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Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly
(<2 h) upon activation. These innate T cells also share a non MHC class I or II restriction
requirement for antigen recognition. Three major populations within the innate T cell group
are recognized, namely, invariant NKT cells, mucosal associated invariant T cells, and
gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical
MHC molecules, such as CD1d, MR1, and CD1a. They are activated during the early
stages of bacterial infection and act as a bridge between the innate and adaptive immune
systems. In this review, we focus on the functional properties of these three innate
T cell populations and how they are purposed for antimicrobial defense. Furthermore, we
address the mechanisms through which their effector functions are targeted for bacterial
control and compare this in human and murine systems. Lastly, we speculate on future
roles of these cell types in therapeutic settings such as vaccination.
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A successful immune response to foreign pathogen requires a rapid activation of innate immunity,
which directs the subsequent development of a productive adaptive immune response. Innate T cells
represent a group of T lymphocytes that are able to act during the lag time while effective adaptive
immune responses develop (1). Similar to conventional T cells, innate T cells undergo T cell receptor
(TCR) rearrangement and thymic selection. Unlike their conventional counterparts, innate T cells
rapidly recognize foreign pathogen signals and manifest immediate effector functions after activa-
tion. This allows innate T cells to perform effector immune responses much earlier than conven-
tional T cells, and act as an additional “bridge” between innate and adaptive immune responses (2).

Classically, T cells are subdivided into two major populations based upon their TCR expression,
namely alpha beta (αβ) T cells and gamma delta (γδ) T cells. Conventional αβ T cells recognize
a broad range of peptide antigens typically presented by Major Histocompatibility Complex (MHC
I and II) complexes, enabled through their highly diverse TCR arrangement. In contrast, the αβ
innate T cells that have been identified display a restricted T cell repertoire characterized by the
expression of an invariant or semi-invariant TCR α chain. In humans, two well-defined αβ innate
T cell populations have been identified in recent years, namely, mucosal-associated invariant T
(MAIT) cells and invariant natural killer T (iNKT) cells. These two T cell populations together with
γδ T cells form the three major types of innate T cell (1). All three innate T cell populations express
a C-type lectin molecule CD161. CD161 was initially identified on CD4, CD8, and γδ subsets in
the 1990s (3, 4). CD161 is variably expressed across human T cells, and three populations can be
identified, expressing negative, intermediate, and high levels of CD161 (2). The expression of CD161
in humanT cells populations is summarized in Figure 1. The level of CD161 expression is distinctive
between conventional T cells and innate T cells, with MAIT cells displaying the highest levels (5).
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FIGURE 1 | (A) CD161 expression of T cell subsets. Gamma delta T cells, iNKT cells, and MAIT cells express CD161 at a higher level compared to conventional T
helper and T cytotoxic T cells. (B) FACS analysis of CD161 expressing in different human T cell subsets.

While innate T cells are distinctive as a subpopulation of T cells,
they have other distinct features, which do not overlap. They share
the absence of MHC I/II peptide restriction but differ in their
respective antigen presentation modalities. iNKT and MAIT cells
respond to theMHC-likemolecules, CD1d andMR1, respectively,
while CD1c can present antigens to γδ T cells. The nature of the
antigens recognized by innate T cells is also diverse and broadly
non-overlapping involving metabolites, bacterial products, and
lipids. iNKT cells have been principally shown to respond to
glycolipids, γδ T cells are potently activated by (E)-4-hydroxy-
3-methyl-but-2-enyl pyrophosphate (HMBPP), and MAIT cells
can be activated by riboflavin metabolites – reduced 6-hydroxy
methyl-8--ribitylumazine (rRL-6-CH2OH), as well as folic acid
metabolite, 6-formyl pterin (6FP). Finally, the sites of develop-
ment, residence, and frequency within the T cell poll are distinc-
tive and summarized in Table 1.

iNKT Cells

Invariant NKT cells are one of the most well-studied innate T cell
populations (6–8). These cells are defined by their semi vari-
ant TCR, CD1d antigen restriction, and glycolipid recognition.
Numerous studies have been undertakenwith these cells following
the discovery of their specific ligand, alpha-galactosylceramide, in

1997 (7, 9–11). Over the subsequent years, a range of endogenous
and exogenous lipid antigens has been identified, which may
change the effector responses of this innate T cell population
(12–16). This cell population is also notable for its expression of
previously considered NK cell specific markers such as CD161,
which has subsequently been recognized on other innate T cell
populations (17).

Invariant NKT cells develop in the thymus and are present at
a very low number in most tissues. They are selected by CD1d,
which is expressed on double-positive (CD4, CD8) thymocytes,
through the recognition of endogenous lipids. In the thymus,
iNKT cells acquire a memory/effector phenotype prior to exiting
to the circulation. Recent studies have suggested that post-thymic
education is required for iNKT cells to become fully mature and
achieve functional competency (18, 19). In human peripheral
blood, approximately 0.01–1% of the T lymphocytes are iNKT
cells, characterized by their hallmark TCR-invariant chain Vα24-
Jα18 and variant Vβ11; and Vα14-Jα18 in mice with a limited
number of β chains, including Vβ8.2, Vβ7, and Vβ2 (20). Despite
their presence in relatively low numbers in humans, iNKT cells
can be very effective in early host defense mechanisms and are
involved in a variety of disease settings (6, 21–23). A key feature
of iNKT cells is their rapid release of a wide array of cytokines
and chemokine following ligand activation (17). This plays an
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TABLE 1 | Characteristics of innate T cells.

TCR Human: Vα24-Jα18 Human: Vα7.2-Jα33 Human: Vδ1, Vδ3, Vγ9vδ2
Mouse: Vαl4-Jα18 Mouse: Vαl9-Jα33 Mouse: VγlVδ6.3, Vγ5Vδ1, Vγ6Vδ1

Ligand Glycolipids, phospholipids Vitamin B2 metabolites, transitory neo-antigens Phosphoantigens, phycoerythrin, glycolipids
Frequency Low (0.01–1% of T cells) 1–20% of T cells 2–10% of T cells
Location Blood, mucosal site, and liver Blood, gut, lung, liver Blood, mucosal sites
Maturation Thymus Secondary lymphoid tissue Thymus
Present at birth Yes Yes Yes
HSCT Yes ? Poor

?, information not known.

important role in their early effector and regulatory properties.
Our understanding of the importance of iNKT cells is largely
based on disease studies undertaken in iNKT deficient mice (24).
Previous studies have shown that iNKT cells play an important
role in the detection of various pathogens, including Pseudomonas
aeruginosa, Streptococcus pneumoniae, Salmonella typhimurium,
Mycobacterium tuberculosis, Listeria monocytogenes, and Borrelia
burgdorferi (1, 25, 26). In addition to bacterial infections, iNKT
cells have also been found to play an important role in viral
infections, including influenza, cytomegalovirus, and coxsackie
B3 viral diseases (25, 27). Finally, they also play an important
role in tumor immunity (28) and autoimmune disease (22). In
human studies, a link between defects in iNKT cells may lead
to susceptibility to certain infectious diseases, such as tuberculo-
sis (29, 30), EBV (31–33), allergy (34), atherosclerosis (35), and
immunodeficiency. (10, 36–38).

Role During Bacterial Infections
The presence of functional iNKT cells during bacterial sepsis
has been shown in a number of different murine settings. In
S. pneumoniae infection, a much higher level of bacteria were
identified in the Jα18 knockout mice compared to the iNKT
competent wild type mice, resulting in significant survival rate
differences between the two strains (39). In the iNKT knock-
out mice, a defect was found in neutrophil recruitment to the
lung together with a reduced production of neutrophil chemo-
attractants, including TNF-alpha and MIP-2. A reconstitution of
iNKT cells from wild-type mice to iNKT deficient mice was able
to restore the production of TNF-alpha and MIP-2, leading to
improved neutrophil and bacterial clearance (40). In a further
bacterial infection caused by Chlamydia pneumoniae, accumu-
lations of iNKT cells within the lung were visible within hours
of acute infection, demonstrating IFN-gamma production at the
site of infection (41). An extension of conventional bacterial
challenge studies has recently been undertaken by Wong et al.,
which suggested that iNKT cells might play a role in control of
bacterial infections associated with stoke. Compared to their WT
little mate, iNKT deficientmice were found to bemore susceptible
to bacterial infection post transient midcerebral artery occlusion.
This was related to the ability of iNKT cells to act as a suppressor
for neurotransmitter release post-stroke, which is lost in iNKT
deficient mice, making them more susceptible to the bacterial
infection (42). In humans, several studies have established the
link between iNKT cells and M. tuberculosis infection with both
the function and number of iNKT cells reduced in these patients
(43). Two distinct pathways have been proposed for iNKT cell
activation during infection. They can either be directly activated
through TCR-CD1d-glycoplid recognition or indirectly through

their response to innate cytokines that are released from other
innate cells.

Indirect Activation of iNKT Cells by
Gram-negative Bacteria
Early secretion of IFN-gamma can be induced by iNKT cells fol-
lowing an encounter with both Gram-negative and Gram-positive
bacteria. Innate receptors that recognize bacterial signals have a
crucial role in triggering the antigen presenting cells, which sub-
sequently direct the activation of iNKT cells (9, 44–49). The acti-
vated antigen presenting cells stimulate the iNKT cells by signaling
through toll like receptors (i.e., TLR4, TLR7, and TLR9) leading
to the production of IL-12, also other inflammatory cytokines.
Studies by De Libero and Paget have suggested that TLR signaling
through APCs are not only important for cytokine production but
also the accumulation of self-lipid antigen for CD1d presentation
(47, 50). A study by Darmoise et al. showed that the TLR signaling
triggered the accumulation of self-lipid including iGb3 in the
lysosome, leading to an enhanced iNKT cell activation (51).

Direct Activation of iNKT Cells by Gram-negative
Bacteria
Another mechanism that allows iNKT cells to respond to bac-
terial infection occurs through the direct recognition of the gly-
cosphingolipid in the cell wall of Gram-negative bacteria. One
such example is Sphingomonas/Novosphingobium spp., where the
glycosphingolipids present in the bacteria cell wall are alpha-
galacturonylceramides and alphaglucuronylceramides (52). These
glycosphingolipids contain one sugar ring and have been showed
to activate iNKT cells in vitro, while multi-sugar ring glycosphin-
golipids have not been able to activate iNKT cells in co-culture.
Murine studies suggested that CD1dKO mice were able to clear
infections with Sphingomonas/Novosphingobium as well as some
other LPS-negative bacteria, but at a much slower rate compared
to the wild type mice (45, 53, 54). This would suggest the iNKT
cells are one of the major innate cell types involved in bacterial
clearance and playing a major role in the early response.

γδ T Cells

γδ T cells are another group of innate T cells that have been
found to play an important role during bacterial infections. Unlike
conventional αβ T cells, γδ T cells do not usually express a CD4 or
CD8 lineage marker and they do not require conventional antigen
presentation via MHC class molecules (55). Different subtypes of
γδ T cells have been described often identified by the different
arrangement of their TCRs in early development. The differences
in TCR arrangement directly influence their eventual principle
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tissue of residence. In human, themajority of the γδ T cells present
in the peripheral blood express the TCR Vγ9Vδ2, whereas Vδ1
and Vδ3 TCR are primarily expressed at the mucosal surfaces.
In mice, Vγ1 and Vγ4 are present in the lymphoid tissues; Vγ5
is found to be present in the skin; Vγ6 in the reproductive tract;
and Vγ1, Vγ4, and Vγ6 present in the lung (56). A number of
mechanisms have been described linking γδ cells and bacterial
infections. Similar to iNKT cells, γδ are able to sense danger
signals in both a TCR dependent and TCR independent way.
γδ T cells can be activated by Class I like molecules such as
T10/T22 (in mice) and members of CD1 family; they can also be
activated byMHC-unrelatedmolecules such as viral glycoproteins
and F1-ATPase complex in human (57–59). In addition to TCR
recognition, γδ T cells also express pattern recognition receptor
and receptor typically associated with NK cells.

γδ T cells may expand in the patient’s peripheral blood dur-
ing bacterial infections with studies identifying up to 12% in
listeriosis, 14% in tuberculosis, and 29% in brucellosis (60).
Human γδ T cells respond to bacterial infections by recogniz-
ing (E)-4-hydroxy-3-methyl-but-2enyl pyrophosphate (HMBPP)
derived from various bacteria. γδ T cells were shown to be partic-
ularly important in response to intracellular bacterial pathogens
including M. tuberculosis and Legionella micdadei. In the case of
L. micdadei, Vγ9Vδ2 T cells were found to be depleted from the
circulation upon bacterial infection, followed by a sharp increase,
then a slow decline over a 6-month-period (61). This dynamic
change may indicate Vγ9Vδ2 might be important in contributing
to the pathophysiological changes of Pontiac fever-like disease.
A similar kinetic pattern is seen with M. tuberculosis infection,
following the Vγ9Vδ2 T cell response to the metabolite IPP (62).

Early studies found that Vγ9Vδ2 T cells were the most impor-
tant group that led to the eradication of bacteria (63, 64). Seminal
studies identified the antigens involved in the recognition were
intermediates in isoprenoid biosynthesis, namely (E)-4-hydroxy-
3-methyl-but-2enyl pyrophsphate (HMBPP) (65). The level of
HMBPP directly influences the magnitude of Vγ9Vδ2 T cell
activation and proliferation (66). Recently, a major breakthrough
in discovering the mechanisms for activating the Vγ9Vδ2 T cells
was made by Bonneville and Scotet’s group. They identified that a
member of butyrophilin molecule family CD277 played a crucial
role during γδ T cells activation (67–71).

γδ T cells have also been found to be able to promote self-
activation through cell to cell interaction (72). However, it was
demonstrated that the self-activationmechanism is not as effective
as formal presentation through antigen presenting cells (73–75).
One important aspect of γδ T cells is that they can trigger the
maturation of dendritic cells. Devilder et al. showed that Vγ9Vδ2
T cells can stimulate the maturation signal on mycobacterial
infected DCs, through a Fas–Fas ligand interaction (76) and/or
TCR-CD1 contact (77). Other than dendritic cells, γδ T cells
have also been found be important in macrophage recruitment.
During infection with listeriosis, γδ T cells were found to be
a key player in controlling the production of key macrophage
chemo attractants (78). Skeen et al. also showed that macrophages
failed to undergo maturation in the absence of γδ T cells (79).
Direct engagement of γδ T cells may facilitate pathogen clearance
through their production of bacteriostatic and lytic molecules,
such as granulysin and defensins. During Staphylococcus aureus

respiratory infection, γδ T cells sense the dysregulation of the
mevalonate pathway within the infected cells. This leads to the
activation and expansion of γδ T cells, in particular, Vγ9Vδ2 T
cells. The active γδ T cells then produce cytokines such as IL-
17, which leads to airway protection. γδ T cells also play a role
duringM. tuberculosis infection, producing a variety of cytokines
including IFN- γ, TNF-α, and IL-17. IFN-γ and TNF-α play
are essential in host protection against M. tuberculosis enabling
granuloma formation and disease containment.

MAIT Cells

Mucosal-associated invariant T cells are the newest members
of the innate T cell family. They were first described by Tilloy
et al. (80) and represent the most abundant innate T cells in
humans. They express a canonical Va7.2-Ja33 chain in humans
and the orthologous Va19-Ja33 in mice. The development of
MAIT cells is parallel to the development of iNKT cells and
both express the transcription factor ZBTB16 (81). In adults,
they display an effector phenotype, whereas MAIT cells pos-
sess a naïve phenotype in cord blood. In both cord and adult
blood, MAIT cells express CD161, IL-18Ra, CCR6, and about
50% of the MAIT cells express the T cells co-receptor CD8
(82–84). Recent studies also show that MAIT cells express the
ABC binding cassette (ABC) B1 drug resistance transporter
(85, 86). MAIT cells have a further unique antigen recognition
system recognizing a MHC Class I related molecule (MR1),
which is able to present bacterial derived ligand. Study by Kjer-
Nielsen et al. showed that 6-formyl pterin (6-FP), a metabolite
on the folic acid pathway, could stabilize the MR1 molecule
but failed to activate the cells. Full activation of primary MAIT
cells was achieved with ligand reduced 6-hydroxymethyl-8--
ribityllumazine (rRL-6-CH2OH), a riboflavin metabolite. Related
products 7-hydroxy-6-methyl-8--ribityllumazine (RL-6-Me-7-
OH) and 6,7-dimethyl-8--ribityllumazine (RL-6.7-diMe) have
also shown similar agonistic activity for MAIT cells, leading to
the rapid production of cytokines (87). In recent years, stud-
ies on MAIT cells have associated their number and function
with diverse of disease settings, including bacterial infections and
autoimmune disorder.

The first hint that MAIT cells have anti-bacterial activities was
described in 2010, where studies byGold et al. and LeBourhis et al.
showed thatMAIT cells could recognize a range of bacteria species
throughMR1 (88, 89). In the study byGold et al.,MAIT cells could
respond to M. tuberculosis even in unexposed individuals. They
further showed that MAIT cells responded to Salmonella enteria,
Escheichia coli, and S. aureus infected APC (90). Le Bourhis et al.
showed that MAIT cells could MAIT cells are able to respond to a
wide array of bacteria including Gram-positive Bacteria S. aureus,
Staphylococcus epidermidis, Lactobacillus acidophilus, and Gram-
negative Bacteria E.coli, Klebsiella pneumonia, Pseudomonas
aeruginosa, and Mycobacterium abscessus. Importantly, some
bacterial species were shown not to activate MAIT cells, namely
Enterococcus faecalis and Streptococcus pyogenes, suggesting a
novel specificity. The importance of their role in bacterial defense
was suggested by a study by Georgel et al. demonstrating that
during the Klebsiella pneumonia infection, MR1 deficient mice
succumbed to disseminated infection whereas the WT mice
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FIGURE 2 | Orchestration of innate T cells in anti-bacterial immunity. iNKT cells, MAIT cells, and gamma delta T cells play an important role in anti-bacterial
defense through cytokine production, perforin release, and cross-talk to other innate and adaptive cells.

achieved full bacteria clearance within 2 days (91). Similarly, in
the Va19 transgenic mice, enhanced control of the E.coli and M.
abscessus infection were observed. Further studies performed by
Chua et al. andMeierovics et al. also showed that MAIT cells were
needed in the early control of Mycobacterium bovis, BCG, and
Francisella tularensis infection (92, 93). In humans, how MAIT
cells play a role in infectious disease is less well understood. A
number of studies have associated the frequency of MAIT cells in
different infectious diseases (94). MAIT cell numbers were found
to be lower in peripheral blood of patients with M. tuberculosis
infection (95). Also, in a study of critically ill septic and non-septic
patients, the patients with severe bacterial infections, but not viral
infections, had a much lower MAIT count compared to healthy
controls (96).

One of the most well-studied examples of MAIT cells in bac-
terial infection is during Salmonella infection (97, 98). Upon
activation, MAIT cells produce IFN-gamma, TNF α, and IL-17.
These cytokines have been shown to be critical in controlling
Salmonella infections, with IL-17 preventing the dissemination of
infection (99). MAIT cells may also play a role during Salmonella

infection through their early cytotoxic activity (100), although
further studies are needed as MAIT cells were not able to directly
kill Salmonella infected cell lines (94, 101).

Over the last 5–10 years, there has been advancement in the
understanding and description of unconventional T cells. These
studies demonstrate that unconventional T cells do indeed play
an important role during bacteria infection and contribute the
ability of host organism to clear and control certain bacterial
infections (Figure 2). These cells are able to efficiently traf-
fic to the sites of inflammation, and initiate rapid responses
by means of cytokine production and cytotoxic activities. Fur-
ther studies will elucidate the molecular details of this cellular
control suggesting novel approaches to how we may harness
these cells through therapeutic vaccination and pharmaceutical
manipulations.
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