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Liver transplantation offers a unique window into transplant immunology due, in part, to 
the considerable proportion of recipients who develop immunological tolerance to their 
allograft. Biomarkers are able to identify and predict such a state of tolerance, and thereby 
able to establish suitable candidates for the minimization of hazardous immunosuppressive 
therapies, are not only of great potential clinical benefit but might also shed light on the 
immunological mechanisms underlying tolerance and rejection. Here, we review the 
emergent transcriptomic technologies serving as drivers of biomarker discovery, we 
appraise efforts to identify a molecular signature of liver allograft tolerance, and we consider 
the implications of this work on the mechanistic understanding of immunological tolerance.
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introduction

The liver represents a unique window to the immune system. Unlike other transplanted organs, it 
exhibits immunoregulatory, tolerogenic properties, enabling an allograft to be more readily spontane-
ously accepted. The phenomenon of operational tolerance, i.e., stable allograft function in spite of 
complete discontinuation of immunosuppressive therapy, while rarely achieved in cases of renal 
transplantation, for instance, is relatively commonplace in liver transplant recipients. Indeed, the 
prevalence of operational tolerance following liver transplantation appears to be far greater than 
previously appreciated. Until recent clinical trial evidence to the contrary, an average estimate was 
that approximately 20% of liver allograft recipients were able to successfully be weaned off immu-
nosuppression, and thereby to achieve a state of induced operational tolerance (1, 2). Benítez and 
colleagues, however, showed that a remarkable 42% of 98 liver allograft recipients undergoing weaning 
of immunosuppression achieved operational tolerance. Furthermore, the propensity to tolerance 
was noted to develop over time, with those who had had their graft for 10.6 years or more achieving 
tolerance in 79.2% of cases (3). While these results should be taken with some caution, the inescapable 
implication is that a significant proportion of liver transplant recipients, particularly if in the second 
decade of graft survival, are unnecessarily subjected to immunosuppressive therapy and the significant 
risks associated with it. The incentive, therefore, to search for a biomarker by which to identify patients 
amenable to drug minimization, becomes clear. Furthermore, the pursuit of such biomarkers might aid 
in the fuller characterization of the immunological phenotype associated with tolerance, and so offer 
a mechanistic understanding of the processes by which tolerance is achieved and might be induced.

Major advances have been made in recent years in the fields of genetic and molecular biology. 
Large international collaborations such as the human genome and proteome projects enabled further 
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technological developments of high-throughput technologies. 
Broadly, with new technologies, arise new investigative paradigms. 
Reductionist scientific approaches have been overtaken, to an 
extent, by the generation of vast biological datasets enabling the 
study of complete sets of molecules. The umbrella neologism 
“omics” has appeared in order to describe these changes and to 
classify emerging fields – metabolomics, proteomics, transcrip-
tomics, and so on. The systems biology approach has developed 
to offer a computational and mathematical framework enabling 
the integration and analysis of data from these seemingly disparate 
fields. The application of these developing fields to the arena of 
transplantation, with a view to the personalized treatment of 
patients, has recently been dubbed as “transplantomics” (4, 5).

Regarding the identification of biomarkers of tolerance, of 
all the emerging work in transplantomics, the high-throughput 
measurement of the transcriptome has shown the greatest promise 
and formed a focus of research. Here, we review the application 
of transcriptomic technologies to the unique window proffered 
by liver transplantation tolerance. We set out an overview of the 
technologies and of the associated analytical tools. We review 
recent progress in developing novel biomarkers of tolerance, 
and look at their application in trials of immunosuppression 
withdrawal. We discuss the limitations and pitfalls associated with 
high-throughput transcriptomic research. Finally, we consider the 
implications of these tools on our mechanistic understanding of 
operational tolerance and how this might guide future therapeutic 
developments.

Principles of Transcriptome Analysis

The “transcriptome” describes the complete set of messenger 
RNA (mRNA) and non-coding RNA (ncRNA) transcripts, which 
include micro RNA (miRNA), small nuclear RNA (snRNA), and 
small nucleolar RNA (snoRNA) among others. Comprehensive 
understanding of the transcriptome must also take into consid-
eration further complexities – splicing isoforms, gene-fusion 
transcripts, post-translational modifications, and epigenetic 
controls for example. Thus, “Transcriptomics,” can be understood 
as the large-scale study of transcriptional products as well as their 
regulation and modification (5, 6).

Transcriptome Profiling
Transcriptome profiling can be subdivided into two general 
approaches for simplicity – the candidate gene strategy focuses on 
single gene transcripts, while high-throughput approaches allow 
for the simultaneous measurements of thousands of transcripts. 
The first candidate gene-based studies utilized the Northern Blot 
(7). This method fixed RNA on a solid support, following its separa-
tion by electrophoresis, and then the presence and abundance of 
the fixed RNA species of interest were deduced by hybridization 
with complementarily labeled radioactive nucleic acid probes. 
The low throughput and requirement of large quantities of input 
RNA made this technique cumbersome. Reverse transcriptase 
polymerase chain reaction (RT-PCR) is now the method most 
commonly used for candidate gene transcript measurement and 
has broad applications in the clinical setting (8). In this approach, 
mRNA is reverse transcribed to complementary DNA (cDNA) and 

amplified with primers specific for the gene of interest using PCR. 
Quantitative measures of mRNA abundance are made possible 
by monitoring the accumulation of PCR product (9). While the 
method requires only small quantities of input RNA, is robust, 
cost-effective, and rapid, the throughput remains in the order of 
hundreds of known transcripts at a time and so is not amenable 
to transcriptome-wide investigations (10).

Microarray technology, on the other hand, has enabled the 
rapid, simultaneous measurement of the whole transcriptome. 
mRNA is hybridized to an array of oligonucleotide or cDNA probes 
that are robotically spotted onto a solid support chip, thereby 
allowing the identity of each probe to be defined by its location. 
Hybridization intensity to a particular probe is related to the abun-
dance of corresponding transcript (11, 12). Microarray technology 
has been applied to the gamut of transplantation biology over 
the last decade, including studies of acute and chronic rejection, 
and more relevant herein, the understanding of immune tolerance 
and identification of biomarkers. Microarrays have become the 
best standardized, most affordable, and widely accessible of the 
high-throughput omics technologies (13).

Microarray experimental Design and Analysis
A typical microarray generates expression levels for thousands 
of genes, thereby producing vast quantities of data. The major 
challenge is to analyze and understand these data, to distinguish 
true from misleading signals on the one hand, and to uncover 
clinically relevant findings on the other. The steps typically 
involved in a microarray experiment are (i) experimental design, 
(ii) sample preparation and processing, and (iii) data analysis and 
interpretation. Careful experimental design is crucial. It depends 
heavily on the array technology used and, of course, on the research 
objectives (14, 15). Objectives are often characterized as either 
“class comparison” or “class prediction” (16). In this setting, the 
former describes attempts to identify genes differentially expressed 
between operationally tolerant recipients and another comparison 
group. The latter involves the development of multi-gene formulae 
able to predict which patients might exhibit tolerance based on 
their expression profiles. The high-dimensional datasets generated 
cannot be adequately analyzed with conventional comparative 
statistics. The complexity of analysis and the potential pitfalls 
require a team approach and a good understanding of the relevant 
software required for the steps of quality control, normalization, 
clustering, classification, and pathway analyses (8, 17).

More Data Herald More Challenges…
Rigorous quality control criteria help to ensure high quality 
data collection from arrays that are reproducible and compa-
rable. The MicroArray Quality Control project (MAQC), an 
unprecedented, community-wide effort to appraise microarray 
reliability and quality control metrics, reported that, with care-
ful experimental design and appropriate data transformation 
and analysis, data can be reproducible and comparable across 
laboratories, institutions, and researchers (18). A number of 
commercial software packages have been developed to aid 
the quality control process (19–22). Specialist software is also 
available to aid with data normalization, a crucial step in the 
conversion of raw data into scaled relative expression levels 
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(8, 23, 24). Statistical packages are also utilized for calculating 
differential expression, controlling for false positives, selecting 
significance cut-offs, the clustering of genes thought to be 
similar or co-regulated, and final pathway analyses, enabling 
the identification of gene sets associated with specific biological 
functions (25–27).

Much of the complexity involved in the statistical analyses stems 
not only from the high numbers of genes measured per sample 
(“curse of dimensionality”) but also the disproportion between this 
and the limited numbers of samples available for testing (“curse 
of scarcity”) – a difficulty often faced in biomarker research. This 
is overcome, in part, through adjusted p-values (q-value) such 
as false discovery rates (5). Tools for analysis are often free to 
download and now widely used. They include significance analysis 
of microarrays (SAM), GenePattern, and GenMAPP (5). Despite 
robust analytical tools, an undiscerning researcher can erroneously 
use data to “discover” sets of genes that are able to differentiate 
the samples on which the gene algorithm modeling was based 
even when the data are completely random. This problem should 
be circumvented by ensuring that a gene model is tested on a 
validation group that is independent from the training set used to 
create the model in the first place. This approach is more desirable 
than cross-validation techniques sometimes employed (28–30). 
Further, technical validation of microarray results on a different 
transcriptional platform, usually RT-PCR, is also recommended 
to minimize inter- or intra-platform variability in hybridization 
noise that may arise between batches or laboratories.

In order to verify the reproducibility of analyses and to cor-
roborate clinical validity, public microarray databases serve as 
essential repositories. In the transplant setting, where studies 
often include only small numbers of recipients, these resources 
are especially important. The Functional Genomics Data (FGED) 
Society (formerly the MGED Society), a non-profit, volunteer 
run organization promoting the sharing of high-throughput 
research data, helped to define the Minimum Information About 
a Microarray Experiment (MIAME) guidelines for data content 
standards. The Society also set the standard data exchange format, 
known as the Microarray Genetic Expression Markup Language 
(MAGE-ML). Thorough reviews of the numerous databases in 
existence have been set out in the literature (31).

Microarray data output is necessarily dependent on the qual-
ity of the original biological samples. RNA is considerably more 
susceptible to rapid enzymatic degradation than DNA, thereby 
making efficient processing and appropriate storage using robust 
protocols essential. Microarrays offer snapshots of gene expression. 
The kinetics of transcripts and the variability of changing levels of 
expression in relation to their baseline remain little understood and 
so are not amenable to statistical interpretation (32, 33). Matters 
are further complicated by tissue heterogeneity, as is the case in 
blood samples for instance. This heterogeneity makes anatomical 
detail in the microarray approach difficult, in that it is difficult 
to know which cells’ gene expression profiles are being analyzed. 
Cell sorting and microdissection are ways to tackle this difficulty, 
as is the application of statistical deconvolution methods such 
as the cell-specific significance analysis of microarrays (csSAM) 
(34). While peripheral blood has been at the forefront of efforts to 
identify biomarkers, the possibility of interrogating RNA extracted 

from paraffin embedded biopsies is a useful addition to investiga-
tive efforts.

It becomes clear then, that to discern biological fact from mere 
noise, it is essential that due attention is paid to the analytical 
complexities involved in microarray interpretation. Although, as 
we will see, microarray profiling has yielded important data in the 
pursuit of biomarkers of tolerance, and the technology is becoming 
more commonplace in transplantation research, the promise of 
emerging next-generation sequencing (NGS) technologies is likely 
to eclipse many microarray applications. In essence, NGS involves 
the sequential identification of the bases of small fragments of 
DNA from signals, which are emitted when each fragment is re-
synthesized from a DNA template strand. By extending this process 
across millions of reactions in parallel, the technology enables 
rapid sequencing of large stretches of DNA base-pairs spanning 
entire genomes (35).

In part, the promise of NGS stems from sidestepping some 
of the aforementioned problems inherent in microarray technol-
ogy. NGS is highly reliable, and has greater dynamic range as it 
directly quantifies discrete digital sequencing readouts as opposed 
to relying on hybridization steps. Loss of specificity due to cross-
hybridization is controlled; the detection of rare and low abundance 
transcripts is made more achievable; the unbiased detection of 
novel transcripts is made possible since the need for transcript-
specific probes utilized by microarray become redundant; and 
errors in probe design, which are relatively common in microarray 
chips, are avoided. In addition to these technical considerations, 
NGS technology is advancing at such a pace that the prospect of 
“sequencing everything” (genome, epigenome, transcriptome) in 
a timely and cost-effective manner is well within reach. In the 
4 years between 2007 and 2011, a single sequencing run’s output 
increased 1000×, far outstripping Moore’s law, while the cost of 
sequencing the entire genome has fallen from over 150,000 USD in 
2009, to less than 5000 USD in 2014 (36). Of course, NGS presents 
its own technological and bioinformatics challenges – which have 
been comprehensively reviewed elsewhere (37, 38).

identification of Tolerance Biomarkers

Much hope has been placed upon transcriptomic technologies 
as the drivers of a “new era of individualized therapy” (4). The 
application of these technologies in the discovery of novel diag-
nostic and predictive markers has spanned diverse transplantation 
research fields, including the development of predictors of allograft 
risk, the identification of biomarkers of acute and chronic allograft 
injury, the assessment of organ suitability and viability during the 
preservation period, and forming the focus here, the discovery of 
biomarkers of tolerance.

Much of this work is in its infancy; transcriptomic investigation 
of biomarkers of liver allograft tolerance began less than a decade 
ago (39). Already though, biomarker-based diagnostic tests have 
gained regulatory approval and have reached the market (40–42). A 
diagnostic kit based on an 11-transcript set identified with micro-
array technology is used to non-invasively identify rejection in 
heart transplant recipients (41). As we will see, biomarkers of liver 
transplant tolerance have also yielded extremely promising results 
showing good potential for clinical translation in the near future.
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Martínez-Llordella and colleagues were the first to use microar-
ray technology for the gene expression profiling of blood samples 
from operationally tolerant liver transplant patients (39). This 
retrospective, cross-sectional study compared 16 operationally 
tolerant recipients to 16 recipients failing to undergo immunosup-
pression withdrawal, and found 462 positively and 166 negatively 
regulated genes. Functional analysis revealed that tolerance expres-
sion profiles were enriched in gamma-delta T (γδ T) cells and 
natural killer (NK) cells (see Table 1). Genes involved in mRNA 
processing, protein biosynthesis, DNA repair, cell cycle control, 
Interleukin 2 receptor signaling, and transcription regulation 
were also noted to be differentially expressed. While this was 
a first step toward proof of principle, there were considerable 
methodological limitations. One difficulty common to all studies 
of tolerant patients is the selection of an appropriate control group. 
Stable transplant patients are sometimes used as a control, but 
the immunosuppressive medications they receive may skew any 
comparative interpretations. Another approach is to use healthy 
controls to circumvent the concerns with immunosuppressive 
therapy, but in this case the absence of transplantation becomes a 

significant limitation in itself. Without a perfect control popula-
tion, one reasonable approach is to use multiple control groups. In 
an attempt to address other methodological limitations with their 
first study, Martínez-Llordella’s group followed up with a more 
robust analysis of a larger cohort of patients and incorporated 
both training and validation sets, as well as the necessary cross-
validation checkpoint procedures (43). Of 1932 differentially 
expressed genes identified in this follow-up study, RT-PCR valida-
tion of 68 promising candidate genes was performed with good 
correlation shown between platforms. Utilizing a novel modeling 
approach based on the misclassified penalized posterior (MiPP) 
algorithm, three optimally parsimonious gene signatures were 
identified, containing 2, 6, and 7 genes, respectively, and altogether 
comprising 12 different genes (see Table 1). These signatures were 
shown to be capable of accurately predicting the clinical status not 
only of the group of recipients from whom they were derived but 
also of an independent validation cohort of 23 patients. When 
these gene signatures were evaluated against a cohort of stable 
recipients on maintenance immunosuppression, they predicted 
that 26% of these patients would be tolerant; a prediction that is 

TABle 1 | Studies using microarray transcriptomic profiling to identify biomarkers of liver transplant tolerance.

Study Study population Tissues 
analyzed

Microarray 
platform

Summary/significance Reference

Martínez-Llordella 
(2007)

16 OLTT; 16 nOLTT Blood Affimetrix Retrospective, cross-sectional study (39)
462 up-regulated, 166 down-regulated genes identified
OLTT expression profiles enriched in gamma-delta T cells and natural 
killer cells (CD94, NKG2D, NKG7, TRD@, KLRC1, KLRC2, KLRB1, 
CD160)

Kawasaki (2007) 11 OLTT; 11 HV Blood Agilent Retrospective, cross-sectional study (46)
627 up-regulated and 90 down-regulated genes identified
No independent data validation steps performed

Martínez-Llordella 
(2008)

28 OLTT; 33 nOLTT Blood Affimetrix Retrospective, cross-sectional study (43)
Identification of three gene signatures, containing 2, 6, and 7 genes, 
respectively, and altogether comprising 12 different genes (KLRF1,  
SLAMF7, NKG7, IL2RB, KLRB1, FANCG, GNPTAB, CLIC3, PSMD14, 
ALG8, CX3CR1, RGS3)

Lozano (2011) 12 OLTT; 12 nOLTT; 
12 OKTT; 12 nOKTT; 
12 HV

Blood Affimetrix Retrospective, cross-sectional study, multicenter study (47)
Enrichment of B cell-related transcript in OKTT, stable over time and 
across cohorts. Enrichment in natural killer cells in OLTT. Liver and 
kidney tolerant recipients exhibited distinct transcriptional and cell 
phenotypic patterns with little overlap

Bohne (2012) 33 OLTT; 42 AR Blood and 
biopsy

Affimetrix Prospective, multicenter trial of immunosuppressive withdrawal in liver 
transplant recipients

(48)

Enrichment of natural killer and gamma-delta cell transcripts 
corroborated
Accurate prognostic model developed using intragraft expression 
profiles, mainly enriched with genes involved in iron homeostasis

Li (2012) Pediatric: 16 OLTT; 19 
nOLTT; 6HV; 22 STA; 
20 MIS
Adult: 17 OLTT; 21 
nOLTT; 19 STA

Blood Affimetrix and 
Agilent

Amalgamation of publically available gene-expression data, and data 
generated in two US centers of pediatric liver transplant recipients

(49)

Identification of 13-gene signature, of high predictive accuracy, and 
independent of recipient age, donor type, and concomitant viral 
infection
Enriched in natural killer cell transcripts (SENP6, FEM1C, ERBB2,  
AKR1C3, MAN1A1, UBAC2, GPR68, NFKB1, MAFG, BT3G, ASPH,  
PTBP2, PDE4DIP)

OLTT, patients exhibiting operational liver transplant tolerance; nOLTT, patients not achieving a state of operational liver transplant tolerance; OKTT, patients exhibiting operational 
kidney transplant tolerance; nOKTT, patients not achieving a state of operational kidney transplant tolerance; HV, healthy volunteer; STA, stable under standard immunosuppressive 
therapy; MIS, minimally immunosuppressed; AR, acute rejection.
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roughly equivalent to the prevalence of tolerance indicated by the 
literature (1, 44, 45).

Mechanistic interpretations of these findings were hampered 
by the retrospective study design and the lack of simultaneous 
molecular analyses of allograft tissue. These issues were addressed 
in a prospective, multi-center immunosuppression withdrawal 
trial in liver transplant recipients, as reported by Bohne and col-
leagues (48). Of 75 recipients completing the trial, 42 underwent 
rejection, while 33 were successfully weaned off immunosuppres-
sion, thereby achieving a tolerant state. Microarray and RT-PCR 
analyses of both peripheral blood and the grafts themselves were 
conducted. While previous conclusions regarding peripheral 
blood mononuclear cell (PBMC) enrichment in NK and γδ cells 
were corroborated, of special interest is the fact that, in side-by-
side comparisons, liver tissue-derived transcriptional signatures 
proved more robust, accurate, and reproducible than PBMC 
derived signatures. The intragraft expression profile was mainly 
enriched with genes involved in iron homeostasis, and showed 
no overlap with genes identified from PBMC. The role of iron 
redistribution is a well-established antimicrobial strategy and has 
been shown to play a significant part in pathogenic infection of 
the liver, where iron overload is associated with poorer outcomes 
(50–52). Whether this is a property mediated through effects on 
pathogen growth, or on the host immune response itself is unclear. 
What this study is first to highlight, though, is the possibility that 
the dampening of alloreactive immune responses required for the 
establishment of tolerance may be dependent on the iron-store 
status of the allograft.

Liver biopsy tissue was also analyzed in a more recent study 
by Zhao and colleagues looking at a cohort of pediatric patients 
(53). While previous work had already identified the enrichment 
of γδ T cell subpopulations and the genes associated with their 
expression in the peripheral blood of tolerant recipients, Zhao’s 
group examined these cells at the transcriptional level within 
the graft itself. Two prominent subsets of γδ T cells have been 
defined based on their δ chain – Vδ1 and Vδ2 T cells. Vδ2 cells 
are normally the predominant subset in blood and are involved in 
the inflammatory response. Vδ1 cells normally reside and are pre-
dominant in mucosal surfaces, possess potent immunoregulatory 
and suppressive capacities, and have been shown to emerge into 
the peripheral blood to a degree, which gives them predominance 
over Vδ2 cells in tolerant liver transplant recipients (39, 54). Zhao 
et al. showed that Vδ1 cells also accumulated within the grafts of 
operationally tolerant recipients in an antigen driven process, and 
that the complementarity-determining region 3 (CDR3) sequence 
of the δ chain of these Vδ1 cells specifically undergoes oligoclonal 
expansion, thereby suggesting that tolerance might be identified 
through sequencing analysis of these intragraft cells.

In the largest analysis of transcriptomic data pertaining to 
transplant tolerance, Li and colleagues extended previous work 
by developing a tolerance signature independent of recipient age 
and donor source, cause of end-stage liver disease, or concomitant 
viral infection (49). This was achieved through the amalgama-
tion of living and deceased donor and pediatric, as well as adult 
data from across different clinical centers. The 13-gene tolerance 
signature identified (Table 1) was highly associated with NK cells, 
corroborating earlier work, and proved to have striking predictive 

accuracy, exhibiting 100% sensitivity and 83% specificity. This 
degree of predictive capacity would appear to obviate the need 
for the biopsy derived gene signatures, thought to be of superior 
utility as biomarkers of tolerance in earlier studies (43).

The benefits of identifying robust non-invasive biomarkers 
over those derived from biopsy tissue are self-evident. Non-
coding transcripts such as miRNAs have been shown to be 
more stable in peripheral blood than mRNA, have been shown 
to be implicated in the control of genes relevant to alloreactive 
immune responses, and with the advent of NGS techniques offer 
the promise of novel PBMC-derived tolerance signatures (55, 56). 
Using miRNATaqman low-density arrays targeting 381 human 
miRNAs, Danger et al. reported on the modulation of expression 
of eight miRNAs in peripheral blood samples, nine tolerant kidney 
transplant recipients as compared to 10 patients with stable renal 
function under immunosuppression (57). They noted that B cells 
from the operationally tolerant group overexpressed miR-142-3p, 
and that this expression was not modulated by immunosuppres-
sion. The stability of miRNA in biofluids allowed Lorenzen et al. 
to investigate miRNA levels in the urine of a small retrospective 
cohort of kidney transplant recipients, and to identify miR-210 
as a reliable marker of acute rejection and predictor of long-term 
graft function (58). In a multicentre cohort of renal allograft 
recipients, Suthanthiran and colleagues prospectively validated a 
three-gene urinary mRNA signature [interferon inducible protein 
10 (IP-10) mRNA, 18S rRNA, and CD3ε mRNA] (59). Their results 
represent a major step toward achieving non-invasive diagnosis 
and prediction of acute allograft rejection, and highlight the utility 
of pursuing biomarkers across varied tissue and biofluid samples. 
The success of miRNA biomarkers in studies of renal allograft 
tolerance and rejection has helped to instigate some early work in 
rodent models of liver transplant tolerance, while human studies 
are still awaited (60, 61).

As highlighted by miRNA biomarkers, it would be remiss to 
conclude this review of transcriptomic research into biomarkers 
of liver transplant tolerance without reference to the important 
cross-fertilization of ideas, of methodological approaches, and of 
data and sample sharing with research groups investigating kidney 
transplantation tolerance. Transcriptomic research into kidney 
transplantation faces some unique challenges, the scarcity of 
patients able to achieve operational tolerance being one important 
example. Fewer than 200 cases of kidney operational tolerance 
have been described over the last 40  years (62). Nevertheless, 
with the successful development of research consortia in this 
field, a number of transcriptional studies have been successfully 
undertaken (47, 63–69). Very broadly, these reports presented gene 
lists converging toward a B cell signature of tolerance, and in so 
doing corroborated other data showing that both the percentage 
and the absolute number of B cells are increased in operation-
ally tolerant kidney allograft recipients (64, 65, 70, 71). Despite 
efforts to coordinate these studies, reports on kidney transplant 
tolerance have been extremely heterogeneous in terms of the 
techniques used, the controls groups drawn upon, and the vari-
ous clinical profiles of the patients studied. Unsurprisingly then, 
overlap between the gene-markers identified between research 
groups has been poor, raising questions about their reliability 
and about their eventual applicability in clinical contexts (72). 
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terns between operationally tolerant liver and kidney recipients 
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T cells, and inhibition of CD14 monocytes. This gene signature, 
narrowed down to 20 biomarkers, underwent full cross validation, 
and was shown to be highly predictive in new samples and new 
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datasets discussed here. The proof of the clinical utility of all these 

predictive biomarker sets rests on their successful application in 
prospective studies of biomarker-targeted immunosuppression 
weaning within a randomized, controlled setting. This precisely, 
is the purpose of a large, European trial currently underway 
called “BIOmarker-Driven personalized IMunosuppression,” or 
BIO-DrIM (www.biodrim.eu).

Conclusion

The unique characteristics of the liver transplant setting, along-
side the technological advances in transplantomic disciplines, 
which have enabled the discrimination of operational tolerance 
at a molecular level, present researchers with the opportunities to 
decipher the immunological mechanisms underlying drug-free 
allograft survival and to develop therapeutic targets aimed toward 
tolerance induction strategies.

The understanding that a large proportion of liver transplant 
recipients, particularly those living with their graft for a number 
of years, are over-immunosuppressed, must act to incentivize the 
translation of biomarker discovery into everyday clinical practice.

Emergent technologies, including next generation sequenc-
ing, must be capitalized upon to provide insights into normal, 
pathological, and pharmacological processes. As the diverse 
omics fields become more elaborate and produce ever more data, 
the collaboration between researchers, laboratories, hospitals and 
other institutions, and the integration of clinical and molecular 
data become essential to the pursuit of advancing the field of 
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