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Through synthesis and presentation of neuroendocrine self-antigens by major histocom-
patibility complex proteins, thymic epithelial cells (TECs) play a crucial role in programing
central immune self-tolerance to neuroendocrine functions. Insulin-like growth factor-
2 (IGF-2) is the dominant gene/polypeptide of the insulin family that is expressed
in TECs from different animal species and humans. Igf2 transcription is defective in
the thymus of diabetes-prone bio-breeding rats, and tolerance to insulin is severely
decreased in Igf2−/− mice. For more than 15 years now, our group is investigating the
hypothesis that, besides a pancreotropic action, infection by coxsackievirus B4 (CV-
B4) could implicate the thymus as well, and interfere with the intrathymic programing
of central tolerance to the insulin family and secondarily to insulin-secreting islet β
cells. In this perspective, we have demonstrated that a productive infection of the
thymus occurs after oral CV-B4 inoculation of mice. Moreover, our most recent data
have demonstrated that CV-B4 infection of a murine medullary (m) TEC line induces
a significant decrease in Igf2 expression and IGF-2 production. In these conditions,
Igf1 expression was much less affected by CV-B4 infection, while Ins2 transcription
was not detected in this cell line. Through the inhibition of Igf2 expression in TECs,
CV-B4 infection could lead to a breakdown of central immune tolerance to the insulin
family and promote an autoimmune response against insulin-secreting islet β cells.
Our major research objective now is to understand the molecular mechanisms by
which CV-B4 infection of TECs leads to a major decrease in Igf2 expression in these
cells.

Keywords: enterovirus, coxsackievirus, thymus, self-tolerance, type 1 diabetes, insulin family, insulin-like growth
factor 2

Introduction

The major genetic determinants of type 1 diabetes (T1D) are the class II major histocompatibility
complex (MHC) on chromosome 6 –which accounts for almost 50% of the genetic susceptibility – as
well as a number of non-MHCgenes, including the variable number of tandem repeat (VNTR) alleles
upstream of the INS/IGF2 (IDDM2) locus, PTPN22,CCR5, IL2RA, IL10, andCTLA4. However, only
10% of the individuals bearing a genetic predisposition will develop T1D, and more than 50% of
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monozygotic twins are discordant for the disease, which illustrates
the implication of environmental influences in T1D pathogenesis
(1) as for all autoimmune diseases.

Type 1 diabetes occurrence has been related to a number of
viruses but epidemiological studies have provided the strongest
evidence that enteroviral infections, in particular, by coxsack-
ievirus B (CV-B), are frequent events preceding T1D onset
(2–7). Human enteroviruses include human pathogens, such
as poliovirus, CV-B, rhinovirus, and echovirus. Using RT-PCR
detection, CV-B genome was detected in 5 out of 12 (42%) newly
diagnosed T1D patients and in 1 of 12 (8%) patients during the
course of T1D. None of T2D patients and none of 15 healthy
controls had enterovirus sequences in their blood (8). CV-B4 E2
can persistently infect human β cells (9) and a CV-B4 variant
infects β cells leading to a disturbance of proinsulin synthesis
and insulin secretion (10). The mechanism most accredited to
explain the link between CV-B infection and T1D is a specific
tropism of the virus for insulin-secreting islet β cells (11) – that
is, mediated by their expression of the specific virus receptor –
and a bystander activation of autoreactive T cells by antigens
released by β cells after their damage caused by CV-B infection
(12). Another crucial study has shown that CV-B4 is able to
infect β cells in patients with T1D and that such infection is
associated with both inflammation and severe β-cell functional
disturbance (13). The persistent aspect of enterovirus infection
is also an important factor to take into account [for a complete
review, see Ref. (14)]. Very recently, this scenario received a
strong support through the Diabetes Virus Detection (DiViD)
study that detected a low-grade enteroviral infection in the islets
of Langerhans collected from living patients newly diagnosedwith
T1D (15). This study does not prove a causal relationship between
enterovirus infection and T1D, but is the first to detect enterovirus
in pancreatic islets from patients close to the time of their diag-
nosis of T1D. The association between T1D and viral infections
has also been previously reinforced by a genetic linkage between
T1D susceptibility andhost determinants of the antiviral response,
such as the antiviral oligoadenylate synthase (OAS1) and the
interferon-induced helicase (IFIH1), which intervene in innate
immunity by recognition of RNA genome of picornaviruses, such
as enteroviruses (16, 17). Besides this pancreotropism of CV-B,
we have been exploring for a long time another mechanism that
could play an essential and complimentary role in the develop-
ment of the diabetogenic autoimmune response, namely, thymus
infection.

Thymus-Dependent Central Self-Tolerance
to Islet β Cells

As previously demonstrated that the thymus epithelium plays
a unique role in programing central self-tolerance to neuroen-
docrine functions [complete reviews in Ref. (18–20)], as well
as to many tissue-related antigens (21). Following gene tran-
scription in the thymus, neuroendocrine precursors are pro-
cessed not according to the classical model of neurosecretion
but for presentation by, or in association with, the thymic
MHC machinery. In the thymus, MHC presentation of neu-
roendocrine self-peptides promotes two intimately associated but

paradoxical events: (1) negative selection and deletion of self-
reactive T cell clones and (2) Generation of self-specific regu-
latory T (tTreg) cells that are able to inhibit in the periphery
those “forbidden” self-reactive T cells that escaped thymic clonal
deletion. The AutoImmune REgulator (AIRE) protein controls
intrathymic transcription of neuroendocrine genes, including
all the members of the insulin gene family (22) that are tran-
scribed in the murine thymus according to the following hier-
archy: Igf2> Igf1> Ins2> Ins1. Thymic self-antigen expression
and AIRE function are also regulated by epigenetic and post-
translational mechanisms (23).

There is now mounting evidence that a defect in intrathymic
negative selection is implicated in the development of autoim-
mune endocrine diseases, such as T1D (24–27), although this
is still discussed for the non-obese diabetic (NOD) thymus (28,
29). Contrary to Igf1 and Ins2, Igf2 transcription is defective
in the thymus of diabetes-prone of bio-breeding (BB) rats (30),
one of the two animal models of T1D with the NOD mouse.
In humans, INS transcripts are measured at a lower level in the
thymus from fetuses with short class I VNTR alleles, the second
genetic trait (IDDM2) of T1D susceptibility (31, 32). Both VNTR
alleles and AIRE determine the concentration of INS transcripts
in the human thymus (33). In the mouse, Ins2 is predominantly
transcribed in the thymus, while Ins1 expression is dominant in
islet β cells, which leads to a higher immunological tolerance to
Ins2. This explains why the breeding of Ins2−/− mice onto the
NOD background accelerates insulitis and diabetes onset (34),
whereas insulitis and diabetes are markedly inhibited in Ins1−/−

congenic NOD mice (35). There is now firm evidence that Ins1
codes for the primary insulin-derived autoantigenic epitopes tack-
led by the autoimmune diabetogenic process (36, 37). In addition,
there is a very rapid onset of autoimmune diabetes after a thymus-
specific Ins1 and Ins2 deletion resulting from the crossing of
Ins1−/− mice with mice presenting a specific Ins2 deletion in
Aire-expressingmedullary thymic epithelial cells (TECs) (38). The
insulin transactivator Mafa also regulates Ins2 transcription in
the thymus and targeted Mafa disruption induces appearance of
anti-islet antibodies (39).

Tolerogenic Properties of IGF-2: Multiple
Facets

Given the direct relationship between the expression level of
a protein/peptide in the thymus and the immunological toler-
ance to this protein/peptide (40), the hierarchical profile of the
intrathymic expression of insulin-related peptides (IGF-2> IGF-
1> insulin) suggests that tolerance to insulin-like growth factor-2
(IGF-2) is high and that tolerance to insulin is low. This is indi-
rectly supported by the fact that insulin is the primary autoantigen
of T1D (36, 37) while no autoimmune response against IGF-2 has
ever been reported. Conversely, the highly immunogenic proper-
ties of insulin might actually be related to its very low expression
in rare medullary (m) TEC subsets. Recently, the alternate variant
INS–IGF-2 has been identified as a novel autoantigen in T1D
(41), but there is still no data about the expression of this hybrid
protein in thymic epithelium. Spontaneous autoimmune diabetes
does not develop in Igf2−/− mice although these mice display
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a marked lower tolerance to insulin, which evidences that Igf2
expression mediates cross-tolerance to insulin and is required for
the programing of a complete immunological tolerance to this
protein (42). The homologous sequences Ins B9-23 and IGF-2
B11-25 compete for binding to the MHC-II DQ8 allele, and their
presentation to PBMCs isolated from DQ8+ T1D adolescents
induce distinct cytokine profiles with a regulatory profile for IGF-
2B11-25 that is not observed for Ins B9-23 (43). Two recent studies
have further evidenced the tolerogenic properties of IGF-2 by
enhancement of Treg cell functions in an experimental model of
food allergy (44), as well as promotion of antigen-specific Breg cell
properties (45).

Our studies have also shown that the blockage of IGF-mediated
signaling in the thymus severely interferes with T-cell growth and
differentiation blocks T-cell differentiation (46), which was fur-
ther confirmed by the demonstration that an antibody to CD222
(the IGF-2 receptor, an endosomal transporter that regulates pro-
tein trafficking) plays a central function in the initiation of T-cell
signal transduction (47).

Therefore, the predominant expression of IGF-2 in the thymus
is not only associated with a higher immunological tolerance
to this protein but also seems to confer significant tolerogenic
properties to IGF-2- and IGF-2-derived antigen sequences. On
these experimental bases, we have proposed the novel concept
of “negative self-vaccination” that is under current development
through DNA vaccine methodology (48).

Thymus Infection by Enteroviruses

Given the programing of self-tolerance to islet β cells in the
thymus and its defect in the development of the autoimmune
diabetogenic response, we investigated the question of a putative
role played by an enteroviral infection in an acquired dysfunction
of the threemajor properties of this primary lymphoid organ: thy-
mopoiesis, establishment of central self-tolerance, and generation
of self-antigen-specific tTreg cells. A persistent replication of CV-
B4 E2 (a “diabetogenic” CV-B strain) and JBV (a prototype CV-B
strain) in primary cultures of human TECs was demonstrated by
detection of positive- and negative-strand viral RNA in extracts
from cell cultures, by immunofluorescence staining of the VP1
capsid protein, and by release of infectious particles up to 30 days
after culture inoculationwithout any apparent cytolytic effect. The
persistence of CV-B4 infection was associated with an increased
rate of TEC proliferation and with an increase in the secretion
of the cytokines IL-6, LIF, and GM-CSF in the supernatants. CV-
B4 replication was not restricted to the CV-B4 E2 strain and did
not depend on the genetic background of the host. However,
cytokine secretion in human TEC cultures infected with CV-
B4 E2 was higher than in cultures infected with CV-B4 JBV
(49). Therefore, although they are considered as cytolytic viruses,
enteroviruses can infect persistently some tissues, such as thymus
and pancreas.

Coxsackievirus B4 E2 is also able to infect human fetal thymic
organ cultures (FTOC). Viral RNA was detected by quantita-
tive RT-PCR in CV-B4 E2-infected human FTOC, which sup-
ported high yields of virus production, as well as in flow-sorted
thymic T cell populations for 7 days after infection. In FTOC,

double positive CD4+CD8+ thymocytes were the principal target
cells of infection and were progressively and severely depleted
with no sign of apoptosis. Of note, massive thymic depletion of
developing T cells and the subsequent CD4+CD25+ tTreg cells
was shown previously to result in systemic autoimmunity (50).
CV-B4 E2 replication caused a major up-regulation of MHC class
I expression on thymic T cells and TECs. This MHC class I
up-regulation was correlated with markers of CV-B4 infection
(viral RNA quantification, release of infectious particles), and
this was the result of a direct infection rather than caused by
production of soluble factors, such as interferon-α (51). Interest-
ingly, Krogvold et al. also reported an overexpression of MHC
class I in the islets of all the patients included in their recent
study (15). CV-B4 E2 was similarly shown to disturb T-cell dif-
ferentiation in infected murine FTOC (52). In concordance with
previous observations (53), CV-B4 oral inoculation of outbred
mice results in a systemic spreading of viral RNA and a detection
of viral RNA in thymus, spleen and blood up to 70 days after
inoculation (54). Finally, CV-B4 infection of a murine mTEC
line induces a dramatic decrease in Igf2 transcription and IGF-
2 production in long-term cultures of this cell line, while Igf1
transcripts were much less affected and Ins2 transcripts were not
detected in these experimental conditions (55). Inoculation of the
mTEC line with CV-B3, CV-B4 JVB, or echovirus 1 also induced
a decrease in IGF-2 production, while herpes simplex virus 1
stimulated IGF-2 production. As already cited, a defect of Igf2
expression in the thymus was suggested to play a role in the
development of autoimmune diabetes in the diabetes-prone BB
rat (30). Although these effects need to be reproduced in vivo,
they strongly support our hypothesis that CV-B4 infection of the
thymus could disrupt central self-tolerance to the insulin family,
and could also enhance CV-B4 virulence through induction of
central immunological tolerance to this virus. We are currently
investigating the molecular mechanisms responsible for the CV-
B-induced decrease of thymic IGF-2 expression in this mTEC
line and in vivo after oral inoculation of CD1 mice. Since the
CV-B-mediated effects in mTEC line are more pronounced on
IGF-2 protein than on Igf2 transcription, we concluded that post-
transcriptional and/or post-translational mechanisms could be
both involved.

As previously discussed by Zinkernagel (56), fetal exposure to
maternal enterovirus infections should also be taken into account.
One study has shown that enterovirus infection during the first
trimester of pregnancy is not associated with a higher risk for
T1D in the childhood (57), but another one has evidenced that
such maternal enterovirus infection was a risk factor in offspring
diagnosed with T1D between 15 and 30 years of age (58). More
recently, a study has investigated that the effects of CV-B4 E2 oral
inoculation of CD1 mice at days 4, 10, or 17 of gestation. Severe
inflammation of the pancreas and higher glucose blood levels were
observed only when dams were previously infected and, in partic-
ular, at day 17, thus, in the late phase of pregnancy (59). CV-B4 E2
oral inoculation of pregnant mice is also associated with fetal thy-
mus infection and disturbance of T-cell differentiation (Jaïdane,
personal communication). Obviously, the question of materno-
fetal transmission of enterovirus infection highly deserves to be
further investigated.
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FIGURE 1 | Coxsackievirus B4 persistent infection of thymus and
pancreatic islets are closely associated and implicated in T1D
pathogenesis.

Conclusion: A Model Associating
CV-B-Induced Dysfunction of Central
Tolerance and Peripheral Bystander
Activation

In addition to the necessity of standardization for the serological
andRT-PCRdetection ofCV-B infection as recommendedbyGale
and Atkinson (60), there is also an urgent need for a thorough
investigation of the relationships between CV-B and the host
immune system (Figure 1). What is our current knowledge about
this point? CV-B4 is able to persistently infect α and β cells
in human pancreatic islets, and to cause functional impairment
and β-cell death characterized by nuclear pyknosis. The CV-B4-
induced damage to the islet cells causes release and presenta-
tion of sequestered islet antigens. Through bystander activation,
autoreactive T cells initiate the diabetogenic autoimmune process.
Now, with regard to the origin of these autoreactive T cells,

more and more experimental evidence points to the generation
in the thymus of “forbidden” T cell clones due to a failure of the
central tolerogenic mechanisms. This thymus defect results in a
progressive enrichment of the peripheral T cell repertoire with
self-reactive T cells and a decreased generation of self-antigen
tTreg cells. From our collaborative work, it appears that CV-
B4 is also able to persistently infect the epithelial and lymphoid
compartments of the thymus. CV-B4 infection of the thymus leads
to increased secretion of diverse cytokines synthesized in TECs,
to a severe depletion of double positive CD4+CD8+ thymocytes,
and to marked up-regulation of MHC class I molecules expressed
by TECs and double positive thymic T cells. Moreover, CV-B4
infection of a murine mTEC line induces a marked decrease
in Igf2 transcription and IGF-2 production. Therefore, a CV-B4
persistent infection of the thymus may lead to significant thymus
and immune dysregulation that associates:

• A significant impairment of thymus-dependent self-
tolerance issued from the decrease in the presentation of
insulin family related self-antigens, and putatively a direct
viral interference with self-antigen presentation (61).

• An induction of central tolerance to CV-B4 and a secondary
decrease of anti-CV-B4 CD8+ T-cell mediated response, so
that further exposure to the virus could promotemore severe
damage to the peripheral target tissues.

If further research confirmed such rational assumption based
on our new knowledge of thymus functions, then an anti-CV-B4
vaccination could be considered as a strategy for T1D preven-
tion in regions with a high incidence of this disease such as in
Scandinavian countries (62).
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