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The list of genes, which augment NK cell function when knocked out in neighboring cells is
increasing, andmay point to the fundamental function of NK cells targeting cells with dimin-
ished capability to differentiate optimally since NK cells are able to target less differentiated
cells, and aid in their differentiation. In this paper, we aimed at understanding the effect of
monocytes from targeted knockout of COX-2 in myeloid cells (Cox-2flox/flox;LysMCre/+) and
fromcontrol littermates (Cox-2flox/flox;LysM+/+) onex vivo functionofNKcells. Furthermore,
we compared the effect of monocytes treated with and without lipopolysaccharide (LPS)
on NK cells frommice and humans. NK cells purified fromCox-2flox/flox;LysMCre/+ mice had
heightened cytotoxic activity when compared to those obtained from control littermates.
In addition, NK cells culturedwith autologousCox-2flox/flox;LysMCre/+ monocytes and DCs,
mouse embryonic fibroblasts from global knockout COX-2, but not with knockout of COX-
2 in T cells, had increased cytotoxic function as well as augmented IFN-γ secretion when
compared to NK cells from control littermates cultured with monocytes. LPS inhibited NK
cellcytotoxicitywhile increasing IFN-γsecretionwhencultured inthepresenceofmonocytes
from either Cox-2flox/flox;LysMCre/+ or control littermates. In contrast to mice, NK cells from
humanswhen culturedwithmonocytes lost cytotoxic function and gained ability to secrete
largeamountsof IFN-γ,aprocess,whichwehadpreviouslycoinedas“splitanergy.”Similarto
mice,LPSpotentiatedthe lossofhumanNKcellcytotoxicitywhile increasing IFN-γ secretion
in thepresenceofmonocytes.Greater lossof cytotoxicity and larger secretionof IFN-γ inNK
cells inducedbygeneknockout cellsmaybe important for thegreater needof thesecells for
differentiation.
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Introduction

Knockout mouse models have provided a powerful tool for the
identification and elucidation ofmechanisms underlying different
physiological and pathological processes in mice. However, a
closer look at several of gene knockout mouse models (Table 1)
revealed the pro-inflammatory nature of the immune responses
in these animals. Ironically, increased inflammatory responses
can also be detected in mice with knockouts of genes that affect
the core function of cells, which mediate inflammation (1). In
addition, we have previously reported knockout of key genes in
healthy, as well as transformed human oral tumors increased the
functional activation of Natural Killer (NK) cells (2–4).

The prostanoids, which include prostaglandins, prostacyclins,
and thromboxanes, modulate several important physiological and
pathophysiological processes such as gastric mucosal integrity
(26, 27), vasodilation (28, 29), allergic response (30, 31), platelet
adhesion and aggregation (32, 33), wound healing (34–36), and
water balance (37). Cyclooxygenase (COX), the enzyme required
to generate prostanoids, exists in two isoforms, COX-1 and COX-
2. COX-1 is constitutively expressed in most tissues at a consis-
tent level and dysregulation results in gastric damage, bleeding,
and ulceration (38, 39). Under normal conditions, the COX-2
activity is low and upon induction by growth factors and pro-
inflammatory cytokines, the protein expression can be up- or
down-regulated within hours (40, 41). The involvement of COX-
2 in tumor development and progression has also been demon-
strated in numerous cancer types (42–44).

NK cells are lymphocytes that arise from the bone marrow and
are capable of mediating direct natural cytotoxicity and antibody-
dependent cellular cytotoxicity. NK cells are identified by the
expression of CD16 and CD56 in humans and DX5 or NK1.1 in
mice and lack surface expression of CD3. NK cells mediate cyto-
toxicity against a variety ofmalignant tumors, virally infected cells,
as well as healthy untransformed, undifferentiated cells (45, 46).

TABLE 1 | Heightened immune cell function and increased inflammation in
a variety of gene knockout mice.

Gene Reference

NF-κB (2–4)
STAT3 (5–7)
CD133 (8)
NEMO (9–11)
TNF-α (12)
DAP10/DAP12 (1)
Clc-5 (13)
MCP-1 (14)
Transglutaminase 3 (15)
Presenilins 1 and 2 (16)
Annexin-1 (17)
A20 (TNFAIP3) (18)
Galectin-3 (19)
PGC-1α (20)
LDLR (21)
Abca1 (22)
Cprc5a (23)
BCMO1 (24)
PAP/HIP (25)

Many significant differences, both in function and phenotype of
NK cells frommice and humans, have been identified in previous
reports.

Our laboratory has coined the term “split anergy” as a con-
dition in which NK cells lose cytotoxicity and gain the abil-
ity to secrete cytokines (47–53). Split anergy is initiated by the
receptor triggering of CD16, NKp46, toll-like receptors (TLRs),
and interaction with both healthy and transformed stem-like
cells, as well as with other immune effectors such as monocytes
and with fibroblasts in humans (54–57), and in this report we
present similar effect in mice. It has been reported that human
NK cells can become activated by the membrane component of
gram-negative bacteria lipopolysaccharide (LPS) which serves as
a TLRs-4 ligand. NK cells can proliferate either as a result of
indirect interaction with LPS-treated macrophages and dendritic
cells (DCs) or directly via TLR triggering on NK cells (58, 59).
Since NK cells are important effectors of selection and differen-
tiation of stem cells, the induction of split anergy in NK cells
is a physiologically important step in converting the phenotype
of NK cells from cytotoxic to those of cytokine producing cells,
allowing differentiation of the stem cells. This enables theNK cells
not only to remove defective stem cells but also to limit the size
and proliferation of stem cells, in addition to the promotion of
differentiation of selected stem cells (54–56, 60, 61).

Our previous data and those from others collectively suggest
that the inhibition of genes involved in differentiation of tumors
result in an increase in cytotoxic function of NK cells (2–7). The
list of cellular genes, which augment cytotoxicity in NK cells when
deleted or decreased in tumors is increasing, and may point to a
fundamental function ofNK cells targeting cells, which lose ability
to differentiate optimally sinceNK cells are known to target poorly
differentiated/stem-like cells. Therefore, in this paper we aimed at
understanding the effect of the deletion of COX-2, another impor-
tant differentiation gene inmonocytes, on the function ofNK cells
frommice carrying the targeted knock down of COX-2 inmyeloid
cells. In addition, the function of NK cells after interaction with
monocytes from mice and humans were compared.

Materials and Methods

Mice
Myeloid cell-specific COX-2 targeted knockout mice (Cox-
2flox/flox;LysMCre/+) and their control wild type (WT) littermates
(Cox-2flox/flox;LysM+/+), as well as global COX-2 knockout (COX-
2−/−) and their control wildtype littermates were generated and
bred at UCLA in Dr. Harvey Herschman’s laboratory and used
for this study (62). C57BL/6 mice were purchased from Jackson
Laboratory (Bar Harbor, ME, USA).

Cell Lines, Reagents, and Antibodies
RPMI 1640 supplemented with 10% Fetal Bovine Serum (FBS)
was used for the cultures of human NK cells, monocytes, and
mouse NK cells, T cells, monocytes and DCs. RPMI 1640 sup-
plemented with 10% FBS was also used to culture mouse T cell
lymphoma (YAC-1). ST63 cells were cultured in RPMI 1640 sup-
plemented with 10% FBS. COX-2 wild type and COX-2 knockout
Mouse Embryonic Fibroblasts (MEFs) were cultured in DMEM
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supplemented with 10% FBS (62). Oral Squamous Cancer Stem
Cells (OSCSCs) were isolated from the tongue tumors of the
patients at UCLA and cultured in RPMI 1640 supplemented with
10% FBS (Gemini Bio-Products, CA), 1.4% antibiotic antimy-
cotic, 1% sodium pyruvate, 1.4% non-essential amino acids, 1%
-glutamine, 0.2% gentamicin (Gemini Bio-Products, CA, USA)
and 0.15% sodiumbicarbonate (Fisher Scientific, PA,USA). IFN-γ
was purchased from Biolegend (San Diego, CA, USA) and TNF-α
was purchased from PeproTech (Rocky Hill, NJ, USA). LPS was
purchased from Sigma-Aldrich (St. Louis, MO). IL-4 and GM-
CSF were purchased from Biolegend (San Diego, CA, USA) and
used to differentiate purified monocytes into DCs. Recombinant
IL-2 was obtained from NIH-BRB. Antibodies to CD16, B7H1,
CD45, CD54, DX5, Ly49A, Ly49D, Rae-1γ, NKG2D, and F4/80
were purchased from Biolegend (San Diego, CA, USA). Antibody
to MHC class-I was purchased from eBioscience (San Diego, CA,
USA). Flow cytometry analysis was performed using Beckman
Coulter Epics XL cytometer (Brea, CA,USA) and results were ana-
lyzed in FlowJo vX software (Tree Star, Ashland, OR, USA). The
mouse and human NK cells, T cells, and monocyte purification
kits were obtained from Stem Cell Technologies (Vancouver, BC,
Canada).

Bacterial Preparation
AJ2 is a combination of eight gram-positive bacterial strains
(Streptococcus thermophilus, Bifidobacterium longum, Bifidobac-
terium breve, Bifidobacterium infantis, Lactobacillus acidophilus,
Lactobacillus Plantarum, Lactobacillus casei, and Lactobacillus
bulgaricus) each selected and combined for the optimal capability
to induce differentiation of stem cells (60) (manuscript submit-
ted). AJ2 was re-suspended in RPMI supplemented with 10% FBS
(Gemini Bio-Products, CA) at a final concentration of 10mg/mL.
The bacteria were then sonicated using ultra-sonicator for 15 s
while on ice. Afterward, the sonicated bacteria were incubated
for 30 s on ice. The sonication process was repeated 20 times to
achieve complete sonication. Lastly, the sonicated samples (sAJ2)
were aliquoted and stored in−80° freezer until use.

Purification of Human NK Cells and Monocytes
Written informed consents approved by UCLA Institutional
Review Board (IRB) were obtained from the blood donors and all
the procedures were approved by the UCLA-IRB. NK cells from
healthy donors were isolated as described before (51). Briefly,
peripheral blood lymphocytes were obtained after Ficoll-hypaque
centrifugation and purified NK cells were negatively selected by
using anNK cell isolation kit (StemCell Technologies, Vancouver,
BC, Canada). The purity of NK cell population was found to
be >90% based on flow cytometric analysis of anti-CD16 anti-
body stained cells. The levels of contaminating CD3+ T cells
remained low, at 2.4± 1%, similar to that obtained by the non-
specific staining using isotype control antibody throughout the
experimental procedures. The adherent subpopulation of PBMCs
was detached from the tissue culture plates and monocytes were
purified using isolation kit obtained from Stem Cell Technologies
(Vancouver, BC, Canada). Greater than 95% purity was achieved
based on flow cytometric analysis of CD14 antibody stained
monocytes.

Mouse NK Cells, T Cells, Monocytes and
Dendritic Cell Cultures
All animal work performed was based on the guidelines estab-
lished and approved by UCLA Office of Animal Research Over-
sight. Single cell preparations of mouse splenocytes were used
to negatively select mouse NK cells using mouse NK isolation
kit purchased from Stem Cell Technologies (Vancouver, Canada).
The purity of mouse NK cells were >90% based on staining with
PE-conjugated DX5 antibody (Figure S1 in Supplementary Mate-
rial). NK cells were treated with IL-2 (1× 104 U/million NK cells)
for 7 days before the cells were used for experiments. T cells were
purified using mouse T cell isolation kit purchased from Stem
Cell Technologies (Vancouver, BC, Canada). Bone marrow cells
were isolated by flushing femurs with PBS supplemented with 2%
heat-inactivated FBS. Murine monocytes were then purified from
bone marrow cells using monocyte isolation kit obtained from
Stem Cell Technologies (Vancouver, BC, Canada). The purity of
monocytes was between 86 and 96% based on staining with PE-
conjugated anti-CD14 antibody. To differentiate mouse DCs from
purified monocytes, IL-4 (20 ng/mL) and GM-CSF (20 ng/mL)
were added to monocytes for 7 days.

ELISA and Multiplex Assays
Single ELISAs were performed as described previously (51). Flu-
orokine MAP cytokine multiplex kits were purchased from R&D
Systems (Minneapolis, MN, USA) and the procedures were con-
ducted as suggested by the manufacturer. To analyze and obtain
the cytokine and chemokine concentration, a standard curve was
generated by either two- or threefold dilution of recombinant
cytokines provided by the manufacturer. Analysis was performed
using the Star Station software. Samples were analyzed using
BeckmanCoulter EPICSXL cytometer and subsequently analyzed
in FlowJo software (Tree Star, Ashland, OR, USA).

51Cr release Cytotoxicity Assay
The 51Cr release assay was performed as described previously (3).
Briefly, different numbers of purified NK cells were incubated
with 51Cr–labeled target cells. After a 4 h incubation period, the
supernatants were harvested from each sample and counted for
released radioactivity using the gamma counter. The percentage
specific cytotoxicity was calculated as follows:

% Cytotoxicity = Experimental cpm− spontaneous cpm
Total cpm− spontaneous cpm

LU 30/106 is calculated by using the inverse of the number of
effector cells needed to lyse 30% of tumor target cells× 100.

Statistical Analysis
An unpaired, two-tailed student t- test was performed for the
statistical analysis. One-way ANOVA with a Bonferroni post-test
was used to compare the different groups.

Results

NK Cells Derived from Cox-2flox/flox;LysMCre/+

Mice Mediated Higher Cytotoxicity
Purified NK cells obtained from spleens of control WT litter-
mates (Cox-2flox/flox;LysM+/+) and those with targeted knockout
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FIGURE 1 | Increased cytotoxicity by NK cells derived from
Cox-2flox/flox;LysMCre/+mice compared to those obtained from
control WT littermates. Purified NK cells obtained from either control
(WT) or Cox-2flox/flox;LysMCre/+ (KO) mice were left untreated or treated
with IL-2 (1×104 U/million) for 7 days before they were used against
YAC-1 cells (A), Mouse Embryonic Fibroblasts (B), and ST63 (C) in a

standard 4 h 51Chromium release assay. The lytic units 30/106 cells were
determined using inverse number of NK cells required to lyse 30% of the
target cells×100. *P<0.05 was obtained for the difference between
control WT Cox-2flox/flox;LysMCre/+ NK cell cytotoxicity against YAC-1
cells, MEFs, or ST63. One of several representative experiments is shown
in this figure.

of COX-2 gene in myeloid cells (Cox-2flox/flox;LysMCre/+) were left
untreated or treated with IL-2 for 7 days before they were used in a
standard 51Cr release assay against YAC-1 cells (Figure 1A; Figure
S2A in Supplementary Material), Mouse Embryonic Fibroblasts
(MEFs) (Figure 1B), and ST63 cells (Figure 1C; Figure S2B
in Supplementary Material). As shown in Figure 1, purified
IL-2-treated NK cells from Cox-2flox/flox;LysMCre/+ mice lysed
YAC-1 (P< 0.05), MEFs (P< 0.05), and ST63 cells (P< 0.05)
significantly more than IL-2-treated NK cells from control WT
littermates which had no/low cytotoxicity. Untreated NK cells did

not mediate any cytotoxicity (Figure 1; Figure S1 in Supplemen-
tary Material).

NK Cells Obtained from Cox-2flox/flox;LysMCre/+

Mice Cultured With Autologous Monocytes
Mediated Significantly Higher Levels of
Cytotoxicity than Those from Control Littermates
Cultured With and Without Monocytes
Purified NK cells from control WT littermates and Cox-
2flox/flox;LysMCre/+ mice were cultured with or without purified
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autologous bone marrow derived monocytes for 7 days before
the cells were used in a standard 4 h 51Cr release assay against
YAC-1 tumors (Figure 2A). As shown in Figure 2A, IL-2-treated
NK cells from control WT mice cultured with autologous mono-
cytes mediated slightly higher cytotoxicity compared to the NK
cells cultured without monocytes. IL-2-treated NK cells puri-
fied from Cox-2flox/flox;LysMCre/+ mice cultured with autologous
monocytes lysed YAC-1 cells significantly more compared to NK

cells cultured without autologous monocytes, and those puri-
fied from control WT animals cultured with autologous mono-
cytes (P< 0.05). IL-2-treated NK cells cultured with autolo-
gous monocytes from Cox-2flox/flox;LysMCre/+ mice also exhib-
ited higher cytotoxicity against transformed mouse oral ker-
atinocytes and MC38 cells (data not shown) as compared to
NK cells from control WT littermates cultured with autologous
monocytes.

FIGURE 2 | IL-2 activated NK cells from Cox-2flox/flox;LysMCre/+ mice
cultured with autologous monocytes lysed YAC-1 cells and secreted
high levels of IFN-γ as compared to NK cells from control littermates in
the presence and absence of autologous monocytes. NK cells obtained
from control mice or Cox-2flox/flox;LysMCre/+mice were left untreated or treated
with IL-2 (1×104 U/million) in the presence or absence of autologous
monocytes for 7 days. Afterward, the cytotoxic function of NK cells against
YAC-1 cells was determined using a standard 4 h 51Chromium release assay.

*P<0.05 was obtained for the difference in cytotoxicity against YAC-1 tumors
mediated by IL-2-treated NK cells cultured with or without monocytes between
control and Cox-2flox/flox;LysMCre/+ mice (A). NK cells were treated as described
in (A) Afterward, the supernatants were removed from the co-cultures and the
levels of IFN-γ secretion were determined using specific ELISAs (B). *P<0.05
was obtained for the difference in IFN-γ secretion from IL-2-treated NK cells
between control and Cox-2flox/flox;LysMCre/+ mice cultured with monocytes.
One of several representative experiments is shown in this figure.
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NK Cells Purified from Cox-2flox/flox;LysMCre/+

Mice Cultured With Autologous Monocytes
Produced Significantly Higher IFN-γ than Those
from Control WT Littermates Cultured With and
Without Autologous Monocytes
Purified NK cells obtained from Cox-2flox/flox;LysMCre/+ mice and
control WT littermates were cultured with or without purified
autologous monocytes for 7 days, after which the supernatants
were collected and the levels of IFN-γ produced by NK cells
were measured with specific ELISA. Untreated NK cells did not
secrete IFN-γ (Figure 2B). IL-2 treated NK cells from both
control WT and Cox-2flox/flox;LysMCre/+ mice produced much
lower levels of IFN-γ in the absence of autologous monocytes
(Figure 2B). Significantly higher levels of IFN-γ were secreted by
NK cells from Cox-2flox/flox;LysMCre/+ mice when cultured with
autologous monocytes, whereas much lower amounts of IFN-
γ could be seen in supernatants from NK cells from control
WT littermates cultured with autologous monocytes (P< 0.05)
(Figure 2B).

Step Wise Increase in Cytotoxicity and IFN-γ
Secretion When NK Cells from Control WT Mice
or Cox-2flox/flox;LysMCre/+ Mice were Cultured with
Wild Type or COX-2−/− Monocytes, Respectively
NK cells purified from either control WT littermates or
Cox-2flox/flox;LysMCre/+ mice and treated with IL-2 were co-
cultured with either wild type monocytes or monocytes
from Cox-2flox/flox;LysMCre/+ mice. The cytotoxic function
of NK cells obtained from wild type mice against YAC-1
tumors remained at the lowest when cultured with wild type
monocytes whereas an increase in the levels of cytotoxicity
could be observed when they were cultured with monocytes
from Cox-2flox/flox;LysMCre/+ mice (Figure 3A). NK cells from
Cox-2flox/flox;LysMCre/+ mice exhibited higher cytotoxicity
either cultured with wild type monocytes (P< 0.05) or
COX-2 knockout monocytes (P< 0.05) as compared to NK
cells from wild type mice, although the levels were much
higher when cultured with COX-2 knockout monocytes
(Figure 3A). Therefore, the levels of IL-2-treated NK cell
cytotoxicity from the lowest to highest in the co-cultures were
as follows: NK(WT)+MO(WT)<NK(WT)+MO(KO)<
NK(KO)+MO(WT)<NK(KO)+MO(KO) (Figure 3A).

Secretion of IFN-γ in the co-cultures of NK cells with mono-
cytes followed the same trend as seen with cytotoxicity. NK
cells from wild type mice cultured with wild type mono-
cytes secreted the lowest amounts of IFN-γ when compared
to those cultured with monocytes from Cox-2flox/flox;LysMCre/+

mice, which secreted the next highest levels (Figure 3B). Sig-
nificant amounts of IFN-γ were obtained when NK cells from
Cox-2flox/flox;LysMCre/+ mice were cultured either with wild
type (P< 0.05) or Cox-2flox/flox;LysMCre/+ monocytes (P< 0.05)
(Figure 3B). IL-2-treated NK cells in the absence of mono-
cytes from both wild type and Cox-2flox/flox;LysMCre/+ mice did
not secrete detectable IFN-γ (Figure 3B). Similarly, mono-
cytes in the absence of NK cells did not secrete IFN-γ
(Figure 3B).

COX-2 Gene Deletion in Mouse Embryonic
Fibroblasts (MEFs) Resulted in a Significant
Susceptibility to NK Cell-Mediated Lysis
Purified NK cells obtained from spleens of controlWT littermates
and Cox-2flox/flox;LysMCre/+ mice were cultured with or without
monocytes in the presence of IL-2 treatment. Afterward, the
NK cells were used as effectors in a standard 51Cr release assay
against wild type and COX-2−/− MEFs from global COX-2−/−

mice. As shown in Figure 3C, NK cells from wild type mice
cultured with and without autologous monocytes mediated lower
levels of cytotoxicity against COX-2−/− MEFs when compared
to NK cells from Cox-2flox/flox;LysMCre/+ mice cultured with and
without autologous monocytes (P< 0.05), and lower cytotoxicity
could be observed against wild type MEFs (P< 0.05). NK cells
obtained from Cox-2flox/flox;LysMCre/+ mice cultured with autol-
ogous monocytes had the greatest cytotoxicity against both wild
type (P< 0.05) and COX-2−/− MEFs (P< 0.05), although the
highest levels were seen against COX-2−/− MEFswhen compared
to wild type MEFs (P< 0.05) (Figure 3C).

Co-Culture with COX-2−/− Monocytes, but not
COX-2−/− T Cells, Increased the Cytotoxic
Function of NK Cells
NK cells and monocytes were purified from either control WT
littermates or Cox-2flox/flox;LysMCre/+ mice. T cells were purified
from wild type or global COX-2 knockout mice. NK cells were
treated with IL-2 and cultured alone or with purified CD3+
naïve T cells or monocytes from wild type or COX-2−/− mice.
Afterward, T cells and monocytes were removed from the co-
cultures and NK cells were used as effector cells against wild type
andCOX-2−/−MEFs in a standard 51Cr release assay (Figure 3C).
The cytotoxic function of NK cells from wild type mice was
lower against both wild type and COX-2−/− MEFs, and the
addition of either T cells or monocytes from wild type mice
did not increase the cytotoxicity significantly (Figure 3C). NK
cells obtained from Cox-2flox/flox;LysMCre/+ mice cultured with
autologous monocytes, but not with T cells from global COX-
2−/− mice, increased cytotoxicity of NK cells significantly against
bothwild type (P< 0.05) andCOX-2−/− MEFs (P< 0.05). Albeit,
the highest increase could be observed against COX-2−/− MEFs
when compared to wild type MEFs, while the addition of T cells
from global COX-2 knockout mice did not have significant effect
on NK cell cytotoxicity (Figure 3C).

Dendritic Cells Derived from Monocytes of
Cox-2flox/flox;LysMCre/+ Mice were More
Susceptible to NK Cell-Mediated Cytotoxicity
than Dendritic Cells from Wild Type Mice
Dendritic cells were derived from purified monocytes by the
addition of IL-4 and GM-CSF for 7 days. Differentiated DCs from
wild type or Cox-2flox/flox;LysMCre/+ mice were labeled with 51Cr
and used as targets in a standard 51Cr release assay against IL-
2-treated NK cells derived from wild type mice in the presence
and absence of monocytes. As predicted, DCs differentiated from
Cox-2flox/flox;LysMCre/+ monocytes were more susceptible to IL-2-
treated NK cell-mediated lysis as compared to those differentiated
frommonocytes obtained from control WT littermates (P< 0.05)
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FIGURE 3 | Monocytes, and not T cells, from Cox-2flox/flox;LysMCre/+

mice enhanced the cytotoxic function of autologous NK cells and
induced high levels of IFN-γ secretion. Wild type or Cox-2flox/flox;
LysMCre/+ derived NK cells were activated with IL-2 (1×104 U/million) and
cultured with either wild type or Cox-2flox/flox;LysMCre/+ monocytes for
7 days. Afterward, the cytotoxic function of NK cells against YAC-1 was
determined using a standard 4 h 51Chromium release assay. The lytic units
30/106 cells were determined using inverse number of NK cells required to
lyse 30% of the target cells×100. *P<0.05 is for the difference in
cytotoxicity against YAC-1 tumors between IL-2-treated NK cells from
control and Cox-2flox/flox;LysMCre/+ mice cultured with monocytes (A). NK
cells were prepared as described in (A) and then supernatants from NK cell
cultures were harvested after co-incubation with monocytes for 7 days.
Monocytes from wild type and Cox-2flox/flox;LysMCre/+ mice were used as
control. The levels of IFN-γ secretion were determined using specific
ELISAs. *P<0.05 is for the difference in IFN-γ secretion between
IL-2-treated NK cells from control and Cox-2flox/flox;LysMCre/+ mice
cultured with monocytes (B). NK cells were treated with IL-2
(1×104 U/million) and cultured with either T cells from global COX-2

knockout mice or monocytes from wild type or Cox-2flox/flox;LysMCre/+

mice for 7 days. Afterward, NK cells were used as effectors against wild
type MEFs or MEFs with specific COX-2 deletion. The cytotoxic function of
NK cells against MEFs was determined using a standard 4 h 51Cr release
assay. The lytic units 30/106 cells were determined using inverse number
of NK cells required to lyse 30% of the target cells ×100. *P<0.05 is for
the difference in cytotoxicity between IL-2-treated NK cells from control
and Cox-2flox/flox;LysMCre/+ mice cultured with monocytes or T cells (C).
IL-2-treated (1×104 U/million) NK cells obtained from wild type mice were
cultured with monocytes from wild type mice or Cox-2flox/flox;LysMCre/+

mice for 7 days before the cells were used as effector cells in a standard
4 h 51Chromium release assay. Monocyte-derived DCs from wild type or
Cox-2flox/flox;LysMCre/+ mice were prepared as described in Section
“Materials and Methods” and used as target cells. The lytic units 30/106

cells were determined using inverse number of NK cells required to lyse
30% of the target cells×100. *P<0.05 was obtained for the difference in
IL-2-treated NK cell-mediated lysis between DCs from control mice and
from those of Cox-2flox/flox;LysMCre/+ mice (D). One of several
representative experiments is shown in this figure.
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(Figure 3D). NK cells purified from control WT mice cultured
with monocytes from Cox-2flox/flox;LysMCre/+ mice induced the
highest lysis of Cox-2flox/flox;LysMCre/+ DCs when compared to
DCs from wild type mice (P< 0.05) (Figure 3D). Although NK
cells obtained from wild type mice cultured with autologous
monocytes lysed Cox-2flox/flox;LysMCre/+ DCs more as compared
to wild type DCs, the levels of cytotoxicity were significantly
lower when compared to NK cells obtained from wild type mice
and cultured with monocytes from Cox-2flox/flox;LysMCre/+ mice
(P< 0.05) (Figure 3D).

LPS Induced Split Anergy in Murine NK Cells as
Evident by a Decrease in Cytotoxicity and an
Increase in IFN-γ Secretion by NK Cells
Purified NK cells obtained from control WT littermates were
treated with IL-2 and cultured in the presence of autologous
monocytes or those obtained from Cox-2flox/flox;LysMCre/+ mice
in the absence and presence of LPS before they were used in
a standard 51Cr release assay against YAC-1 tumors. The addi-
tion of LPS to the cultures of IL-2-treated NK cells with mono-
cytes from control WT littermates resulted in a complete shut-
down of the NK cells’ ability to lyse YAC-1 cells (P< 0.05)
(Figure 4A) while it increased the amount of IFN-γ secreted by
the NK cells (P< 0.05) (Figure 4B). Similarly, IL-2-treated NK
cells obtained from control WT littermates cultured with mono-
cytes from Cox-2flox/flox;LysMCre/+ mice significantly increased
NK cell-mediated cytotoxicity against YAC-1 cells when com-
pared to control WT littermate NK cells cultured with autolo-
gous monocytes, and the addition of LPS completely abolished
cytotoxicity (P< 0.05) (Figure 4A) while increasing IFN-γ secre-
tion significantly (P< 0.05) (Figure 4B). Similar results to those
seen with YAC-1 targets were also seen when control and Cox-
2flox/flox;LysMCre/+DCswere used as targets (Figure 4C). As shown
in Figure 4C, the addition of LPS to IL-2-treated NK cells from
wild type mice either cultured with autologous monocytes or with
monocytes obtained from Cox-2flox/flox;LysMCre/+ mice resulted in
decreased NK cell cytotoxicity against both wild type (P< 0.05)
and Cox-2flox/flox;LysMCre/+ DCs (P< 0.05), albeit the decrease
was substantially more with Cox-2flox/flox;LysMCre/+ DCs when
compared to wild type DCs (Figure 4C). When NK cells from
C57bl6 mice unrelated to the breeding colony control littermates
for COX-2 were used in the presence and absence of autolo-
gous monocytes with and without LPS, similar results to those
obtained with NK cells from control WT littermates in regards
to cytotoxicity and IFN-γ secretion were seen (Figures S3A,B in
Supplementary Material).

Decreased Constitutive Expression of MHC
Class-I on COX-2−/− MEFs and Increased
Expression After Treatment with IFN-γ and/or
TNF-α
Expression of MHC class-I (Figure 5A), B7H1 (Figure 5B) and
CD54 (Figure 5C) were determined on wild type and COX-2−/−

MEFs. COX-2−/−MEFs demonstrated lower expression ofMHC-
class I but no significant change for B7H1 or CD54 expression
for untreated MEFs (Figures 5A–C), whereas those treated with
IFN-γ expressed higher MHC class-I, B7H1 and CD54 surface
receptors when compared to wild type MEFs (Figures S4A–C in

Supplementary Material). The addition of TNF-α to COX-2−/−

MEFs increasedMHCclass-I andCD54but hadno effect onB7H1
expression when compared to wild type MEFs (Figures S4A–C
in Supplementary Material). Treatment with the combination of
IFN-γ and TNF-α synergistically increased MHC class-I, B7H1,
and CD54 on both wild type and COX-2−/− MEFs, however,
the levels of expression were higher on COX-2−/− MEFs when
compared to wild type MEFs (Figures S4A–C in Supplementary
Material). Decrease in constitutive expression of MHC class-I on
untreated COX-2−/− MEFs were seen for the majority of the
experiments, however, its modulation with IFN-γ and/or TNF-
α were variable, demonstrating an increase on COX-2−/− MEFs
as compared to wild type MEFs in most experiments (Figures
S4A–C in Supplementary Material); but in a few experiments a
decrease rather than an increase was noted on COX-2−/− MEFs
as compared to wild type MEFs which depended on cell passage
number and growth dynamics (data not shown). No expression
of Rae-1γ could be seen on either wild type or COX-2−/−MEFs
(Figure 5D).

Significant Down-Modulation of NK Cell
Receptors After Their Culture with MEFs and
Monocytes
The expression of DX5 (Figure 6A), Ly49A (Figure 6B), Ly49D
(Figure 6C), and NKG2D (Figure 6D) were determined on the
surface of NK cells activated with IL-2 and cultured with and
without monocytes and LPS in the presence and absence of wild
type and COX-2−/− MEFs or ST63. A generalized decrease in all
four receptor expression on NK cells were noted after culture with
wild type or COX-2−/− MEFs (Figure 6), whereas the expression
of DX5 and NKG2D was either decreased or not changed on NK
cells after interaction with ST63. In contrast, an increase in the
expression of Ly49A and Ly49D was seen on NK cells cultured
with ST63 cells (Figure 6). Culture of NK cells with monocytes
also exhibited significant down-modulation of all four receptors in
the absence and presence of culture with wild type andCOX-2−/−

MEFs and ST63 cells (Figure 6).

Monocytes in the Presence and Absence of LPS
Induced Split Anergy in IL-2 Treated Human NK
Cells
The addition of LPS, as well as sAJ2, to human NK cells in the
absence and presence of monocytes resulted in the significant
induction of split anergy (Figures 7 and 8). As demonstrated
in Figure 7, LPS induced loss of NK cell-mediated cytotoxicity
against Oral Squamous Carcinoma Stem Cells (OSCSCs) while
increasing IFN-γ secretion. Unlike mouse NK cells in which cul-
ture of monocytes with IL-2-treated NK cells increased NK cell
cytotoxicity and secretion of IFN-γ, culture of monocytes with IL-
2-treated NK cells from humans inhibited cytotoxicity (P< 0.05)
while increasing IFN-γ secretion (P< 0.05) (Figure 7). The high-
est decrease in cytotoxicity and increase in IFN-γ secretion were
observed when IL-2 or IL-2 and anti-CD16mAb-stimulated NK
cells cultured with monocytes were treated with LPS (P< 0.05)
(Figure 7). Split anergy in human NK cells was also induced
by gram-positive bacteria sAJ2 (Figure 8). The loss of cytotox-
icity in IL-2-treated NK cells was induced with the addition of
monocytes in the presence or absence of sAJ2 while it induced
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FIGURE 4 | The addition of LPS to NK cells cultured with monocytes
induced split anergy in NK cells which resulted in significant inhibition
of NK cell cytotoxicity but increased IFN-γ secretion. IL-2-treated
(1×104 U/million) NK cells obtained from wild type mice were cultured with
monocytes from wild type mice or Cox-2flox/flox;LysMCre/+ mice for 7 days and
then treated with or without LPS (20 ng/mL) for an additional day. Afterward, NK
cells were used as effector cells in a standard 4 h 51Chromium release assay
against YAC-1 cells. The lytic units 30/106 cells were determined using inverse
number of NK cells required to lyse 30% of the target cells×100. *P<0.05
was obtained for differences in cytotoxicity between untreated and LPS-treated
NK cells cultured with monocytes from control littermates or those from

Cox-2flox/flox;LysMCre/+ mice (A). NK cells were treated as described in (A) and
afterward the supernatant was removed from the co-cultures and the levels of
IFN-γ secretion were determined using specific ELISAs. *P<0.05 was obtained
for differences in secretion of IFN-γ between untreated and LPS-treated NK
cells cultured with monocytes from control littermates or those from
Cox-2flox/flox;LysMCre/+ mice (B). NK cells were prepared as described in (A) and
used as effector cells against DCs derived from monocytes from either wild type
or Cox-2flox/flox;LysMCre/+ mice in a standard 4 h51Chromium release assay. The
lytic units 30/106 cells were determined using inverse number of NK cells
required to lyse 30% of the target cells×100 (C). One of several representative
experiments is shown in this figure.
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FIGURE 5 | MHC class-I, B7H1 and CD54 surface receptor analysis on wild type and COX-2 knockout MEFs.
(Continued)

significant secretion of IFN-γ (P< 0.05) (Figures 8A,B). The
highest decrease in cytotoxicity and increase in IFN-γ secre-
tion was obtained when IL-2 or IL-2 and anti-CD16mAb-treated
NK cells were cultured with monocytes and treated with sAJ2
(P< 0.05) (Figures 8A,B). In addition to IFN-γ, the levels of IL-
6, IL-8, IL-10, GM-CSF, and TNF-α were also increased when
NK cells were cultured with monocytes and bacteria (Figure S5 in
Supplementary Material). No release of MICA or MICB could be
seen in the cultures of NK cells with monocytes (data not shown),
even though the same treatment induces significant IL-6 and IL-
8 release in the co-cultures of NK cells with monocytes (Figure
S6 in Supplementary Material). Therefore, although monocytes
increased IFN-γ secretion in both species, they inhibited cyto-
toxicity by human NK cells whereas they increased cytotoxic-
ity by mouse IL-2-treated NK cells. Treatment of NK cells and
monocytes with LPS, on the other hand, inhibited cytotoxicity in
both human andmouse NK cells while increasing IFN-γ secretion

substantially. Human monocytes secreted significant levels of NK
activating cytokines IL-15, IFN-α, and IL-12 (Figure 8C) and
the levels of IFN-α increased when cultured with the NK cells
(Figure 8D).

Discussion

Table 1 provides a short list of genes which upon deletion in
cells trigger inflammation and augment immune cell function
in mice and in in vitro culture models. Specifically, the deletion
of NF-κB in tumors was found to increase NK cell-mediated
cytotoxicity and secretion of IFN-γ significantly (2, 3), and induce
auto-immunity and inflammation in vivo (63, 64). Moreover, con-
ditional knockout of STAT3 in hematopoietic cells was found to
result in the induction of colitis inmice due to chronic gut inflam-
mation (57, 65). Furthermore, we have shown previously that NK
cells target poorly differentiated cells or stem cells with lower
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FIGURE 5 | Continued
The surface expression of MHC class-I (A), B7H1 (B), and CD54 (C) on wild
type and COX-2 knockout MEFs were assessed using staining with
PE-conjugated antibodies followed by flow cytometric analysis. The surface

expression of Rae-1γ on wild type and COX-2 knockout MEFs was
assessed using staining with PE-conjugated antibodies followed by flow
cytometric analysis (D). Isotype control antibody was used as control. One of
four experiments is shown.

expression of many important differentiation receptors (45, 60,
66). In our recent studies, we reported that the stage of maturation
and differentiation of healthy untransformed stem cells, as well as
transformed tumorigenic cancer stem cells, is predictive of their
sensitivity toNK cell-mediated lysis. In this regard, we have shown
that stem-like/poorly differentiated oral and pancreatic tumors are
significantly more susceptible to NK cell-mediated cytotoxicity;
whereas, their differentiated counterparts are significantly more
resistant (45). Based on these results, we have proposed, and
recently demonstrated, that NK cells play a significant role in
differentiation of the cells by providing critical signals via secreted
cytokines as well as direct cell–cell contact (60). In addition, we
have previously shown that human monocytes induce significant

split anergy in NK cells (55, 57, 61, 65, 66). Induction of split
anergy in NK cell effector function is thought to ultimately aid in
driving differentiation of healthy, as well as transformed stem cells
(55, 57, 61, 65, 66). Therefore, from these studies, and those listed
in Table 1, it appears that inhibition of key molecules that take
part in differentiation, or induction of de-differentiation in the
cells are likely means of activating immune cells, particularly NK
cells, in order to drive both selection and differentiation of their
interacting cells. Since COX-2 is elevated during differentiation in
many cells, we aimed at determining whether blocking COX-2 in
monocytes or MEFs will also able to activate NK cell function.

The findings from our laboratory indicated that NK cells may
sense the absence of key receptors on stem cells in order to aid in
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FIGURE 6 | Receptor analysis of purified splenic NK cells co-cultured with MEFs from wild type and COX-2 knockout mice.
(Continued)
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FIGURE 6 | Continued
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FIGURE 6 | Continued
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FIGURE 6 | Continued
Purified NK cells were treated with IL-2 (10,000U/mL) and cultured without and
with monocytes (NK: monocytes, 2:1) and LPS (100 ng/mL) for 24 h. Afterward,
NK cells were co-cultured with either wild type or COX-2 knockout MEFs or

ST63 at 9:1 (NK cells: target ratio) for 48 h. Thereafter, the surface expression of
DX5 (A), Ly49A (B), Ly49D (C) and NKG2D (D) were assessed using staining
with PE-conjugated antibodies followed by flow cytometric analysis. Isotype
control antibody was used as control. One of three experiments is shown.
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FIGURE 7 | Induction of split anergy mediated by LPS was observed in
Human NK cells which resulted in a loss of their cytotoxic function but
gained the ability to secrete high levels of IFN-γ, especially in the
presence of autologous monocytes. Human NK cells were purified from
healthy donors and were left untreated or treated with IL-2 (1000U/mL),
anti-CD16mAb (3µg/mL), or the combination of IL-2 (1000U/mL) and
anti-CD16mAb (3µg/mL) in the presence or absence of LPS (20 ng/mL) and
autologous monocytes (NK cell:monocytes, 1:1) for 24–48 h. Afterward, the
cytotoxicity against OSCSCs was assessed using a standard 4 h 51Chromium
release assay. Percent cytotoxicity was obtained at different effector to target

ratio and the lytic units 30/106 cells were determined using inverse number of
NK cells required to lyse 30% of the tumor cells×100 (A). NK cells were
prepared as described in Figure 5A. Monocytes were treated with IL-2
(1000U/mL) and/or anti-CD16mAb (3µg/mL) and LPS (20 ng/mL) for 24–48 h
and used as controls. After the treatment period, the supernatants were
removed from the co-cultures and the levels of IFN-γ cytokine were measured
with specific ELISA (B). *P<0.05 was obtained for the differences in
cytotoxicity and IFN-γ secretion between NK cells cultured in media and those
treated with LPS, monocytes, or the combination of LPS and monocytes. One
of several representative experiments is shown in this figure.

stem cell differentiation. Tomediate this process, we hypothesized
that NK cells will have to first receive signals which will allow
them to undergo split anergy resulting in a decrease in their
cytotoxic function and an increase in the production of cytokines
primarily, IFN-γ and TNF-α, to promote differentiation of the
cells (60). Increasing the ability of NK cells to not only be great
effectors of selection of stem cells, but also great inducers of their
differentiation has a significant physiological role in maintenance
of homeostasis during health (6). The in vivo relevance of such
observations was recently obtained in our laboratory (manuscript
in prep).

The availability of targeted COX-2 knockout in myeloid com-
partment in mice provided the means to assess the function of
NK cells in ex vivo culture assays with knockout of COX-2 in
monocytes. To determine whether blocking COX-2 in monocytes
allowsNK cells to become activated and to study the consequences
of such activation, we tested the activity of autologous NK cells
after interaction with wild type and COX-2 knockout monocytes.
In addition, several differences in the mode and consequence of
activation between mouse and human NK cells were found. Tar-
geted knockout of COX-2 in murine myeloid cells increased both
the cytotoxicity and cytokine secretion capabilities of NK cells
after their interaction with monocytes and DCs. Monocytes from

control littermates were also able to activate NK cell functions but
at a much lower level. Similarly, knockout of COX-2 in MEFs was
able to increase both NK cell functions when compared to wild
type MEFs.

The addition of LPS-mediated significant split anergy in NK
cells by inhibiting cytotoxicity while increasing IFN-γ secretion
after interaction either with monocytes or DCs. Thus, in mice
split anergy in NK cells occurred after treatment with LPS and
not with monocytes. In contrast, human monocytes, irrespective
of whether they were activated with LPS or not, mediated sig-
nificant split anergy in NK cells and the levels further increased
when treated with LPS. Therefore, LPS induces split anergy in
both murine and human NK cells with or without monocytes;
however, only human monocytes induce split anergy in NK cells
in the absence of LPS. The differences observed in induction of
split anergy between mice and human NK cells after interaction
with monocytes could be due to prior in vivo priming of NK
cells in humans and not in mice. Indeed, human NK cells can
kill susceptible targets even without prior activation with IL-2
and they require only a short period of stimulation with IL-2
to become highly activated to efficiently lyse many tumors. In
contrast, murine NK cells do not mediate cytotoxicity without
prior activation, and they require a longer period of activation
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FIGURE 8 | Split anergy induced by sAJ2 and monocytes also occurred
in Human NK cells. Human NK cells were purified from healthy donors and left
untreated or treated with IL-2 (1000U/mL) or the combination of IL-2
(1000U/mL) and anti-CD16mAb (3µg/mL) in the presence of sAJ2 (NK
cell:sAJ2, 1:3), autologous monocytes (NK cell:monocytes, 1:1) or the
combination of sAJ2 (NK cell:sAJ2, 1:3) and autologous monocytes (NK
cell:monocytes, 1:1) for 24–48 h. Afterward, the cytotoxicity against OSCSCs

cells was assessed using a standard 4 h 51Chromium release assay. Percent
cytotoxicity was obtained at different effector to target ratio and the lytic units
30/106 cells were determined using inverse number of NK cells required to lyse
30% of the tumor cells X100 (A). NK cells were prepared as described in
Figure 6A and after the treatment period, the supernatants were removed from
the co-cultures and the levels of IFN-γ cytokine were measured with specific

(Continued)
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FIGURE 8 | Continued
ELISA. *P<0.05 was obtained for the differences in cytotoxicity and IFN-γ
secretion between human NK cells cultured in media and those treated with
sAJ2, monocytes or the combination of sAJ2 and monocytes. One of several
representative experiments is shown in this figure (B). Purified NK cells were
cultured with autologous monocytes (NK cell:monocytes, 1:1). After an

overnight incubation, the supernatants were collected and the levels of IFN-γ,
IL-15, IFN-α, and IL-12 were determined by ELISAs in a multiplexed format
using Luminex technology (C). Untreated and IL-2 stimulated NK cells were
treated with monocytes and sAJ2 as described in (A). Afterward, the
supernatants were collected and the level of IFN-α was determined by ELISAs
in a multiplexed format using Luminex technology (D).

with IL-2 to mediate cytotoxicity against susceptible targets. It is
only when there is an activating event, such as that seen during
interaction with knockout COX-2 cells that increased murine NK
cytotoxicity can be seen after IL-2 activation. Therefore, in the case
of human NK cells, monocytes may induce split anergy in in vivo
primed NK cells, whereas monocytes from mice may provide the
priming signals for naïve NK cells. However, both murine and
humanNK cells will undergo significant split anergy when treated
with LPS.

In accordancewith our findings, LPSwas shown to induce IFN-
γ production in purified IL-2 activated NK cells in the presence of
a decrease in NK cell degranulation (67). However, the mecha-
nism of NK cell activation by LPS is unclear at present. Kanevskiy
et al. was unable to detect significant surface expression of TLR4
on NK cells, whereas all CD56dim NK cells were found to be
TLR4-positive in previous studies (67, 68). Thus, it was speculated
that LPS may interact with receptors other than TLR4 or with
intracellular TLR4 in NK cells.

Knockout of COX-2 in both monocytes and MEFs activate the
function of NK cells significantly, whereas knockout of COX-2 in
T cells was unable to activate NK cell functions. At present it is
not clear why COX-2 knockout T cells are not able to activate NK
cells. Moreover, the mechanisms by which COX-2−/− monocytes
and MEFs are able to increase NK cell function are not known
yet. Interestingly, constitutive MHC class-I expression is lower on
COX-2−/− MEFs when compared to wild type MEFs, however,
treatmentwith IFN-γ and/or TNF-α increases expression ofMHC
class-I, B7H1, and CD54 on COX-2−/− MEFs more than wild
type MEFs. Thus, it is possible that lower MHC class-I expression
on COX-2−/− MEFs (30–63% decrease) may partly be respon-
sible for the increased activation of NK cells, however, whether
such decrease in MHC class-I expression observed on COX-2−/−

MEFs is adequate to significantly contribute to activation of NK
cell function is not clear at present. In addition, the dynamics of
MHC class-I modulation on COX-2−/− MEFs may be different
during interaction with NK cells, since cytokines induced by NK
cells may elevate the expression of MHC class-I on COX-2−/−

MEFs more and result in the faster cessation of NK cell activation
when compared to wild type MEFs. Therefore, it is possible that
mechanisms other than or in combination with that mediated by
decreased MHC class-I are responsible for the activation of NK
cells by COX-2−/− MEFs.

It is likely that NK activating cytokines induced by monocytes
such as IFN-α, IL-12, IL-15, and IL-18 (Figure 8C and data not
shown), which are increased during their interactionwithNKcells
(Figure 8D) synergistically contribute to the increased activation
of NK cells by wild type and COX-2−/− monocytes. Moreover,
we have also recently observed that monocytes upon activation
substantially decrease expression of MHC class-I (manuscript
submitted). Therefore, lack of inhibitory signals received from

MHC class-I, compounded by increased cytokine signaling could
be the mechanisms contributing to the increased activation of
NK cells during interaction with monocytes. However, it is likely
that activating potential of MEFs may be limited when compared
to monocytes due to their lack of secretion of NK activating
cytokines indicated above. Whether COX-2−/− monocytes in
contrast to wild type monocytes increase more of the NK acti-
vating cytokines during their interaction with NK cells, and thus
contribute to increased activation of NK cells requires further
investigation.

Whenmurine NK cells were cultured with wild type and COX-
2−/− MEFs significant decreases in NKG2D, DX5, Ly49A, and
Ly49D were observed, and no significant differences could be
ascertained between those cultured with wild type or COX-2−/−

MEFs. In contrast, increased Ly49A and Ly49D expression on
NK cells after interaction with ST63 could be observed, even
though a decrease or no change could be seen for the expression
of NKG2D and DX5, respectively. Interestingly, monocytes cul-
tured with NK cells also mediated significant decrease in most
NK cell receptors. Whether such decrease in NK cell receptors
is due to ligand mediated binding and/or active inhibition by
MEFs andmonocytes regardless of ligand binding requires further
investigation. Indeed, we were unable to observe any increase
in the expression of Rae-1γ, one of the ligands for NKG2D on
MEFs. Whether down-modulation of Ly49A inhibitory receptor
plays a role in activating the function of NK cells, or triggering
of activating Ly49D or NKG2D via ligands other than Rae-1γ
play significant role in activating NK cell function during their
interaction with COX-2−/− MEFs or monocytes should await
future investigation.

Both gram-positive and gram-negative strains of bacteria are
capable of inducing significant split anergy in NK cells during
co-culture withmonocytes. Split anergized NK cells are keymedi-
ators of cell differentiation since they secrete significant levels
of IFN-γ and TNF-α, which we have previously shown to drive
differentiation of healthy, as well as transformed stem cells, in
the absence of NK cell-mediated cytotoxicity (60). In addition to
IFN-γ and TNF-α, a number of key pro-inflammatory and anti-
inflammatory cytokines are highly induced during interaction
of NK cells and monocytes with bacteria which could provide
additional stimuli for potent activation of NK cells (Figure S5 in
Supplementary Material).

Once stem cells are differentiated by the NK cells they are no
longer targeted by the NK cells. Indeed, differentiation of OSCSCs
and DPSCs by the NK cells is found to not only induce resistance
to NK cell-mediated cytotoxicity, but also inhibit cytokine and
chemokine secretion by the NK cells resulting in inhibition of
inflammation (60). Promotion of differentiation and resolution
of inflammation by NK cells may provide important mechanisms
for the prevention of auto-immunity and chronic inflammation.
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In this regard, our recent results suggest that probiotic bacteria
induced NK cell-mediated differentiation is important for the
prevention of inflammation and maintenance of gut homeostasis
(manuscript in preparation).

Our results collectively indicate that any disturbance in genes
which are important for differentiation of the cells may be the
cause of activation of NK cells and the maintenance of NK cells
in an activated state. If such genes are deleted in monocytes which
are potent activators of NK cells, theymaymaintain NK cells in an
activated state, resulting in increased inflammation, and induction
of inflammation induced tumors.
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