone production associated with the
period during which SIDS is most prevalent. Between 1 and
5months, testosterone levels range from 0.03 to 6.14 nMol L−1 for
males and0.03 to 0.17 for females. Inmales, these levels decrease to
0.07–0.24 at 6–11months. The ranges of testosterone in the adult
females (<0.4 to 3.1 nMol L−1) tested in our studies were within
the range formales in the 1- to 5-month age range.Therewas apos-
itive correlationbetween testosterone levels andpro-inflammatory
responses to LPS when the cells were pre-treated with IFN-γ or
IFN-γ and a water soluble cigarette smoke extract (62).

Fetal plasma testosterone levels for males were significantly
higher (range 1.7–2.9 nMol L−1) than levels for females (range
0.45–1.3 nMol L−1) (85) (Figure 3). If testosterone has a similar
effect on inflammatory responses in the fetus, male infants might
have significantly higher pro-inflammatory responses to infection
or bacterial components.We foundmany of the pro-inflammatory
cytokines are higher in the amniotic fluid of males and the anti-
inflammatory IL-1Ra significantly higher in females (Table 3).

During the 20- to 24-week period when the difference between
male and female stillbirths is most obvious, the difference in
fetal testosterone levels is greatest. The testosterone levels rise
significantlywith gestational age among females but remain steady
among males (Figure 3) (85). This raises the hypothesis that
the higher testosterone levels present in males at 20–24weeks

FIGURE 3 | Fetal testosterone levels, sex and gestational age.

TABLE 3 |Medians and ranges of cytokine levels (pg/ml) in amniotic fluid of
male and female infants.

Cytokine Female (n= 12) Range Male (n= 12) Range

IFN-γ 1373 15–6270 2717 96–14,417
IL1-β 28 <2.4–68 41 <2.4–121
IL-6 2270 292–10,738 1218 398–12,928
IL-8 1794 578–4185 2402 621–9179
TNF-α 351 311–2025 733 24–3176
IL-10 56 9–226 112 <1.8–303
IL1-Ra* 3908 1786–6295 1839 330–5064

∗P<0.001.

gestation enhance pro-inflammatory responses as noted in our
in vitro studies (62) and partly explain the excess ofmale stillbirths
in this age range (Figure 2). Experimental systems are available to
assess these interactions.

Conclusion

There is evidence from a variety of sources to suggest infection
and inflammation might play a role in fetal deaths. As a variety
of micro-organisms has been identified in studies of stillbirths,
the common thread is most likely the effects of the inflammatory
responses to infection. There is evidence to support the hypothesis
that risk factors associated with stillbirths could contribute to
dysregulation of the balance of inflammatory responses to infec-
tion, and these responses might trigger physiological interactions
leading to fetal loss. The following recommendations are derived
from the assessment of how dysregulation of the inflammatory
responses could help explain the risk factors associated with
stillbirths.

1. Samples from both mother and infant need to be assessed
by both conventional diagnostic methods and new molec-
ular methods for evidence of infectious agents, particularly
combinations of virus and bacteria.

2. Samples from both mother and infant need to be assessed
for presence of bacterial toxins, both soluble and cellular, that
can act as superantigens that can induce powerful cytokine
responses.
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3. Direct assessment of material from both mother and infant
for evidence of pro-inflammatory and anti-inflammatory
cytokines is needed.

4. Determination of cotinine levels in body fluids would help
determine the level of exposure to cigarette smoke.

5. For both mother and infant, determine cytokine gene
polymorphisms associated with high- or low-inflammatory
responses and implicated in pre-term birth.

6. Experimental studies to assess further the interactions
between genetic, developmental, and environmental risk

factors for their role in dysregulation of inflammatory
responses that could lead to infant death.
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