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de Barcelona, Cerdanyola del Valles, Spain

Fish are subjected to several insults from the environment, which may endanger animal
survival. Mucosal surfaces are the first line of defense against these threats, acting
as a physical barrier to protect the animal but also functioning as an active immune
tissue. Thus, four mucosal-associated lymphoid tissues (MALTs), which lead the immune
responses in gut, skin, gills, and nose, have been described in fish. Humoral and cellular
immunity, as well as their regulation and the factors that influence the response in these
mucosal lymphoid tissues, are still not well known in most fish species. Mucosal B-
lymphocytes and immunoglobulins (Igs) are key players in the immune response that
takes place in those MALTs. The existence of IgT as a mucosal specialized Ig gives
us the opportunity of measuring specific responses after infection or vaccination, a
fact that was not possible until recently in most fish species. The vaccination process
is influenced by several factors, being stress one of the main stimuli determining the
success of the vaccine. Thus, one of the major goals in a vaccination process is to
avoid possible situations of stress, which might interfere with fish immune performance.
However, interaction between immune and neuroendocrine systems at mucosal tissues
is still unknown. In this review, we will summarize the latest findings about B-lymphocytes
and Igs in mucosal immunity and the effect of stress and vaccination on B-cell response
at mucosal sites. It is important to point out that a limited number of studies have been
published regarding stress in mucosa and very few about the influence of stress over
mucosal B-lymphocytes.
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Introduction

All animals may be subjected to different kinds of stressors. Stress response presents a number
of mechanisms that share common pathways for most animals. Hence, the organism responds
to a challenge that could be hazardous for its integrity. A complex network takes part in this
response involving three main regulatory systems, such as neural, endocrine, and immune.
In lower vertebrates, like fish, the neuroendocrine response under stress circumstances has
been well described in numerous species and it involves several key hormones as important
players in the response. Thus, sympathetic–chromaffin axis is first activated after stress by
the central nervous system, producing catecholamines, which are rapidly released into circu-
lation. Other stress hormones, such as corticosteroid releasing hormone (CRH), adrenocorti-
cotropic hormone (ACTH) and cortisol, are secreted by the hypothalamic-pituitary-interrenal
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FIGURE 1 | Schematic representation of hypothetical local mucosal
responses to stress. After a stress situation, mucosal tissues produce
several mediators, including hormones and other peptides, such as
cytokines or chemokines, that will act on the rest of mucosal tissues,
activating similar responses with the purpose of maintaining homeostasis.
Also, triggered mucosal responses will lead to an activation of the

hypothalamic–pituitary–interrenal (HPI) axis and the beginning of the
neuroendocrine response at systemic level. Both local and systemic
responses will be sustained through to a reciprocal feedback, until the insult
has finished. SALT, skin-associated lymph tissue; GALT, gut-associated
lymph tissue; NALT, nose-associated lymph tissue; GIALT, gill-associated
lymph tissue.

axis (1). Cortisol is the central corticosteroid in teleosts (2), and
circulating levels of this hormone in plasma is the most common
indicator of the degree of stress experienced by fish (3). However,
in the rest of fluids in fish, such as the mucosal secretions of skin,
gut, gills, or bile, little is known about cortisol levels, the effect
of stressors in the composition of these secretions or the local
responses triggered by stress. A recent publication has used one
of these alternative matrixes to solve a major problem that stress
studies have to face the detection of chronic stress circumstances
in fish farms. Thus, thanks to the analysis of cortisol levels in
scales, authorswere capable to determine not onlywhether the fish
was under stress at thatmoment but also if that fish was previously
exposed to a stress situation (4).

The response of fish to stressors involves different mechanisms
at different functional levels, from gene, molecular, and cellular to
systemic and performance responses. The classical view consid-
ered that the stress response is the result of a previous perception
of stressors by the sensors of the nervous system followed by acti-
vation of a neuroendocrine reaction in brain and pituitary, thus
involving the secretion of catecholamines and corticosteroids that
would generate the response in peripheral tissues to face the alarm
situation and, at last, return to the basal condition. Assuming that
these mechanisms are produced, part of the response is missing
in this classical view, since some of the local responses and their
influence in the overall activation of the stress reaction is not
considered. Thus, the stressing agentsmay activate the local recep-
tors and generate a first response in a particular tissue, mostly in
the portals of entry, i.e., the surfaces that are in contact with the
external environment, namely, gills, nose, gastrointestinal tract,

and skin. The changes at these mucosal tissues will produce local
alterations in specific tissue receptors and they may also produce
messenger substances (hormones, cytokines, peptides) that will
activate the overall physiological response. In this case, the conse-
quence is that the perception is not produced at central and ner-
vous level, but at the local and tissue level. For instance, pathogens,
pollutants at low concentration or specific dietary components
may trigger a local response that will induce a subsequent global
neuroendocrine response when the alarm messengers will reach
the brain, pituitary, or head kidney (Figure 1). In addition, when
looking at the transcriptomic response to stressors in the portals
of entry, such as gills or gut, results show an inespecific response
involving different regulatory pathways, i.e., oxidative, immune,
or endocrine (5).

The relationship between endocrine and immune system after
stress has been widely described [reviewed in Ref. (6)]. Sev-
eral studies have proved that under stress, the animal suffers an
immune suppression that could eventually lead to an increase in
susceptibility to pathogens and a reduction in vaccine protection
(6–9). However, in fish, the mechanisms behind this immune
suppression are not well known. Some effects of stress, mostly
due to cortisol release, on immune responses described in fish
are: increase of neutrophils, reduction of lymphocyte number and
antibody responses (10–13), reduction of complement activity
(14), and decrease in the production of some cytokines, such as
TNF-alpha, TGF-beta, or IL-6 (15). The lack of tools to character-
ize and separate immune cell subsets has complicated enormously
the analysis of the stress effects on specific cell populations. Thus,
few studies have been published about the effect of stress over
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TABLE 1 | Mucosal immunity and B cells in teleost and mammals.

Teleost Mammals

MALT

Nomenclature NALT (Nose), SALT (Skin), GIALT (Gills), GALT (Gut) NALT (Nose), BALT (Bronchus), GALT (Gut), VALT (Genital)

Associated structures Lamina propria, ILT Lamina propria, lymph nodes, germinal centers

Resident immune cells B cells, T cells, plasma cells, macrophages, neutrophils, rodlet cells B cells, T cells, plasma cells, dendritic cells, macrophages, neutrophils.

Antigen-uptaking cells M-cells?, dendritic cells? M-cells, dendritic cells

B LYMPHOCYTES

B cell subsets IgM+ IgD+; IgM− IgD− IgT+; IgM− IgD+ IgM+ IgD+; IgM− IgD− IgA+; IgM− IgD− IgG+; IgM− IgD+

Secretory Igs IgM, IgT/Z (main mucosal Ig) IgM, IgD, IgG, IgA (main mucosal Ig)

Ig structure IgM tetrameric IgM pentameric

IgT polymeric IgA dimeric/monomeric

Transport Igs to lumen pIgR pIgR, FcRn

J-chain in Igs No Yes

CSR No Yes

Affinity maturation Low High

Phagocytic capacity Yes (ND in mucosa) Yes (ND in mucosa)

Comparison of main features of mucosal-associated tissues and B cells in teleost and mammals.
MALT, mucosal-associated tissues; ILT, inter-brachial lymph tissue; pIgR, polymeric immunoglobulin receptor; FcRn, neonatal Fc receptor; ND, not determined.

any of the immune cells, such as B or T lymphocytes. Moreover,
to date, little is known about the effects of vaccines that target
mucosal surfaces over B-lymphocytes. In this review, we will focus
on the role of B-lymphocytes and the effect of both, stress and
vaccines, on B-cell response at the mucosa surface.

B-Lymphocytes and Mucosal Immunity
in Teleost

B-lymphocytes are present in all vertebrates and their function as
antibody-secreting cells (ASC) in adaptive immunity is conserved
throughout evolution (16) (Table 1). Interestingly, B cells have
innate features, such as phagocytic capability, natural antibodies
secretion, or cytokine production, that are also conserved (17).
Although agnathan vertebrates, such as lampreys, have a homol-
ogous cell type called VLR-B cells (18), gnathostome fish are
the first animals in evolution to express immunoglobulins (Igs)
and to posses B cells (16). The main function of B cells is the
production of Ig, also called antibodies. Igs are constituted by
heavy and light chains, and present a constant region, common
to all the Igs of the same isotype and is made up by heavy chains,
and one variable region which gives them the specificity, and
it is made up by heavy and light chains. Teleosts express three
different Ig heavy chains, capable of generating three Ig isotypes
expressed on the B-cell surface: IgM, IgT (also called IgZ in
some species), and IgD. Although different isotypes are present,
teleosts lack class switch recombination (CSR) (19). Interestingly,
the main enzyme implicated in this process, activation-induced
cytidine deaminase (AID), is expressed in teleosts and even is
capable of leading CSR process when transferred into a mouse
(20). Thus, the different isotypes are produced due to the structure
of rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio
rerio) heavy chain locus, which implies that the expression of
IgM isotype blocks the generation of IgT/IgZ transcripts, and

vice versa (21, 22). This has been confirmed in rainbow trout (23,
24) and zebrafish (25), which have a lineage of B cells uniquely
expressing IgT or IgZ, respectively. In carp (Cyprinus carpio L.),
two IgZ have been identified recently, IgZ1 and IgZ2, which have
a different expression in systemic or mucosal compartments (26).
This situation is very similar to that in humans, where two IgA are
present and their expression vary depending on the tissue (27).
Teleosts present two populations of IgD+ B cells: (1) IgD+/IgM−

B cells, observed only in channel catfish (Ictalurus punctatus)
(28) and European rainbow trout (29); (2) IgD+/IgM+ B cells,
which have been described in all teleost species analyzed thus far.
Interestingly, in American rainbow trout IgD+/IgM− population
has not been described so far (30).

Out of these three immunoglobulin isotypes, secreted IgM
and IgT are present in rainbow trout mucosal surfaces. IgM is
the most common immunoglobulin in serum and mucus and
the key player in systemic immune responses, whereas IgT is the
main responder in mucosal surfaces (31). However, in some fish
species, such as the channel catfish, IgT is not present, and IgM
is the main responder in both compartments which seem to be
integrated (32–34). Igs play a major role in adaptive immunity
by recognizing the pathogen and helping with its destruction
through various processes, such as complement activation and
phagocytosis. Teleost Igs are secreted mainly by plasmablasts and
plasma cells, which are located mainly within the head kidney
(35). The main differences between these ASC are that plas-
mablasts can proliferate and they present low antibody secretion,
while plasma cells are in a non-replicative state, they are terminally
differentiated and posses a high capacity of antibody secretion
(35). Characterization of these ASC populations, as well as early
stages of B-cell development, has been performed using specific
markers for B cells, such as HC mu, Pax5, or RAG1 (36, 37). Also,
these ASC populations have been separated in several trout tissues
thanks to their different size and density (38) and to their distinct
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expression of IgM on their surface (36). Teleost plasma cells can
be divided into short-lived plasma cells (SLPC) and long-lived
plasma cells (LLPC), which differ in their life span but also in
their distribution, as LLPC are located only in the head kidney
(39). Thus, it seems clear that teleost have all the components for
mounting an efficient adaptive responsemediated byB cells. How-
ever, the immunological memory in teleost is a matter of dispute.
The fact that antibody response in fish shows poor anamnestic
properties, meaning that antibody affinity increases marginally,
compared to the logarithmic increases observed inmammals (40);
also that very few studies about clonal expansion in teleost have
been published; and finally that fish adaptive response is slower
than in mammals and specific titers are not normally detected in
fish until the third or fourth week after immunization (35), lead
some authors to consider the idea of innate memory more feasible
than adaptive memory in secondary response in teleost (41, 42).
Nevertheless, affinity maturation in teleost B cells exists (43), as
well as clonal expansion (44), and teleost are protected thanks to
memory responses for several years post immunization (34), thus
suggesting that both memories coexist in teleost fish and both
contribute to fish protection against pathogens.

Apart from this adaptive role, B-lymphocytes have several
innate capacities, such as phagocytosis, production of natural
antibodies, and cytokine secretion. Althoughmammalian and fish
B-lymphocytes share these innate capabilities, their importance
in organism defense may not be comparable in some cases. For
instance, whereas in mammals phagocytic B cells are confined
to the peritoneal cavity and liver and represent a 5–15% of all B
cells in these tissues (19, 45), in teleost fish, phagocytic B cells are
present in all systemic compartments, such as blood, spleen, and
head-kidney, and represent 60% of all B cells (23, 46). Thus, the
innate role of B cells in fish seems to bemuchmore important than
that inmammals. It is worthy to note that dendritic cells are one of
the main cells in the innate response in mammals, linking innate
and adaptive immunity (47). The role of dendritic cells is vital for
mammalian immune responses and their interaction with T cells
is necessary for the beginning of the adaptive immune response.
However, in teleost the existence of dendritic cells has been
scarcely described and their function and location are still not well
understood (48, 49). Thus, in contrast to B cells, fish dendritic cells
are not as numerous as their mammalian counterparts and, so far,
have not been described in all tissues. Hence, it is very tempting
to hypothesize that fish B cells are carrying out part of the roles
that dendritic cells perform in mammals. Indeed, the function of
B-lymphocytes as a bridge between innate and adaptive responses
might be predominant in teleost fish (50). As a result, the role
of B cells in vaccination would be connected not only to the
adaptive response as specific antibody-producing cells, but also
would be key for the initial innate response. Consequently, the
innate functions of B cells, which so far have been scarcely studied
after a vaccination/infection process, will help to a great extent to
the success of the vaccine.

Response to vaccines or challenges in fish, as well as in the
rest of vertebrates, involves central and local responses. Thus, the
head kidney, thymus, and spleen are the central immune organs
responsible for leukocyte production, proliferation of T cells,
and antigen capture in systemic compartment, respectively. Local

response takes place in all tissues where immune defense based
in innate immune factors, such as lysozyme, lectins, proteases or
complement proteins, and cellular and humoral responses (anti-
bodies) helpsmaintain the tissues free from pathogens. Therefore,
both responses, central and local, are activated when facing an
outbreak, but local responses can be working in a particular sur-
face/tissuewithout yet an activation of the central organs.Mucosal
responses in fish are an example of these independent local
responses. Thus, mucosal surfaces are continuously acquiring
information from the environment, processing it, and adapting
themselves tomaintain homeostasis necessary for animal survival.
Any disruption in this homeostasis, i.e., a stress situation, will
lead to an instability that could endanger animal health. The
functions of these mucosal surfaces are various, from nutrient
uptake to gas exchange or as immunological barriers (31, 51, 52).
As immunological sites,mucosae are capable ofmounting a robust
immune response after a pathogen challenge in all vertebrates
and some invertebrates too (31, 53–56). Despite the enormous
morphological differences between species in vertebrates, all of
them posses mucosal-associated lymphoid tissues (MALT) that
control the immune response at mucosal site (Table 1). In teleost,
fourMALTs have been described: nose-associated lymphoid tissue
(NALT), skin-associated lymphoid tissue (SALT), gill-associated
lymphoid tissue (GIALT), and gut-associated lymphoid tissue
(GALT). Common features of these four tissues would be: (1) the
lack of organized lymphoid structures, such as lymphoid nodes
or germinal centers, that lead to a disperse location of leukocytes;
(2) the presence of secretory Igs in the mucus, which are trans-
ported into the lumen through a polymeric Ig receptor (pIgR);
(3) the presence of a specialized mucosal immunoglobulin class,
IgT/Z; and 4) the presence of commensal bacteria, some of them
coated by Igs.

Gut-Associated Lymphoid Tissue
Mucus layer, which acts as a physical and chemical barrier, pro-
tects gut epithelium and therefore behaves as an important mech-
anism of innate defense that maintains tissue homeostasis (55,
57). Mucus is permeable to some macromolecules, i.e., the ones
necessary for digestion, but also acts as an effective barrier to
microorganisms (58). Its composition varies slightly amongst the
different teleost species but is formed mostly by water (95%) and
some glycoproteins, mainly mucins, which give the characteristic
viscosity to the mucus. Other molecules are present in small
quantities, including innate and adaptive immune factors, such as
antimicrobial molecules or secretory Igs (9, 31, 55). Changes in
mucins composition alter mucus structure and can compromise
epithelium stability. Although their great importance, very few
intestinal mucins have been described in teleost and when done,
only at expression level (59).

Teleost gut contains two main populations of immune cells:
(1) lamina propria leukocytes (LPLs), which include a variety of
resident immune cells, such as granulocytes, macrophages, lym-
phocytes, and plasma cells; (2) intraepithelial lymphocytes (IELs),
composed by T cells and some B cells located among epithelial
cells. These immune cells together with epithelial cells, goblet
cells, and neuroendocrine cells produce and regulate gut immune
responses.
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In the intestine of rainbow trout, two populations of B cells, dif-
fering in the expression of IgM or IgT on their surface, have been
described (23, 60). They are both located in the lamina propria
and can infiltrate the epithelium after infection (23) or vaccination
(61). As resident cells, IgT+ is the dominant population of B cells
(54% of the total gut B cells) and are themain responders against a
gut parasite, Ceratomyxa shasta, in which response mucosal IgM
is not implicated (23). Thus, specific IgT antibodies against this
parasite have been obtained in gut mucus, while IgM titers were
restricted to serum (62). Thus, IgT, same than IgA in mammals,
is the main responder in gut and, as mentioned above, the first
specialized mucosal immunoglobulin in vertebrates. However,
immunity against viral infection and immune response after vac-
cination against virus in intestine seem to implicate IgM as well
(61). Although IgT is the main B-cell subset in intestine of several
teleost, the presence of resident IgT-plasma cells in teleost gut has
not been demonstrated so far. On the contrary, IgM-plasma cells
have been identified in the intestine of several teleost, including
rainbow trout (63) and carp (62, 64). In fish lacking IgT, such as
catfish, resident B cell has been described in all the segment of
intestine (65). No IgD+/IgM− B cells or secreted IgD has been
observed in intestine or gut secretions so far.

Skin-Associated Lymphoid Tissue
The skin is the largest mucosal tissue in teleost, and its basic
structure is similar in all species, although some differences exist,
like the catfish skin, which presents no scales. Similar to that in
mammals, teleost skin is constituted by an epidermis and a der-
mis, although two important differences exist compared to mam-
malian skin: (1) the outermost layer of the skin is not keratinized
in fish; (2) the presence of mucus-secreting cells in the epidermis
of fish. These two features characterize teleost skin as a mucosal
tissue. Some of the molecules that confer antimicrobial properties
to the skinmucus are lysozyme, complement components, lectins,
proteolytic enzymes, and Igs (66). So far, secreted IgM and IgT
have been described in mucosal skin secretions in fish (24, 32),
while presence of IgD has not been reported. IgM is the most
abundant immunoglobulin in skin mucus, although, when IgT
is present, IgT/IgM ratio is much higher in skin mucus than in
serum. Microbiota in the skin is coated by Igs, with IgT showing
higher ability to coat bacteria compared to IgM (24). Interestingly,
Ig concentration in skin is different depending on the area of the
body. For example, Ig levels in channel catfish are higher in lateral
skin than in the fins (67). As described in gut, when present, IgT+

B cells represent the main B-cell subset in the skin and, together
with IgM+ B cells, are located in the epidermis in trout (24).
IgM+ B cells were previously observed in the epidermis of carp
and spotted wolfish (Anarhichas minor) (68). Existence of plasma
cells has been reported in channel catfish skin (33) and recently
suggested in trout (24).

In skin, B-cells response in trout against the parasite Ichthyoph-
thirius multifiliis (Ich) is very similar to that described before in
gut. Thus, an important increment in IgT+ B cells and that in
secretory IgT levels were detected in skin mucus. Also, specific
antibodies against parasite, mainly IgT, were observed in mucosal
secretion of skin (24). Interestingly, in this article, some IgT titers
were observed in serum, indicating a possible production of IgT

outside the skin or a role of specific IgT in non-mucosal tissues
(24). In channel catfish, IgM titers have been measured in skin
after immunization against the same protozoan parasite (32, 69).
More importantly, Xu et al. proved the presence of ASC for IgM
in catfish skin by using skin explants experiments (69).

Gill-Associated Lymphoid Tissue
Gills are in charge of oxygen exchange with the environment.
Their structure is very similar to the one described for alveolar sacs
in mammals. However, the number of pathogens and antigens in
the water is higher than that found in the air, and gills are exposed
continuously to them. Interestingly, an accumulation of immune
cells has been described in trout gills in the interbrachial lymphoid
tissue (ILT) (70, 71). This exceptional aggregation, resembling to
a lymph node, is only present in gills, while in the rest of trout
MALTs, no aggregations have been observed so far. This lymphoid
tissue is constituted mainly by T cells and some scattered B cells
(71). Lymph nodes in mammals are essential for mounting a
rapid and precise immune response, thus, the fact that a similar
structure have been observed in gills indicate the importance of
this tissue in fish protection and the necessity of a sophisticated
immune response to avoid pathogen entry. Each side of the animal
has four arches that develop into a primary lamellae and secondary
lamellae. Presence of B cells in gills has been described in naïve
fish and after infection. As described in mammalian respiratory
tract (72), gills in trout and catfish present an IgM−IgD+ B-cell
population (28–30). The roles of this population and secreted IgD
are still unknown in teleost or mammals.

As specialized mucosal immunoglobulin implicated in gut and
skin immune response, IgT acts as main responder in gills too
(73). IgT+ B cells are the main population of B cells in gills
and IgT constitutes the main humoral component after infection.
I. multifiliis (Ich) infection produces an increase in IgT+ B-cell
number, as well as an increment in total protein level. Specific
IgT against Ich was also observed in gill mucus but not in serum
(73). Interestingly, IgT and IgM binding to Ich trophons have been
observed in the gills as early as 2 h post-infection, indicating the
possible role of Igs in the innate response against parasites (74).
Also specific-IgM titers have been observed in trout gills after
bacterial infection (75).

Nose-Associated Lymphoid Tissue
Nasopharynx-associated tissue is considered the first line of
defense to airborne pathogens in mammals, and it has also been
described in trout (76). Structure of NALT is similar to that
in mammals, apart from the fact that there are no organized
structures. As in the other teleost MALTs, IgT seems to represent
the main immunoglobulin in nasal mucosa, as it covers a large
number of bacteria (76). Interestingly, after nasal vaccination, IgM
is the main responder, although it has been measured only at
expression level (77).

Mucosal Vaccination and B-Cell Response

As first line of defense, MALTs are an important target for vaccine
development and formulation. Although formulation of fish vac-
cines has improved enormously in the last decade, it is imperative
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to design novel vaccinationmethods able to stimulate the immune
response in systemic and mucosal compartments and to protect
fish from threats to keep animal welfare. Analyses of vaccine
success have been focused on gene expression analysis, post-
challenge accumulative mortality, and, in some cases, pathogen
loadmeasurement. Levels of specific antibodies against pathogens
in systemic compartments have also been widely used as indica-
tors of successful immune response after vaccination. However,
so far, few studies have focused on the evaluation of vaccines
and their effect on the immune response in mucosa, including
B-cell populations and specific antibody responses. In fish, the
immunization routes used are intraperitoneal and intramuscular
(IM) as systemic routes, and immersion (mainly bath), oral, and
nasal, as mucosal routes.

Oral vaccines present some downsides, such as that they may
induce tolerance (78) and that they need to be protected to escape
digestion. However, and despite these limitations, fish oral vac-
cination offers important advantages when compared to other
vaccination routes. Thus, oral vaccination is simple, effortless,
cost-effective, and it is a stress-free immunization method. Based
on this, several efforts have beenmade to test several oral vaccines
to exploit the potential of mucosa to mount an effective immune
response against a pathogen without the side effect of provoking
stress in fish.

Studies in oral vaccines have been focused on the evaluation of
the fish immune response at serological level. Thus, in rainbow
trout, oral vaccination with Lactobacillus casei (79) and a VP2
DNA vaccine (80) against IPNV, showed an increment in serum
IgM titer with neutralizing activity and viral load reduction. Apart
from serum, which is a fundamental indicator of the systemic
response, mucosal responses have beenmeasured in some studies.
Thus, an increase in IgM+ and IgT+ IELs at pyloric caeca has been
observed after the use of an alginate encapsulated DNA vaccine
against IPNV, thus supporting the relevance of B cells in the
mucosal response after vaccination (61). However, whether this
cellular increment is produced by an infiltration of B cells from
blood or by an in situ cell proliferation is still unknown. Regarding
this B-cell migration mechanism, few but promising advances
have been done about the recruitment of B cells in mucosa. In
sea bass (Dicentrarchus labrax, L.), it has been described that
the CCL25/CCR9 ligand/receptor system appears to be a cru-
cial step in IEL homing to the hindgut epithelium to provide
protection at mucosal level (81), while in rainbow trout it was
demonstrated that several chemokines, such asCK9orCK10, have
chemotactic capacities for B-cell recruitment to the intestine after
immunization (80).

Non-conventional oral vaccine strategies have been developed
but the consequences on the mucosa surface still need to be
elucidated. For example, one vaccination model using a viral
G protein linked to a gut adhesion molecule (LTB) in potato
tubers was evaluated in carp, evoking a systemic immune response
(82). Similar results were observed in Rock bream (Oplegnathus
fasciatus) when administering an iridovirus antigen expressed in
transgenic rice callus (83).

Taken together, it seems that the oral vaccine promotes the
activation of the immune system, including B cells recruitment
and humoral response mediated by IgM and IgT.

Recently, the nasal route has been reported as a new vac-
cine administration method to promote the mucosal immunity,
showing a clear immune response by histological analysis (77).
Despite these advances, more knowledge should be generated to
understand the mechanisms underlying the immune response in
fish NALT. Although nasal immunization is capable of protecting
fish against pathogens, its application is doubtful in aquacul-
ture industry due to its difficulty of administration. However,
during immersion/bath vaccination, antigens enter through all
four mucosal sites and, therefore, NALT is also implicated in the
vaccination success. Thus, immersion vaccination would be the
best administration route to inducemucosal responses, as it would
likely produce a broader mucosal response. Hence, regarding gills
response, immersion vaccination using killed bacteria in yellow
croaker (Pseudosciaena crocea) and sea bass produces a drastic
increment in ASC in gills (84, 85). Interestingly, in yellow croaker,
the presence of specific IgM ASCs 7 days after vaccination was
detected only after immersion vaccination, but not after oral or
intraperitoneal injection (85). In concordance with these data,
another report in European eel showed specific IgM titers in
gills shortly after vaccination by immersion against Vibrio vul-
nificus, with a peak at day 3 after vaccine administration (86). As
aforementioned, B cells present innate features that can influence
immune response after vaccination. Thus, whether this IgM was
specific or a result of natural antibodies secretion with polyclonal
qualities was not clarified.

IgM responses in skin after immersion vaccination have been
scarcely described. In many cases immunization was not able to
induce such responses and, when present, specificity was low (31).
Early studieswith single antigens, such as dinitrophenylated-horse
serum albumin (DNP), demonstrated the presence of specific
antibodies in serum and skin mucus after bath vaccination (87).
Similar data were obtained in European eel after vaccination with
V. vulnificus by different routes, including bath (88). Specific skin
IgM was described regardless the delivery route.

It seems obvious that the route of vaccination will determine
the location of the primary immune response, and that a dispar-
ity in the response will be observed when the same antigen is
administered by more than one route. Thus, differences between
oral and IM injection were observed in carp when a supernatant
fraction of a Vibrio anguillarum bacterin was encapsulated in
alginate microparticles and administered as oral vaccine in food,
observing that mucosal IgM+ plasma cells appeared to be present
in gut and gills after oral vaccination and absent after IM injection
in carp (64). It has recently been shown in rainbow trout that
IgM level in serum, gill, and skin mucus increased significantly
by 28 days after ip immunization with an attenuated Flavobac-
terium psychrophilum strain in rainbow trout, while no significant
increase in IgM level was observed when fish were immunized by
anal intubation or immersion (75). In the same study, expression
levels of secretory IgD and IgT were significantly upregulated in
gills of fish immunized by immersion, and in intestine of fish
immunized by anal intubation route (75), reinforcing the role of
IgT specialized in mucosal immunity (23, 73) and proposing IgD
as a candidate to protect fish at mucosal surfaces. However, as
aforementioned, the role of IgD in the mucosal response is still
unknown. Another example is the vaccination of grouper larvae
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(Epinephelus coioides) with inactivated betanodavirus adminis-
tered by bath and oral route, which showed an increased IgM
gene expression in all analyzed tissues regardless of the admin-
istration route whereas IgT expression was dependent on the
route (89). Thus, IgT increased in skin and gills but remained
unchanged in gut after bath immunization, while an increment
in its expression was detected in skin and gut but not in gills after
oral administration.

Although antibody responses are recognized as excellent mark-
ers for vaccine success, an increase in IgM after immunization
is not always associated with immune protection. Thus, a live
attenuated V. anguillarum vaccine candidate was administered
by immersion to zebrafish and observed that IgM serum levels
against virulent V. anguillarum in the vaccinated group did not
rise significantly following infection while in the non-vaccinated
group the IgM response was increased. Interestingly, the gene
expression in spleen of pro-inflammatory cytokine IL-1β and IL-
8, togetherwith the anti-inflammatory cytokine IL-10were upreg-
ulated in non-vaccinated fish when compared to vaccinated fish,
suggesting that the vaccine controlled the inflammatory response
triggered by the infection (90). Therefore, immune-associated
gene expression analysis is relevant to understand the immune
protection mechanism conferred by vaccines.

Mucosal Immunity, B Cells, and Stress

A major problem in aquaculture is the overpopulation of the fish
farms that may lead to an important increase in the stress level
of the animals. Despite the aforementioned advances, which have
been made in the knowledge of mucosal immunity in recent years
(23, 24, 78), the effects of stress at mucosal level in fish have been
poorly described. Thus, the consequences of different stressors on
the immune responses have been shown mainly in the systemic
compartment, i.e., blood, head kidney, spleen, or liver. These
reports have shown that stress affects directly the fish immune
system due to immunosuppression and thus exposing fish to an
increased susceptibility to disease (6, 91).

In gut is where we can find most data regarding the influence
of stress in the immune system. Gut epithelia homeostasis is vital
for animal survival. Stress produced by high density rearing in
Atlantic salmon (Salmo salar) leads to an alteration in intestinal
mucosa permeability which compromises animal welfare (92).
Also, stress produced by chronic hypoxia in salmon produces an
alteration in intestinal homeostasis, altering GALT responses by
reducing, among others, IL-1β and IFN-γ expression, together
with an alteration in IL-10 production and in antiviral responses
(93, 94). This reduction in antiviral response due to cortisol in
intestine could lead to an increase in IPNV infection in Atlantic
salmon (95). Also, in a study at proteomic level in the digestive
tract in rainbow trout, it was observed that short-term starvation
resulted in a decrease in the concentration of serine protease
inhibitors, which protect intestinal epithelia from enzymatic dam-
age, the concentration of leukocyte elastase inhibitor (LEI) and
transferrin in the anterior intestinal epithelia that would increase
susceptibility of epithelial cells to enzymatic damage from ser-
ine proteases (96). Therefore, the stress condition promotes an
overall decrease in the concentration of inhibitors that protect

epithelia from enzymatic damage and compromises the ability of
the intestinal epithelium to avoid bacterial infection in the anterior
intestine of rainbow trout. In this frame, one fundamental element
responsible for preserving the integrity of the mucosal barrier are
the tight junctions (TJ), which correspond to the apical most junc-
tional complex in many types of epithelial and endothelial cells.
Variations in these TJ were observed after acute stress in rainbow
trout gastrointestinal tract, where an ultrastructural study showed
a widening of the TJ between enterocytes in the midgut (97).
Recently, it has been reported that stress due to transportation
affects the TJ-associated proteins expression pattern, observing
an up-regulation of occludin and claudin in rainbow trout skin
and its association with an effective alternative to protect the
epithelial barrier against the increased skin-associated bacterial
number in post-transport stressed fish (98). The modulation of
gene expression of TJ-associated proteins has been also reported
in gills, where some claudin isoforms in puffer fish were upreg-
ulated in response to cortisol treatment in vitro (99). Therefore,
these data suggest a correlation between stress, cortisol level, TJ
gene expression, and its association with an effective alternative to
protect the epithelial barrier. Thus, certain diseases initiated at the
mucosal surfaces, might promote an increase of cortisol and the
expression of tight-junction genes as means of response against
pathogens.

Another set of actors in the epithelial cell integrity are mucins,
O-glycosylated glycoproteins present on the apex of all wet-
surfaced epithelia. Characterization of mucin gene expression at
mucosal level has been reported in gilthead seabream (Sparus
aurata). When infected with a myxozoan parasite, Enteromyxum
leei, an overall decrease in mucin gene mRNA levels was evident
at the posterior intestinal segment, suggesting that the mucins
alteration may affect the intestine functional integrity (59).

Very importantly, fish exposed to stress are affected by changes
in the intestinal microbiota, both in quantity and also diversity.
Thus, salmonidmicrobiota is altered by handling stress, a fact that
can affect immune responses against pathogens and compromise
gut homeostasis (100). Elucidation of the effect of stressors on
bacterial populations in mucosal surfaces is relevant, because
stress may cause the elimination of existing microbiota resulting
in an imbalance of functional populations, and also due to the
reduction of protecting mucus.

Several studies have also focused on the fish skinmucosa as one
of the first line of defense against pathogen, which, as mentioned
above, contains innate immune factors such as lectins, proteases,
and antibacterial agents on its mucus (101–103). Interestingly,
Vatsos and collaborators showed an increase in the number of
mucus-producing cells in stressed sea bass skin (104). This evi-
dence further supports the idea that the fish mucosal barrier
is an important sensor for monitoring stress. Similar results
were obtained in rainbow trout fed with low doses of cortisol,
which presented a surprisingly reduction in the number of par-
asites, Argulus japonicus, suggesting that the increment of mucus-
producing cells could be one of the reasons for this reduction
(105). In the light of these data, a very interesting hypothesis is that
low levels of cortisol might be beneficial in rejecting parasites and
possibly other pathogens. Similar to what was described in intes-
tine, acute stress by hypoxia or overcrowding, produced changes
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in bacteria communities in brook charr (Salvelinus fontinalis)
skin, increasing the amount of pathological bacteria among those
communities (106). At immunological level, cortisol is capa-
ble of suppressing the expression of several genes related to
antigen presentation, as well as downregulating B- and T-cell
activation, inflammatory responses, and antiviral responses in
salmon skin (5).

Few studies have been published regarding the effect of stres-
sors on gills in fish. Several of these works have focused in the
adaptation of fish to marine water, as it occurs with salmonids.
Thus, cortisol acts in synergy with other hormones to increase
seawater tolerance, through an upregulation of cortisol receptors
in gills, an increase in Na+/K+-ATPase activity in this organ and
a regulation of gill chloride cells (107–110). Also environmental
stressors, such as temperature changes, have been illustrated that
reduce IgM expression in gills (111). The effect of stressors or
exogenous cortisol over NALT secretions or cell populations has
not been studied so far.

It seems clear that new efforts must be made to understand the
effect of stress upon fish mucosal immunity. These new insights
will allowus to determine the factors that are involved in situations
in which both factors, stress and immunity, are crucial to ensure
the effectiveness of treatments to improve the health status in fish,
such as vaccines.

Regarding B cells, several studies performed in fish have
focused on the effect of stress in B-cell response at systemic
compartment. Thus, it has been observed that stress reduces the
number of circulating B-lymphocytes, and decreases the antibody
response after immunization in vivo (112). Also, a reduction
in IgM levels and an increased susceptibility to nodavirus was
reported together with high plasma cortisol level in sea bass
stressed by water temperature variation (13), indicating that the
stress induces a suppression effect on the fish immune system
likely due to the increased levels of cortisol. As the main hor-
mone produced in stress situations in fish, studies in vivo and
in vitro testing the effect of cortisol over the immune system
have been widely used as model to understand the stress pro-
cess in teleosts. In carp, cortisol administration induces B-cell
apoptosis and reduces their proliferation (10, 113). According
to this, a reduction in immunoglobulin secretion, IgM mRNA
transcription and also ASC number after cortisol treatment
have been described in rainbow trout (114), winter flounder
(Pseudopleuronectes americanus) (115), fugu (Takifugu rubripes)
(116), and carp (117). Interestingly, cortisol increment in carp
after temperature-related stress does not reduce antibody pro-
duction or ASC in the animal (118). These last data indicate
that, although cortisol is the main hormone implicated in stress,
immune regulation by neuroendocrine system is more complex
than just cortisol release and signaling through its receptors, and
other components participate to control immune system in such
situations.

In mucosal surfaces, very few studies have been published
describing the effect of stress over mucosal B cells and most of
them at expression level. Thus, environmental stressors, such as
temperature changes, have been illustrated to reduce IgM expres-
sion in gills in grouper (111). In another study, cortisol has been
described that reduces the expression of genes related to B-cell
activation in trout skin (5).

Importantly, as a mucosal immunoglobulin in mammals, sIgA
is used as a marker for stress situations, and its levels varies in
mucosal surfaces depending of the stress (119–121). Whether
sIgT/Z, as mucosal specialized Igs in teleost, alter their secre-
tion after stress and could be a marker for stress in fish is still
unknown.

Concluding Remarks

As we have discussed above, the knowledge on mucosal responses
in teleosts at many levels, including endocrinological and
immunological, is far from clarifying the mechanisms implicated
in themaintenance of homeostasis at mucosal sites. Regarding the
endocrine response, the existence of mucosal endocrine cells has
been described in gut (9), gills (122), and skin (123), and cortisol
has been defined as component of skin and gutmucus (124). Thus,
endocrine contribution is, without a doubt, relevant for several
of the processes that take part in the local response at mucosal
tissues. As mentioned before, all mucosal tissues described in
fish posses MALT that controls immune response. Although in
the last years important advances have been made in respect to
mucosal immunity such as the detection of salmonid ILT (70),
the discovery of IgT as mucosal immunoglobulin (23) or the
identification of a functional NALT (76), links between immune
and endocrine systems in gut, skin, gills, or nose have still not
been unraveled. Even in systemic compartment where it is widely
described that stress influences immune response (6), our infor-
mation is incomplete, asmost of the data concerning stress focuses
in gene expression regulation and a very limited number of studies
regarding cellular response or changes at protein level after a stress
situation have been published. Thus, it seems clear that interrenal
cells are the main cortisol producers, but it is still not known
whether these cells capable of generating cortisol are only present
in the head kidney or also, although unlikely, in other peripheral
tissues. This possibility of local synthesis of cortisol at mucosal
sites would have a clear parallelism with the immune system,
which is capable of mounting local responses after a stimulus.
In this vein, the concept of common mucosal immune system
(CMIS), which suggests that an initial response in one mucosal
place will generate similar response in the other mucosal tissues,
is believed to happen in fish but it is not yet demonstrated in all
mucosae (31). Hence, it is tempting to hypothesize the existence of
a common endocrine system (CMES), term that would describe
the local stress responses in fish in a particular mucosal surface
which would affect the other mucosal tissues independently on
the activation of the central organs. However, asmentioned above,
the production of cortisol in gut, skin, gills, or nose is highly
improbable, therefore other messenger molecules could be pro-
duced in onemucosa and influence the response in othermucosae
(Figure 1). Thus, more in depth studies are needed to determine
how stress affects the mucosa and the cells that conform it, and
to show the presence or absence of the CMES and its effect over
the CMIS.
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