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Type ii nKT cells in inflammation, 
autoimmunity, microbial immunity, 
and cancer
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Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by 
non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express 
different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. 
Though type II NKT cells are less frequent in mice and difficult to study, they are predomi-
nant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid 
sulfatide is the best characterized and has been shown to induce a dominant immune 
regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer 
immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids 
have been identified suggesting both promiscuous and specific TCR recognition in 
microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed 
understanding of the biology and function of type II NKT cells as well as their interplay 
with type I NKT cells or other innate and adaptive T cells will have major implications 
for potential novel interventions in inflammatory and autoimmune diseases, microbial 
immunity, and cancer.
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introduction

Natural killer T (NKT) cells are innate-like T cells that recognize both exogenous and endogenous 
lipid antigens presented by CD1d, a major histocompatibility (MHC) class I-like antigen-presenting 
molecule. They comprise two main subsets, type I and type II, based upon differences in the nature of 
their T cell receptors (TCRs) (1–3). The well-studied type I NKT cell subset that uses a semi-invariant 
TCRα chain is more prevalent than the type II subset in the mouse, while the less explored type II NKT 
cell subset that utilizes a more diverse TCR repertoire is predominant in humans (4–6). Both subsets 
require signaling lymphocytic activation molecule-associated protein (SAP) and promyelocytic 
leukemia zinc finger (PLZF) for their development and effector program (3, 7, 8). After antigenic 
activation, NKT cells secrete large amounts of cytokines, such as interferon-γ (IFNγ), interleukins 
IL-4, IL-10, IL-13, IL-17, and IL-22, tumor necrosis factor-α (TNFα), and granulocyte-macrophage 
colony-stimulating factor (GM-CSF), which modulate immune responses triggered by other innate 
NK cells and adaptive T and B cells (3–6). Both subsets appear to modulate immune responses 
involved in autoimmunity, inflammation, infections, and cancer (4–7, 9, 10). This review primarily 
focuses on lipid-reactive CD1d-restricted TCR α/β+ type II NKT cells and their potential role in 
immunity.
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Antigen Recognition, TCR Repertoire, and 
Activation of Type ii nKT Cells

Type I NKT cells respond to a strong agonist α-galactosylceramide 
(αGalCer) as well as microbial and self-lipids. By contrast, type 
II NKT cells are not reactive to αGalCer and recognize self-
glycolipids and self-phospholipids (5, 6, 11). A major subset of 
type II NKT cells recognize a naturally occurring self-glycolipid, 
sulfatide, which is enriched in several membranes, including 
myelin in the central nervous system (CNS), β-cells in the pancreas, 
kidney, and liver (12, 13). Recently, other self-lipids, including 
β-D-glucopyranosylceramide (β-GlcCer), βGalCer, lysophosphati-
dylethanolamine (lyso-PE), lysophosphatidylglycerol (lyso-PG), 
or cardiolipin and lysophosphatidylcholine (lyso-PC) have been 
shown to be involved in the activation of liver type II NKT cells 
(5, 6, 8, 12–17). Lyso-PC and β-glucosylceramide and glucosyl-
sphingosine lipids were reported to activate human type II NKT 
cells as well (18, 19).

The mechanism of binding of type II NKT TCRs to antigens 
uses features of TCR binding shared by both type I NKT cells and 
conventional T cells, but also is distinct from both (12, 20, 21). 
Thus, type II NKT TCRs contact their ligands primarily via their 
β chain rather than α chain, suggesting that the TCR Vβ chain 
contributes significantly to antigen fine specificity (20). Sulfatide-
reactive type II NKT cells express oligoclonal TCRs with a limited 
number of Vα- and Vβ-chains (Vα3/Vα1 and Vβ8.1/Vβ3.1). In 
contrast to the germline-encoded TCRα chain in type I NKT cells, 
only about 14% of TCR Vα and 13–27% of TCR Vβ chains in 
type II NKT cells are encoded by germline gene segments (12). A 
prevalent type II NKT cell subset expressing Vα3.2–Vβ8 TCR has 
also been described (22). It remains to be seen whether other type 
II NKT cells will also use a similar mechanism of lipid recognition 
to sulfatide-reactive T cells. It appears that type II NKT cells are 
mostly reactive to self-lipid ligands, but they can also recognize 
structurally similar microbial-derived lipids because of their TCR 
degeneracy or promiscuity.

Type I NKT cells can be activated either directly through TCR 
stimulation by exogenous microbial lipid antigens or indirectly 
by stimulatory self-lipids presented by CD1d and/or cytokines 
(IL-12, IL-18, or type I IFN) produced through Toll-like receptor 
(TLR)-mediated signaling (23, 24). Thus, different self-lipids as 
well as cytokines present at elevated levels during inflammation can 
potentially stimulate type I NKT cells. Recent studies suggest that 
type I NKT cells can be activated in response to bacteria, as well 
as viruses, without antigen receptor stimulation (25). By contrast, 
type II NKT cells are mainly stimulated by direct recognition of 
lipid/CD1d complexes by their TCR. It has been consistently found 
that stimulation of type II NKT hybridomas with phospholipids 
and glycolipids requires lipid uptake, intracellular processing, 
and presentation to TCR but not TLR signaling (15, 26). In many 
experimental conditions wherein type I NKT cells are activated, 
type II NKT cells remain inactivated suggesting that type II NKT 
cells may not be easily activated by cytokine/TLR signaling but 
require self-lipid recognition.

It is becoming clear that the TCR recognition by type II 
NKT cells can be highly specific or promiscuous. For example, 
sulfatide-reactive type II NKT cell hybridomas XV19 or 19.3 can 

recognize sulfatide or lyso-PC effectively but not so efficiently all 
other phospholipids or glycolipids (12–15, 17, 26). Consistent 
with this, at the polyclonal level, some lyso-PC-reactive NKT cells 
are distinct from sulfatide-reactive NKT cells (17) and in 4get 
mice, type II NKT cells are reactive to several self-lipids but not 
sulfatide (8, 16). Similarly, some lyso-PG-reactive type II NKT 
hybridomas can recognize both self and microbial lipids derived 
from Mycobacterium tuberculosis or Corynebacterium glutamicum 
and others are non-responsive to these lipids (15). These findings 
identify some redundancy as well as overlapping TCR repertoires 
among type II NKT cells that recognize self-lipids.

Immune regulatory activity of NKT cells can be mediated by 
cytokines secreted by NKT cells themselves or following their 
interaction with other immune cells, including DCs, NK cells, 
Tregs, monocytes, and B cells. Activation of NKT cell subsets can 
result in the deviation of a cytokine secretion profile in MHC-
restricted CD4+/CD8+ T cells toward either a pronounced Th1-, 
Th2-, or Th17-like response.

It is noteworthy that in inflamed target tissues, such as in 
pancreas in non-obese diabetic (NOD) mice that spontaneously 
develop type 1 diabetes (T1D) and in the CNS during experimental 
autoimmune encephalomyelitis (EAE), both type I and type II 
NKT cells accumulate (13, 27). However, activation of type II 
NKT cells following sulfatide or lyso-PC administration leads to 
a rapid accumulation of type I NKT cells into liver in an IL-12 and 
macrophage inflammatory protein 2 (MIP2)-dependent fashion. 
But these recruited type I NKT cells are neither activated nor do 
they secrete cytokines, and consequently they are anergic, leading 
to decreased levels of IFNγ followed by reduced recruitment of 
myeloid cells, NK cells, and protection from liver damage (28, 29). 
In contrast to the activation of lyso-PE-reactive type II NKT cells 
in an infectious model of HBV, hepatic type I NKT cells are not 
anergized but stimulated to secrete cytokines (16). This difference 
in type I NKT stimulation may relate to the differential milieu in 
liver during sterile versus infectious immunity.

A novel Type ii nKT Cell-Mediated 
immune Regulatory Pathway

Sulfatide-mediated type II NKT cell stimulation in vivo results in 
the activation of predominantly hepatic plasmacytoid DCs (pDC) 
but not conventional DC (cDC) and ultimately induction of anergy 
in hepatic type I NKT cells. This unique immune regulatory path-
way not only involves cross-regulation of type I NKT cells but also 
inhibition of pathogenic Th1/Th17 cells through tolerization of 
hepatic cDC and tissue-resident antigen-presenting cells (APCs), 
such as microglia in the CNS (28, 30). By contrast, activation of 
type I NKT cells following αGalCer administration predominantly 
activates hepatic cDC (28, 29). We are currently investigating the 
molecular mechanism of these NKT–DCs interactions.

It has been shown that this immune regulatory pathway 
effectively controls EAE, T1D, inflammatory liver diseases, and 
systemic lupus erythematosus (SLE) (17, 27, 28, 30–32) (Halder, 
unpublished). A recent study has suggested that the ICOS and 
PD-1 ligand pathways are required for the regulation of T1D in 
NOD mice by CD4+ type II NKT cells (33). Sulfatide-mediated 
type II NKT cell activation can also result in IL-10 secretion and, 
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consequently, inhibition of type I NKT cells and diabetogenic or 
encephalitogenic CD4+ and CD8+ T cells (13, 27). Furthermore, 
activation of type II NKT cells also induces alterations in other 
innate cells, including myeloid-derived suppressor cells (MDSCs), 
CD11b+Gr-1+ cells, and neutrophils (17, 28, 30–32). Accordingly, 
MDSCs have been shown to protect mice from EAE (34). 
CD11b+Gr-1+ cells and neutrophil alterations can also protect from 
inflammatory liver diseases (31, 32, 35). Additionally, activation 
of type II NKT cells by PD-L1-deficient DCs increases the IL-4 
and IL-13 levels and, consequently, decreases the numbers of IFNγ 
and IL-17-secreting pathogenic T cells (36). Thus, targeting type 
II NKT-mediated inhibition of the effector functions of Th1/Th17 
cells and APCs in peripheral organs as well as in affected target 
tissues offers a potent strategy for intervention in autoimmune 
and inflammatory diseases (30).

Type ii nKT Cells in Autoimmune and 
inflammatory Diseases

The activation of type II NKT cells with sulfatide controls both 
antigen-induced and spontaneously arising autoimmune diseases. 
Additionally, sulfatide-mediated immune regulation inhibits 
inflammatory liver diseases elicited by type I NKT cells (13, 17, 
27, 28, 30–32, 35). Sulfatide-reactive type II NKT cells also have 
been shown to abrogate ischemic–reperfusion injury in mice and 
in patients with acute tubular necrosis (37). Interestingly, during 
EAE and T1D progression, sulfatide-reactive type II NKT cells 
accumulate in the target tissue and in the draining of lymph 
nodes, respectively. This greater abundance of type II NKT cells 
in the CNS inverts the usual ratio of type II/type I NKT cells 
(type II NKT cells, 3–4%, and type I NKT cells, 0.6–0.9%) (13, 
27). Thus, administration of brain-derived sulfatides or synthetic 
cic-tetracosenoyl or tetracosenoyl sulfatide affords protection from 
EAE and diabetes (13, 27, 30). In both cases, it is the sulfatide with 
the longer fatty acid chain that is able to efficiently activate type 
II NKT cells and prevent autoimmunity. These data suggest that 
sulfatide analogs should be examined in clinical studies in multiple 
sclerosis (MS) and T1D. Our preliminary studies also suggest that 
activation of type II NKT cells following administration of sulfatide 
significantly inhibits development of lupus nephritis in (NZB X 
NZW) F1 mice, further indicating a regulatory role of type II NKT 
cells (5) (Halder, unpublished).

Recent studies have indicated key mutual interactions among 
NKT cells, CD1d+ cells, and commensal microbiota in the intestine 
(38). Evidence from several animal models of inflammatory bowel 
disease (IBD) demonstrates that type I NKT cells can be either 
protective or pathogenic (39). Interestingly, type II NKT cells 
seem to promote intestinal inflammation and mediate a patho-
genic response when both CD1d expression and the frequency of 
IL-13 producing type II NKT cells are increased in mice as well as 
patients with ulcerative colitis (40–42). It is noteworthy that type II 
NKT cells involved in ulcerative colitis in humans are also reactive 
to lysosulfatide, but in contrast to the liver type II NKT cells, they 
secrete IL-13 and not IFNγ (41). This suggest that there are subsets 
of type II NKT cells that may have different TCR repertoires as 
well as different cytokine secretion patterns in different tissues, 
just as there are different subsets of type I NKT cells.

Type ii nKT Cells in Metabolic and Liver 
Disorders

Both NKT cell subsets have been shown to be involved in 
adipose-tissue inflammation, diet-induced obesity, and glucose 
metabolism (43). Roles for eosinophils, macrophages, and 
innate lymphoid type 2 cells (ILC2) have also been suggested 
in metabolic disorders (44, 45). More recently, type II NKT 
cells induced by both IL-25 and sulfatide treatments have been 
shown to be involved in the regulation of inflammation in 
adipose tissue and prevention of high fat diet-induced obesity 
in mice. Transfer of type II NKT cells into obese mice induced 
a greater and prolonged weight loss and improved glucose 
tolerance (44).

In inflammatory liver diseases, type I and type II NKT cells 
have been shown to play opposing roles (35). Earlier, it was shown 
that following liver injury after ischemic–reperfusion or ConA 
administration, a rapid activation of IFNγ-secreting type I but 
not type II NKT cells takes place (28, 31). Activation of type I 
NKT cells generates a cascade of events that contributes to liver 
inflammation and damage. The secretion of pro-inflammatory 
cytokines, such as IFNα, and chemokines leads to accumulation 
of CD11b+ Gr-1+ cells as well as other myeloid cells resulting 
in the destruction of hepatocytes. By contrast, sulfatide-activated 
type II NKT cells inhibit the cascade of pro-inflammatory events 
through a mechanism that includes activation of pDC resulting in 
tolerization of cDC, anergy in type I NKT cells and consequently 
protection from liver injury (28, 31, 35). In a mouse model of 
chronic alcohol liver disease (ALD), we have found that type I, 
but not type II, NKT cells are activated, leading to recruitment of 
inflammatory neutrophils and liver damage (46, 47). Inhibition 
of type I NKT cells following a novel direct mechanism involving 
all-trans retinoic acid (48) and its receptor (RAR-γ) signaling, or an 
indirect mechanism mediated by sulfatide-activated type II NKT 
cells significantly blunts ALD (46). Consistent with this, accumula-
tion of activated type I NKT cells in patients with NAFLD has 
recently been shown (49–51). Currently, clinical studies are being 
carried out to examine the potential use of a RAR-γ analog for 
the treatment of alcohol- and non-alcoholic liver disease. We are 
presently investigating in humans the role of both type I and type 
II NKT cells in the promotion as well as regulation of inflammatory 
immune responses in liver and gut. The identification of the role 
of these cell subsets in liver disorders could potentially lead to the 
development of novel therapeutics.

Type ii nKT Cells in infectious Diseases

Natural killer T cells contribute to the early immune response 
against a broad range of microbial pathogens, playing either a 
beneficial role in some infections or a negative role in others (52). 
Frequently, type I and type II NKT cells can have opposing roles in 
microbial immunity. For example, in the case of Trypanosoma cruzi 
infections, type II NKT cells were shown to promote inflammation 
and mortality and reduced titers of pathogen-specific antibod-
ies, whereas type I NKT cells led to reduced inflammation and 
improved mortality and antibody titers (53). By contrast, during 
murine Schistosoma mansoni infection, type II NKT cells led to 
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increased Th2 cytokine secretion and decreased IFNγ production, 
while type I NKT cells reinstated IFNγ levels (54).

Sulfatide-activated type II NKT cells have also been shown to 
affect the course of infectious diseases. Previously, we showed that 
sulfatide-activated type II NKT cells inhibit HIV-1 replication and 
enhance multi-lineage hematopoiesis in a SCID-Hu (Thy/Liv) HIV 
model (55). We hypothesized that sulfatide-mediated activation of 
type II NKT cells and pDC results in the induction of anergy in type 
I NKT cells. It was shown that peripheral CD4+ type I NKT cells are 
depleted in early HIV infection and that the remaining cells in the 
circulation during HIV infection are functionally impaired in IFNγ 
expression (56). Sulfatide-mediated activation of type II NKT cells 
also has a protective effect in a Staphylococcus aureus murine model 
of sepsis and is associated with a decrease in pro-inflammatory 
cytokines, such as TNFα and IL-6 (57). This beneficial outcome 
was found to depend on CD1d but not on type I NKT cells.

Recent studies in HBV infection in animal models and humans 
have shown that NKT cells contribute to the initiation of antiviral 
immune responses against HBV. An early activation of type I and type 
II NKT cells was found following infection, mainly in the liver, which 
correlated with IFNγ-dependent suppression of viral replication; but 
also NKT cells contribute to HBV-induced hepatitis (16, 58). Using a 
mouse model of infection with HBV-expressing adenoviral particles 
(Ad-HBV), it was demonstrated that Jα18-deficient (lacking type 
I NKT cells) and CD1d-deficient (lacking all NKT cells) mice 
exhibited a significant decrease in NK, B, CD4+, and CD8+ T cell 
activation and hepatic immune infiltration, supporting the idea that 
NKT cells play a role in the immune response to HBV (16). More 
importantly, it was shown that HBV infection induces production of 
modified ER self-lipids, including phosphatidylethanolamine (PE) 
and lysophosphatidylethanolamine (lyso-PE), direct activation 
of liver type II NKT cells, and downstream cytokine-dependent 
activation of type I NKT cells. Type II NKT activation required 
hepatocyte expression of microsomal triglyceride transfer protein 
(MTP) and CD1d (16). In a murine acute hepatitis B transgenic 
model, NKG2D-dependent activation of type II NKT cells has been 
shown to result in liver damage (59).

Type ii nKT Cells in Tumor immunity

Similar to the immune responses in liver, type I and type II NKT 
cells have been shown to play opposing roles in tumor immunity 

(10, 60). Type I NKT cells are usually associated with the 
promotion of tumor immunity, whereas type II NKT cells are 
associated with its suppression (61). Thus, type I NKT cells 
were found to induce lysis of tumor cells directly via a perforin/
granzyme-dependent mechanism or indirectly by induction of 
Th1 cytokine secretion and activation of NK and DC cells. By 
contrast, type II NKT cells have shown immunosuppressive 
activity down-regulating tumor immunosurveillance (60, 
62–64). Type II NKT cell-induced tumor suppression can 
be mediated by IL-13 secretion resulting in the activation of 
TGF-β-secreting MDSCs that inhibit tumor-specific CD8+ T 
cells or type I NKT cells. In humans, Chang et al. have also 
shown an increase in IL-13-secreting lyso-PC-reactive type 
II NKT cells in multiple myeloma patients (18). Interestingly, 
type I NKT cells are decreased in these patients, suggesting 
opposing roles, as their increased frequency is associated with 
better prognosis.

Future Studies and Challenges

Availability of stable reagents for analysis of type I NKT cells has 
resulted in characterization of changes in their frequency and 
phenotype in humans in different disease conditions, includ-
ing autoimmune and infectious diseases and cancer. A detailed 
characterization of type II NKT cell repertoires and their ligands 
in humans is required for a broader understanding of their physi-
ological role in health and in disease. A recent study suggesting 
a role for lyso-glucosylsphingosine (lyso-GL1)-reactive type II 
NKT cells in Gaucher disease is an important development (19). 
Together, all of these observations indicate that it may be possible 
in the future to differentially activate or inhibit type I and type 
II NKT cells for the development of novel immunotherapeutic 
protocols in altering the course of cancer and both infectious and 
autoimmune diseases.
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