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Extracorporeal photopheresis (ECP) is an autologous cell therapy that is widely used for the
treatment of T cell-mediated diseases. ECP has been FDA-approved for the treatment of cuta-
neous T cell lymphoma (CTCL) and has shown potent clinical benefits in various other (non-
cancer) T cell-mediated diseases, such as graft versus host disease (GvHD), allograft rejection,
as well as in autoimmune disorders, such as rheumatoid arthritis, psoriasis, systemic sclero-
sis, type 1 diabetes, and Crohn’s disease (1–3). The ECP treatment consists in the irradiation
by UV-A in presence of a photosensitizer agent (8-methoxypsoralen) of PBMCs collected by
apheresis (4). This will lead to an irreversible DNA crosslink by the psoralen, culminating by
the apoptosis of virtually all the treated cells (5, 6). Then, the treated cells are re-infused to the
patient. This repeated process leads to the improvement in patients’ clinical status, allowing the
decrease or the disappearance of tumoral T cells in CTCL, or a decrease or a total disruption
of immunosuppressive drugs, thus avoiding steroid-related side effects in GvHD (7). ECP has
also shown benefits in cortico-refractory patients (8). Conversely to immunosuppressive treat-
ments, ECP seems to selectively target allo- and auto-reactive T cells in GvHD and autoimmune
diseases, respectively (called pathogenic T cells hereafter), without inducing systemic immuno-
suppression (9). Today, even if ECP has created real hopes for the treatment of these patholo-
gies, its implementation is quite limited due to a relative empiric utilization due to the absence
of prospective randomized clinical trials and a lack in the understanding of its mechanism of
action (MoA).

For instance, ECP is thought to act through the induction of immune tolerance in GvHD. Indeed,
Gatza et al. have described that the injection of ECP-treated splenocytes from mice developing
GvHD (i.e., containing allogeneic T cells) triggers IL-10-producing regulatory T cells (Tregs) able
to reverse experimental GvHD (10). However, authors did not assess whether or not ECP-induced
Tregs were alloantigen specific (i.e., that ECP does not induces a systemic tolerance in this setting)
in order to fully recapitulate the clinical situation observed in humans.

The infusion of apoptotic cells has previously been described as promoting tolerance. Notably,
the infusion of γ-irradiated apoptotic splenocytes, concomitantly with bone marrow cells, triggers
the generation of TGF-β-dependent Tregs, which in turn favors the bone marrow cells’ engraftment
as well as protects from GvHD occurrence (11). A similar approach has recently been evaluated
in a phase I/IIa clinical trial as prophylaxis for GvHD, where donor apoptotic cells have been
injected to recipient 1 day before bone marrow transplantation (BMT), and has shown encouraging
results (12). In line with this, some studies proposed to use ECP-treated autologous cells as a
prophylactic treatment of GvHD (13). This therapeutic setting prevents or at least diminishes the
occurrence of acute GvHD by inducing Tregs, in a host IL-10-production-dependent manner in
mice. In both of these settings, prior massive infusion of apoptotic cells might induce systemic
immune tolerance, which in turn diminishes or prevents acute GvHD development following
BMT. In an in vitro model, Di Renzo et al. have shown that monocyte-derived dendritic cells
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(DCs) fromGvHDpatients secreted an increased amount of IL-10
when stimulated by LPS in presence of autologous ECP-treated
T cells (14).

Altogether these data indicate that ECPmight be able to induce,
at least in part, immune tolerance. However, the generation of
Tregs as a uniquemechanismneither explains howECP selectively
targets pathogenic T cells without inducing a systemic immuno-
suppression (9) nor how it works in CTCL. Indeed, the hypothesis
that has been made concerning its MoA in CTCL is rather the
elicitation of an anti-tumor response directed toward tumoral T
cells (9). How ECP could trigger both an anti-tumor immune
response and immune tolerance remains an open question.

The pathologies treated by ECP are heterogeneous; however,
they are allmediated by a (oligo)-clonal T cell population (tumoral
T cell clones in CTCL, allo- or auto-reactive oligoclonal T cells
in GvHD and autoimmune diseases). Thus, these T cells share
unique or a few T cell receptors (TcR) representing pathogenic
T cell-specific antigens that can be subsequently targeted by ECP-
induced immune responses.

Importantly, the presence of this pathogenic T cell population
within the treated cells is critical for the ECP efficacy (15). This
observation has also been made recently in an animal model in
which ECP was efficient only when pathogenic, and not naive T
cells, were treated (16). Interestingly, these observations are in
line with the seminal work pioneered by Irun Cohen that has
developed the T cell vaccination (TCV) concept, showing that
the injection of altered activated pathogenic T cells results in the
systemic control of untreated pathogenic T cells by triggering
anti-clonotypic cytotoxic CD8 T cells. (17–19). Of note, clini-
cal trial have been performed, using TCV in multiple sclerosis
(MS), and have shown very encouraging results (20). Zhang and
colleagues have been the firsts testing this concept in humans
(21). In this study, MBP-reactive T cells have been isolated and
amplified ex vivo from MS patients. Then, amplified activated
pathogenic T cells have been irradiated and then infused back to
the patient. This treatment has led to clinical responses, illustrated
by the disappearance of pathogenic T cells (i.e., untreated MBP-
reactive T cells). This clinical response is due to the genera-
tion of anti-clonotypic CD8 T cells, which are able to eliminate
pathogenic T cells in a cytotoxic-dependent manner (21). Thus,
altogether, these critical data underlie the necessity of providing
dying pathogenic T cells (containing specific antigens) in order to
obtain a therapeutic response, evoking an anti-(oligo)clonotypic
immune response triggered by the repeated re-infusion of treated
pathogenic T cells.

Until recently, apoptosis has been described as a silent/
tolerogenic process, where dying cells either die «silently» or
actively secrete – and/or induce the production of – anti-
inflammatory cytokines, such as IL-10 and TGF-β (22). During
the last decade, Zitvogel’s group has published a seminal work
describing that in particular conditions, tumor cell death could
be an immunogenic process, able to elicit an immune response
directed toward this population (23, 24). At least four events are
mandatory for undergoing an immunogenic cell death (ICD) as
follows: (1) the membrane exposure of calreticulin (CRT) follow-
ing a pre-mortem endoplasmic reticulum (ER) stress response.
This favor the phagocytosis of dying cells (25); (2) the release

of a nuclear protein that acts as an alarmin in the extracellular
environment, high-mobility group box (HMGB)-1 (26); (3) the
release of ATP that favors the production of IL-1β (27) as well
as the attraction and differentiation of antigen presenting cells
(APCs) (28); and (4) the activation of autophagymachinery that is
critical forATP release (29). ICDhas been described in the context
of chemotherapy-induced tumor cell death, and has been recently
evidenced following photodynamic therapy (30). However, to
date, whether ECP induces ICD is still unknown.

Extracorporeal photopheresis-induced ICD would support the
anti-clonotypic response hypothesis in CTCL. Indeed, the re-
infusion of tumoral T cells undergoing ICD back to the patient
would facilitate DC-mediated phagocytosis as well as DC matu-
ration. Of note, Yakut et al. have shown that ECP actually pro-
motes IL-1β production by ECP-treated DCs (31). Since IL-1β
is a key cytokine involved in ICD-induced anti-tumor responses
(23, 24, 27), IL-1β-producing DCs would be, in turn, able to
initiate an anti-tumor immune response directed toward living
cancer cells. Importantly, ECP-induced ICD could also support
this hypothesis in GvHD (and solid organ transplantation and
autoimmunity disorders) as well. Indeed, in these pathologies,
oligoclonal pathogenic T cells may represent an important pro-
portion of circulating T cells – therefore, an important proportion
among treated cells – and are in an activated state (because of
undergoing allo- or auto-immunity). Interestingly, it has been
shown that activated T cells die more rapidly than resting T cells
following ECP treatment (32). It means that during the first hours
following re-infusion of treated cells, only pathogenic T cells
undergo (immunogenic?) cell death. In these conditions, they
become the unique source of antigens. Thus, this window of time
allows the preferential phagocytosis of dying pathogenic T cells
by APCs, and subsequent antigen processing and presentation
to the immune system. Of note, Johansson and colleagues have
shown that in presence of activated, but not resting, apoptotic
T cells, autologous DCs acquired a mature phenotype and pro-
duce pro-inflammatory cytokines (33). Importantly, DCs exposed
to allogeneic, activated apoptotic T cells induce the prolifera-
tion and IFNγ production by autologous T cells. In this setting,
pathogenic activated T cell TcR-derived peptides could be pre-
sented to the immune system, leading to the elicitation of an
anti-(oligo)clonotypic immune response, targeting the pathogenic
(oligo)clonal T cell population (Figure 1). This scenario would
explain why the presence of pathogenic T cells is critical for reach-
ing therapeutic success, as well as, how ECP induces a specific
control of alloreactive T cells responsible for GvHD and solid
organ rejection, or autoimmune T cells involved in autoimmune
disorders, without inducing generalized immunosuppression (i.e.,
by eradicating specifically the pathogenic T cells). Ayyildiz et al.
have reported that the serum TNF-α level decrease 1 day after
ECP treatment in chronic GvHD (34). Interestingly, during the
first ECP treatments, the serum TNF-α level fluctuates and it
is found as high as baseline prior to the second ECP treatment.
It is likely that ECP first induces a transient immune toler-
ance due to the infusion of large quantity of apoptotic cells, as
described in other settings (11, 13). However, following several
ECP sessions, the serum TNF-α level tends to stably decrease
in responding patients (34). It is conceivable that ECP-induced

Frontiers in Immunology | www.frontiersin.org July 2015 | Volume 6 | Article 3492

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Hannani ECP induces anti-clonotypic responses

FIGURE 1 | ECP-induced anti-clonotypic response in GvHD.
(1) (Oligo)clonal activated alloreactive T cells are enriched compared to
«normal» resting T cells among treated cells. (2) Cells are re-infused back to the
patient. (3) Activated T cells undergo apoptosis faster than resting T cells.
(4) Emission of immunogenic signals. (5) During this window of time, dying
activated T cells will be preferentially phagocytized by dendritic cells (DCs),

representing the main source of antigen. (6) DCs will then process and present
alloreactive associated T cells antigens (i.e., TcR-derived peptides), allowing the
elicitation of an anti-clonotypic response. (7) Anti-clonotypic T cells will then
specifically recognize and eradicate alloreactive T cells. (8) The eradication of
alloreactive T cells will lead to the improvement of GvHD without inducing
systemic immunosuppression.

transient immune tolerance could be paralleled and/or followed
by the generation of anti-clonotypic responses, which would indi-
rectly trigger a steady TNF-α decrease by eliminating pathogenic
T cells. Indeed, ECP-induced ICD of pathogenic T cells could
reconcile the apparently contradictory MoAs proposed so far
(triggering immunity in CTCL and immune tolerance in GvHD).
Understanding ECPs MoA will help considerably in rationalizing
treatment schedules and processes as well as its application
field. Finally, it is a critical step toward identifying a predictive

biomarker of efficacy for improving the patients’ response rates
and for proposing synergizing combinatory therapy for rescuing
unresponsive patients.

This short opinion article provides an original point of view in
this field and proposes a MoA in which ECP induces an immuno-
genic, rather than a tolerogenic, cell death. This scenario is the
only one describing a unique MoA able to explain the efficacy of
ECP in such different pathologies, and therefore, strongly deserves
to be fully investigated.
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