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Systemic lupus erythematosus (SLE) is marked by a T helper (Th) cell-dependent B cell
hyperresponsiveness, with frequent germinal center reactions, and gammaglobulinemia.
A feature of SLE is the finding of IgG autoantibodies specific for dsDNA. The specificity of
the Th cells that drive the expansion of anti-dsDNA B cells is unresolved. However, anti-
microbial, anti-histone, and anti-idiotype Th cell responses have been hypothesized to
play a role. It has been entirely unclear if these seemingly disparate Th cell responses and
hypotheses could be related or unified. Here, we describe that H chain CDR3 idiotypes
from IgG™ B cells of lupus mice have sequence similarities with both microbial and self
peptides. Matched sequences were more frequent within the mutated CDR3 repertoire
and when sequences were derived from lupus mice with expanded anti-dsDNA B cells.
Analyses of histone sequences showed that particular histone peptides were similar to
VDJ junctions. Moreover, lupus mice had Th cell responses toward histone peptides
similar to anti-dsDNA CDRS3 sequences. The results suggest that Th cells in lupus may
have multiple cross-reactive specificities linked to the IgVH CDRS3 Id-peptide sequences
as well as similar DNA-associated protein matifs.

Keywords: molecular mimicry, systemic lupus erythematosus, idiotypes, B cells, Th cells, B cell receptor,
complementarity determining region 3, antigen presentation

Introduction

The initiation of autoimmune responses is associated with infection and the development of a
gradually evolving T cell and B cell autoreactive response toward self-proteins. Molecular mimicry is
the concept that similarities of microbial peptides to self-peptides can allow expansion of microbial
specific T cells that can cross react to similar self-peptides (1, 2). Molecular mimicry has been
suggested to play a part in diverse autoimmune diseases such as multiple sclerosis, rheumatoid
arthritis, diabetes, stromal keratitis, myocarditis, and inflammatory bowel disease (1, 2). It was
originally believed that TCR binding to peptide:MHC (pMHC) was dependent upon stringent
requirements for amino acid (aa) identity of the T cell contact residues. It is increasingly clear that
degeneracy in both the TCR (3, 4) and MHC (5) peptide-binding motifs as well as interchangeable
aa with similar properties in the TCR-exposed aa motifs (4, 6, 7) reduce this sequence-specific
requirement (1).
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Anti-dsDNA B cells and high titers of nephrotoxic anti-dsDNA
autoantibodies are hallmarks of systemic lupus erythematosus
(SLE) (8). Molecular mimicry has not been studied extensively
in SLE, but a role for Th cells is well-established; it is clear that
the expansion of autoreactive B cell requires pathogenic Th cells
(8-11). However, the antigen specificity of the Th cells has been
unclear. Candidate antigens include peptides derived from nucleic
acid-associated proteins such as small nuclear riboprotein (12),
histones (13), or similar proteins derived from bacteria or viruses
(14). Hence, anti-DNA/RNA B cells could bind and endocytose
nucleic acids as well as DNA- or RNA-associated proteins. Th
cells that are specific for peptides derived from such self pro-
teins or similar peptides derived from pathogens could thereafter
collaborate with the B cells.

Another candidate for Th cell antigen is variable regions of
antibody;, i.e., V region idiotypes, Id. Th cells can have Id:MHC-
specific TCR (15-33). It has been demonstrated that anti-dsDNA
B cells can present Id:MHC class II to Id-specific Th cells, undergo
the germinal center reaction, differentiate, secrete autoantibodies,
and cause vasculitis and nephritis (28, 30, 31, 33). Moreover,
Id-specific Th cell responses increased with disease severity in
lupus mice, and disease was aggravated by injection of Id-peptide
analogs (22).

We here hypothesize that these disparate suggestions for Th
cell antigen in lupus are examples drawn from a network of
peptide mimics. RNA/DNA-associated proteins and anti-dsDNA
antibodies both have positively charged (cationic) nucleotide-
binding motifs. Thus, Th cells that are specific for cationic micro-
bial peptides may cross react with B cells presenting cationic self
peptides or Id peptides from anti-DNA BCR. If so, Th cells could
support B cells that present such peptide mimics thereby allowing
autoantibody secretion.

We therefore aimed to analyze if the seemingly dissimilar Th
cell specificities for cationic CDR3 idiotypes and cationic DNA-
binding peptides could constitute networks of molecular mimics
for Th cells in SLE. We chose to compare heavy chain junctions
(IgVH CDR3 peptides) from mice with lupus with proteomes
from microbes and mouse. The CDR3 of the heavy chain has
the highest potential for novel peptides, both in terms of N
region diversity (V-N1-D-N2-J) as well as the option of alternate
reading frames of the D gene segment, and as a site for mutations.

We first compared IgVH CDR3 idiotypes from lupus mice with
bacterial proteomes, thereafter viral proteins and self proteins.
Using bioinformatics analyses, we found a surprisingly high rate
of matches between CDR3 sequences and microbial proteomes
as well as with self proteins, including histones. We also found
that mice suffering from Id-driven lupus (with high levels of
anti-dsDNA responses) developed Th cell responses toward anti-
dsDNA mAbs with CDR3 sequences that resembled histones,
suggesting epitope spreading involving cationic peptide mimics
including idiotypes and self proteins.

Materials and Methods
Mice

Mice were transgenic for both the A2°"° Ig L-chain derived
from the MOPC315 myeloma, as well as a TCR o3 transgene

specific for the Id(12%%)-peptide presented on I-E¢ MHC class
II molecules (30, 31). These double transgenic mice are called
DTG mice herein. The Norwegian Animal Research Authority
approved the experiments.

IgVH Sequence Processing and Analysis

The following control data sets were downloaded from NCBI'.
1) control VH sequences from the BALB/c, retrieved with the
search term “V region immunoglobulin heavy chain BALB
2) Sequences derived from splenic L2-TG mice IgG™ B cells
as deposited (34), 3) neonatal liver B cell IgVH sequences as
deposited (35).

Sequences were analyzed with the IMGT/HighV-QUEST ver-
sion: 1.1.2 or IMGT/HighV-QUEST version: 3.2.30 tools® and
compared to the IMGT/V-QUEST reference directory release:
201310-4 (14 March 2013) (36). IgVH region family identification
and clonality analysis were performed on the statistics module
of IMGT/HighV-QUEST. Statistics were reported only for unique
sequences (36). Translated aa sequences were further analyzed in
Excel (Microsoft), aa in individual positions were counted with
the “countif” function.

Search for Similarities Between CDR3 and
Microbial, Self and Viral Proteomes

Only CDR3 sequences from 11-16 aa length were included
in the analysis, sequences with CDR3 length 11, 12, 13, and
14 included FR3 aa (4, 3, 2, and 1 aa, respectively) so that
15mers (or 16mers) were used. CDR3 sequences were analyzed
on the Basic Local Alignment Search Tool (BLAST) server® with
the Blastp suite (protein-protein BLAST) and search parame-
ters were adjusted to search for a short input sequence. CDR3
peptides were compared to 1) the microbial genomes (BLO-
SUM62 matrix), constituting mostly bacterial species (see list
in the Supplementary Material); 2) the mouse proteome utiliz-
ing the mouse Refseq genome; 3) CDR3 sequences were also
compared to non-redundant databases (GenBank CDS trans-
lations + PDB + SwissProt + PIR + PRF excluding environmen-
tal samples from WGS projects). Resulting sequence matches
were manually screened for sequences of microorganism ori-
gin; 4) sequence analyses were performed against viral databases
at the Viral Bioinformatics Resource Center*. Figures 1 and 2
show analysis of sequences compared to the Herpesviridae pro-
tein database (11,887 sequences; 5,156,626 total letters, database
posted June 14, 2012).

Alignments and matches were performed by registering only
contiguous, i.e. non-gap’-ed sequences. aa equivalence was scored
according to BLAST algorithms.

To analyze similarities between previously published VH CDR3
sequences and histones, we made artificial sequence files where
variously truncated DNA-binding motifs from histones (H1, H2A,
H4) were inserted into sequences starting with the aa CAR and
terminating with four to six aa from FR4. Artificial sequence files

'http://www.ncbi.nlm.nih.gov/nuccore/
*http://www.imgt.org/
*http://blast.ncbi.nlm.nih.gov/Blast.cgi
*http://athena.bioc.uvic.ca/virology-ca-tools/blast/
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FIGURE 1 | Analysis of similarities between CDR3 sequences and the
microbial proteome. (A) IgVH CDRS3 length distribution of sequences from
DTG mice with end stage lupus. (B,C,E-H), Results from Blastp analysis of
15mer CDR3 peptides vs. microbial proteomes and G, Herpesviridae
proteome. (B) DTG IgG IgVH CDR3 peptides vs. microbial proteome:
Numbers of hits with 100% matches with contiguous microbial sequences are
shown (i.e. alignments without gaps). (C) DTG IgG IgVH CDR3 vs. microbial
proteome: Number of hits in the indicated categories of length with
matched/mismatched aa. For example: a 12 aa stretch that includes 10
matches (m) and 2 mismatches (mm) is labeled “12-10m/2 mm.”

(D) Mutations per IgVH sequence (not including CDR3) in the three sequence
data sets: BALB/c, DTG IgG, L2-TG IgG (see Materials and Methods). The
highest frequency of mutations for each data set is normalized to 1 on the Y
axis. (E) Exact matches normalized to the number of input sequences in DTG

A DTG C DTG CDRS3 sequence D F CDR3 vs. bacterial proteome
30 i = 10 - DTG
vs. bacterial proteome =) 8-7m/Tmm+ |
5 8-7m/1mm | E— g os P 0B/ | E——
S20 “amiimm £ 10-9mtmm |
=4 9- 8m/1mm - I < 06
2 10-9m/1mm - I 5 11-10M/1TMM ] | e—
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e :.:.Uu D o 10-8m/2mm | ] E 02 T1-ami2mm | e ——
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Number of hits (100% matches) Number of hits Hits/CDR3 sequence Hits/CDR3 sequence
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11-8m/3mm -_:' DTG Alcohol
12:9M/3MM | — LIV | Aliphatic
10# 102 102 10" 10° 10! Aromatic
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Small
Sulfur

vs. L2-TG IgG data sets. (F) Hits with matches/mismatches [as denoted in (C)]
normalized to the number of input sequences in DTG, L2-TG, and BALB/c
data sets. (G) Hits with matches/mismatches as in (F), compared to
Herpesviridae proteome, normalized to the number of input sequences.

(H) Example of one DTG anti-dsDNA IgvVH CDR3 sequence and similar
microbial sequences. An additional hit from outside the microbial databases is
also shown, from the Leishmania major protozoa. Sequences similarities
between IgVH CDR3 and proteins are shown in the left panels. Amino acids
are color coded according to charge (Negative: D, E; positive: H, K, R), or the
chemical properties of side chains (i.e. amide: N, Q; alcohol: S, T; aliphatic: L,
I, V; aromatic: F, Y, W; small size: A, G; sulfur atom: M, C; or other: P), see key
for color code. In the right panels, differences in the sequences are marked by
aa symbols when such aa do not belong to the same chemical group as the
most frequent aa at the corresponding position of the comparison set.

were screened for matches with Ig sequences. In the Blast analyses,
only contiguous (ungapped) matches were included. Sequence
visualization and generation of similarity and difference plots

were done with the GeneDoc program®.

Th Cell Culture and In vitro Assays
Th cells (5 x 10*/well) from lymph nodes of DTG mice, Id™"
single transgenic mice (L2-TG) and BALB/c were mixed with
2000 Rad-irradiated BALB/c splenocytes (5 x 10°/well) and
16/17mer peptides derived from histones as indicated (see below),
[PH]TdR was added on day 3, proliferation was measured as
counts on a TopCount NXT Scintillation Counter (PerkinElmer)
on day 6.

Th cell lines from lymph nodes of DTG mice, L2-TG mice and
BALB/c were stimulated by irradiated BALB/c splenocytes and
indicated peptides, were restimulated in 10 day cycles, IL-2 was

*http://www.nrbsc.org/gfx/genedoc

first provided on first re-stimulation. Th cell lines from DTG mice
were negative for the clonotype specific mAb GB113 (30, 31) that
stains the transgenic Id-specific TCR and did not respond to Id
(A231%)-peptide.

DNA-binding histone sequences were identified, peptides
were synthesized by Think Peptides. Histone H2A superfamily:
called HisH2A-epitope 1 (epl), 2VGRVHRLLRKGNYAERV*
(17mer), HisH2A-ep2: *LAGNAARDNKKTRIIPR® (17mer).
Histone H4 (HisH4-ep1): **IRRLARRGGVKRISGL™ (16mer).
HisH4-ep2: ’AVTYTEHAKRKTVTAM® (16mer), histone H1
family, HisH1: 7 KNNSRIKLGLKSLVSK®® (16mer).

Results

CDR3 Sequences from Anti-DNA B Cells from
Lupus Mice Show Multiple Similarities with
Microbial Sequences

We have previously described IgVH sequences from lupus prone
mice suffering from Id-driven lupus (33). Utilizing a data set of 176
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A CDR3 sequence vs. bacterial proteome
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FIGURE 2 | Analysis of CDR3 from IgVH of neonatal sequences, role of
somatic mutations. \We compared IgVH CDR3/microorganism matches in
two data sets derived from the highly mutated DTG sequences and neonatal
sequences from L2-TG mice. (A) Exact matches per sequence are shown in
contiguous microbial sequences. (B) Hits matches/mismatches in the
microbial proteome are shown (aa length-matches/mismatches, denoted as
in Figure 1). (C) Matches including mismatches compared to Herpesviridae
proteome, hits normalized to the number of input sequences are shown.

sequences with average of 11 IgVH CDR3 aa (Figure 1A), we com-
pared CDR3 sequences with microbial sequences utilizing Blastp
(microbial sequences include non-redundant data from prokary-
otic genome sequencing projects, but not viruses or eukaryotic
pathogens such as protozoa and fungi), see Materials and Meth-
ods. Because T cells recognize linear epitopes, only contiguous
(i.e. non-gap’-ed) matches were analyzed. With this approach, we
found frequent hits as 7, 8, or 9 contiguous matched aa could be
found in the microbial proteomes (Figure 1B). Moreover, when
analyzing sequences in terms of matches including mismatches,
further hits were found (Figure 1C), for example the DTG IgVH
CDR3 sequences data set had 55 hits in the category 10 contiguous
aa with 9 matches (m), 1 mismatch (mm), denoted 10-9 m/1 mm
in the figures.

CDR3 Sequences from B Cells with a High
Number of VH Mutations are More Likely to
Match Microbial Sequences

We proceeded to compare the IgVH sequences from DTG lupus
mice with sequences derived from IgG™ B cells from single 12%'°
transgenic (L2-TG) mice (34). These mice are healthy and have
B cells expressing the same A2°!> transgene as the current DTG
lupus mice. As another unbiased control we used >2000 BALB/c
sequences (all, deposited and annotated BALB/c sequences, see
Materials and Methods). The DTG mice have a high mutation
rate in the VH gene segment compared to the other two data
sets, but both L2-TG and BALB/c included mutated sequences
(Figure 1D).

Continuing the analysis, we blasted each data set toward the
microbial proteome and normalized the rate of hits to the number
of analyzed input sequences in each of the three groups. We
found that IgVH CDR3 from DTG lupus mice with the highest
rate of VH gene mutations had a 1.4-3.7 increased frequency of
exact matches (DTG vs. L2-TG, Figure 1E). A similar tendency
was seen in sequences with few mismatched aa (Figure 1F),
for example the category with 10 contiguous aa consisting of 9
matches and 1 mismatch (10-9 m/1 mm), had 0.3 hits per IgVH
CDR3 sequence from the DTG data set, 0.04 per IgVH CDR3 in
the sequences from the L2-TG mice and 0.009 per IgVH CDR3
in the sequences from the BALB/c mice. L2-TG IgG sequences
had a higher hit rate than BALB/c sequences, a finding that may
relate to a higher level of marginal zone B cells in the L2-TG
mice (34).

To extend the analysis to viral proteomes, we compared the
IgVH CDR3 data sequence data sets with the proteome from Her-
pesviridae, a large family of DNA viruses (see Materials and Meth-
ods). With this analysis, a similar tendency was seen. For example,
DTG IgVH CDR3 had on average 3.4 hits per IgVH CDR3
sequence to herpes viral proteins in the category of sequences with
7 aa matches and 3 mismatches (10-7 m/3 mm). The correspond-
ing analysis on sequences from BALB/c mice (10-7 m/3 mm)
revealed 0.09 hits per CDR3 sequence (Figure 1G). L2-TG
sequences had no hits in the categories shown.

In addition to the analysis above, 10 DTG anti-dsDNA IgVH
CDR3 sequences were blasted toward all proteome sequences
(i.e. an unrestricted, non-redundant protein sequence Blastp
analysis). Results were manually screened for examples of hits
toward non-bacterial pathogens (e.g. protozoa, fungi). Exam-
ples of the matches between one particular DTG anti-dsDNA
IgVH CDR3 sequence and microbial proteomes can be seen in
Figure 1H. This figure also includes examples of hits in the pro-
teomes of two eukaryotic pathogens, the Leishmania major proto-
zoa (12-10 m/2 mm); and the Paracoccidioides brasiliensis fungus
(10-10 m/0 mm) - these latter results as obtained by Blastp, and
manual screening.

CDR3 Sequences from Neonatal L2-TG Mice
have Reduced Matches with Microbial
Proteomes

The analyses above were based on sequences from adult mice,
including sequences with mutations (see Figure 1D). To analyze
the impact of antigenic selection of the IgVH repertoire, we used a
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data set from neonatal L2-TG mice [(35) see Materials and Meth-
ods] and repeated the microbial Blastp analysis. Although the
IgVH CDR3 sequences from neonatal L2-TG mice demonstrated
hits (i.e. exact matches, Figures 2A-C), this was nevertheless at
a lower frequency than the IgVH CDR3 from DTG lupus mice
(nine aa, 10% of that found in DTG; eight aa, 20%; seven aa,
50%), demonstrating an impact of mutation and diversification
on identification of microbial mimics.

Identification of Matches Between Anti-DNA
CDRS3 and Self Proteins

In the next analysis, we compared the IgVH CDR3 sequences
from DTG lupus mice with the mouse proteome, see Materials
and Methods. We found IgVH CDR3 with five, six, seven matches
as well as examples of hits with mismatches (Figures 3A-C).
As above, the mutated DTG sequences had higher frequency of
matches. The frequencies of matches were 3-30x lower than
those found toward microbial sequences (ratio of hits in mouse
genome/hits in microbial genome. DTG: 28% of hits in the cate-
gory seven aa/0 mm, 3% in eight aa/0 mm; corresponding results
in L2-TG: 12%; 38%) as shown in Figures 3C and 1E.

The IgVH CDR3 sequences in the DTG data set are enriched
for sequences that have anti-dsDNA specificity with a preponder-
ance of positively charged arginines (R) that mediate binding to
DNA. Perhaps not surprisingly, many of the hits in the mouse
genome were DNA/RNA-associated proteins with matching posi-
tively charged residues (Figure 3D). To generalize and investigate
which IgVH CDR3 aa were more likely to be associated with
hits toward the mouse proteome, we analyzed the BALB/c data
set. This includes >2000 sequences that have been downloaded

from NCBI. These sequences include specificities toward diverse
antigens and are more representative for global B cell responses
and unbiased IgVH CDR3. With this data set we found that the
IgVH CDR3 residues K, D, E and G, Y, L and multiples thereof
(e.g. more than 1K per IgVH CDR3 sequence) were positively
associated with hits (Table S1 in Supplementary Material; see
Materials and Methods for algorithm). IgVH CDR3 R was how-
ever only increased in hits if it was found more than 4x (ie.,
CAR. R. R. R), when it was three times as likely to be found in the
matched sequences. These results suggest that arginines per se (as
overrepresented in the DTG data set) were not directly associated
with enriched hits in the mouse genome.

Similarities of IgVH CDR3 Sequences with
Histone Sequences
The above analyses suggest that Th responses toward conventional
autoantigen and Id may in fact be related in lupus. It has been
suggested that histone-derived peptides constitute antigens for
pathogenic Th cells in lupus (13). We therefore restricted the anal-
ysis to investigate I[gVH CDR3 1d as potential mimics of histone
sequences. Utilizing the sequences from the DTG mice with Id-
driven lupus, we found IgVH CDR3 sequences with similarities
to a histone H2A as well as H4, sequences previously identified
as a Th cell antigens in lupus (13), Figure 4A. Similar matches
were found for human IgVH CDR3 sequences when compared
with human histone H2A and H4 (Figure S1 in Supplementary
Material).

The above analyses searched for similarities between IgVH
CDR3 sequences and genomic sequences, including histones.
Reversing the analysis, we investigated if stretches of histone

A DTG CDR3 vs. Mus musculus
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FIGURE 3 | Analysis of similarities of CDR3 with the mus musculus
proteome. Analysis of IgVH CDR3 sequences in Blastp with the mouse
proteome. (A) Exact matches, DTG IgVH CDR3 sequences vs. contiguous
sequences in the Mus musculus proteome. (B) DTG CDRS3 vs. the mus
musculus proteome: Left panel: Hits, i.e. matches with mismatches,
denoted as in Figure 1. Right panels: Examples of matches with
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(IgVH CDR3 vs. mus musculus proteome) normalized to number of IgVH
CDR3 sequences from DTG or L2-TG mice. Left: 100% matches; right:
matches including mismatches. (D) Anti-dsDNA IgVH CDR3 sequences
from DTG with end stage lupus: Examples of hits, sequence
matches/mismatches between individual IgVH CDR3 sequences from DTG
lupus mouse and the mouse proteome. See also Figure 1 for details on
color codes.
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FIGURE 4 | Comparison of CDR3 and histone sequences; analysis of
histone H2A sequence segments as part of V-D-J junctions.

(A) Examples of sequence comparisons of IgVH CDR3 sequences from DTG
mice with end stage lupus and histone H2A, this epitope is denoted epitope 1
H2A-ep1. See also Figure S1 in Supplementary Material. (B) Artificial hybrid
sequence files were made by inserting histone sequences - replacing the IgvVH
CDR3 to form model sequences. IgVH CDRS3 regions are usually less than eight
amino acids long, corresponding to 24 coding nucleotides. In frame H2A
sequences were electronically generated i.e. HisH2A nt 1-24, nt 4-27, .. ., nt
367-391 and electronically engrafted onto a random IgVH-segment. A random
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FR4 was grafted onto this artificial IgVH — “Histone H2A-CDR3.” Resulting
model sequence files were up-loaded for IgVH junctional analysis at IMGT.

(C) The lengths of suggested IMGT D-segments are plotted. The average D
segment usage in BALB/c mice is 10.2 nt. Gray area: >11 nt. HisH2A sequence
is provided above the plot, possible D gene segments are positioned according
to highest levels of matching. Two epitopes are marked, histone H2A-ep 1 [see
also (A)] and histone H2A-ep2. See also Figure S1 in Supplementary Material.
(D) Analysis of histone H4 corresponding to that performed in (C). Two epitopes
are marked histone H4-ep1 and histone H4-ep2, see also Figure 5 and Figure
S1in Supplementary Material.

sequences could be coded by sequences similar to VD] sequences,
i.e., tested how well histone sequence excerpts could be accommo-
dated within constraints of the VD] junction. Focusing on histone
H2A and histone H4, we pasted histone nt sequences onto a model
IgVH, creating Vregion - histone segment-FR4 sequences. Result-
ing sequence files were uploaded into IMGT and subjected to VD]
junction analysis (Figure 4B; see Materials and Methods). With
the histone H2A, we found that histone inserts could be coded
by D genes at three sites, Figure 4B. Using such excerpts, the D
region segment lengths were above average (10.3 nt, from analysis
of >2000 BALB/c sequences, data not shown), Figure 4C. One of
these epitopes corresponds to matches found with those described
above (Figure 4A) called histone H2A epitope 1. Similarly, we
identified four stretches of histone H4 that could be coded by other
distinct D regions. One of these corresponded to the match seen
in Figure 4A, histone H4, epitope 1.

Anti-Histone Th Cell Responses in DTG Mice

Following up the analyses above, we investigated if the lupus
in DTG mice was associated with loss of tolerance toward his-
tone motifs. In DTG mice with high ANA, but not in ANA-
low DTG, we found significant responses toward both the
H2A.001 and increased, but not significant response toward his-
tone H4 epitopes (Figure 5). We proceeded to make Th cell
lines towards each of these peptides. These were readily gen-
erated from DTG mice, but required more than five to six re-
stimulations when Th cells were derived from single L2-TG
or BALB/c mice (Figure 6A). The histone His4 epl (IRRLAR-
RGGVKRISGL) has similarities with the IgVH CDR3 from the
anti-DNA hybridoma 5.3 (CIRRRLRRSCEDYWG) but is dis-
similar to IgVH CDR3 from the anti-DNA 21.5 (CARAPLL-
RLRGYAMDY). Strikingly, when purified mAb was used from
the former, but not the latter, Th cell responses were elicited
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FIGURE 5 | Analysis of histone-specific Th cell responses in DTG
mice and controls. Based on the predictions in Figure 4 and Figure S1 in
Supplementary Material, histone peptide stretches with similarities with
mouse IgVH CDR3 sequences were tested in DTG lupus mice. Lymph node
Th cells were from controls (bottom) or high and low serum ANA DTG mice
were tested for responses toward Id-peptide, or histone peptides from

DTG, high ANA DTG, low ANA
U

m iy | (—
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HisH1, HisH2A, or HisH4 (see Materials and Methods and Figure 4 where
His H2A and H4 peptides are shown) presented by irradiated BALB/c
splenocytes. Dotted line: Control without peptide, n = 6. Upper left
histograms (DTG, high ANA): One-way Anova, p < 0.0008, with Tukey’s
Multiple Comparison test, p < 0.05 for His2A-ep1 vs. other histone peptides
and control).

A
HisH2A-ep1 spec DTG TCL

on'

FIGURE 6 | Histone-specific T cell lines cross react to mAbs with CDR3
mimotopes. Th cell lines were cultured with irradiated APC and peptides in
10-day cycles, see Materials and Methods. (A) Micrographs Th cell lines (TCL):
Left second cycle Th cells from DTG mice responding to HisH2A-ep1 peptide,
Th cell blasts and proliferation clusters are seen. Middle left: third cycle Th cells
from DTG mice responding to Id-peptide, only few Th cells are seen (arrows)
admixed with APC. Middle, right: third cycle His2A-ep1 TCL Th cell line from

His4-ep1-specific DTG TCL His4-ep1-specific BALB TCL

His4Ep1 " |** HiséZ:-EAp; I
i | ]
sam> | - | | Soms |8 P
19G contr. :}-—! [_| gG contr. |
21.5mAb +[— 1 * 215map 1 | %
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His2A-eptspecific L2-TG TCL

L2-TG mice, sparse Th cells (arrows) are indicated. Right: third cycle His2A-ep1
TCL from BALBY/c. (B) Analysis of peptide specific TCL, cross reaction to mAbs:
TCL lines from DTG, BALB/c and L2-TG were tested for responses toward
mAbs with IgVH CDR3 sequence similarity with histone peptides. 5.3 mAb:
IgVH CDRS3 similar to His4Ep1. 21.5: IgVH CDR3 similar to His2A-ep1.
Polyclonal mouse IgG was control. Shown is proliferative response toward
appropriate peptide or mAbs (n = 4, Student’s t-test).

in Th cell lines specific for the H4 peptide (Figure 6B, and
data not shown). Reciprocally, Th cells specific for H2A pep-
tide (GRVHRLLRKGNYAERV) responded to the 21.5 mAb with
CDR3 (CARAPLLRLRGYAMDY) and less to the 5.3 mAb,
Figure 6B, and data not shown. The Th cell lines did not
respond to Id-peptide from the transgene, data not shown. The
anti-dsDNA mAbs were negative for Id"A2%° L chains both in
ELISA (data not shown) and by MALDI TOF mass spectrometry
analysis (33).

Discussion

We found that IgVH CDR3 from the mutated repertoire of lupus
mice had a surprisingly high rate of matches toward the microbial
proteomes, eukaryotic pathogens (fungi and protozoa), as well as
self-proteins. Results suggested that these antigenic determinants
may potentially stimulate common Th cell populations - and that
these disparate peptide sources could constitute a network of
peptide mimics. The frequency of matches was increased in the
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data set derived from the DTG mice with lupus, compatible
with mutation and diversification of the autoimmune repertoire.
Moreover, even with a limited set of [gVH CDR3 regions from
mice with lupus (176 sequences), it was possible to identify exact
matches from microbial proteomes of up to nine contiguous aa.
We also found examples in categories such as 11 aa including
10 matched aa and 1 mismatch; or longer stretches of for exam-
ple 15mers with 11 matches. Lupus mice with high levels of
anti-dsDNA autoantibodies also had detectable Th cell responses
toward histone determinants. Histone-reactive Th cell lines from
such mice also responded with proliferation to stimulation when
provided with anti-dsDNA mAbs with IgVH CDR3s that were
similar to the histone epitopes, but did not respond to anti-dsDNA
mAbs that had dissimilar CDR3s. Molecular mimics have been
suggested in EAE (mice) and MS (humans), for example peptide
mimics from pathogens were found to stimulate myelin basic
protein (MBP)-specific Th cells (1, 2). However, these peptide
epitope mimics had seven or five matched aa respectively across
15mer stretches (1, 2). The current findings of up to 11 matched
aa in 15mers, and identity across 9mers suggest that idiotypes can
provide a diverse pool of peptide mimics that may impact Th cell
immunity.

The current results do not include analyses and prediction of
peptide binding to MHC class II. TCR recognize peptides in the
context of MHC, peptide mimicry could only occur if peptide sets
could be presented to Th cells. In this regard, recent mathematical
modeling and analysis of unbiased IgVH sequences from humans
have revealed that V region peptides are especially well suited at
binding MHC class II (37). The analysis demonstrated that the
CDR regions had a unique propensity for MHC class II binding,
and represent a frequent source of potential TCR exposed motifs
(Th cell epitopes), (37).

It has previously been suggested that V region idiotypes may
regulate immune responses, regulate clonal size, and also pro-
vide tonic signals for Th cells (15, 16, 18-22, 24, 25, 27-33,
37, 38). In the current setting, IgVH sequences were derived
from lupus mice that developed a skewed oligoclonal repertoire
enriched for cationic aa and especially arginines (33), which are
aa that can mediate binding to dsDNA. These sequences were
very similar to those found in other mouse models of lupus (33).
We have previously demonstrated that Id-specific Th cells can
induce anti-Histone autoantibodies (28) as well as anti-dsDNA
antibodies, vasculitis, and nephritis (30, 31) and that both Th
cells and B cells were necessary for development of the observed
pathogenesis (30).

Lupus is associated with oligoclonal expansions of anti-dsDNA
B cells (9, 11, 33, 39). B cells that are stimulated through the BCR
in the absence of T cell help develop into anergic cells and undergo
apoptosis, as reviewed in Ref. (40). Antigen specific Th cells
can negate anergy and support conventional immune responses
including germinal center reactions, development of plasma cells
and autoantibody secretion (39, 41-43). Hence, anti-dsDNA B cell
responses are dependent on help from Th cells, and both Th2
cells and follicular helper T cells have been directly linked to SLE
(9, 11, 39).

In this setting, B cells will present a skewed repertoire of [gVH
CDR3 peptides on MHC class II molecules to Th cells. This

as B cells process and present endogenous BCR V regions on
MHC cdlass II to Th cells (18-20, 22, 25, 27-31, 33, 38). Idio-
types can also be presented by other antigen presenting cells,
such as dendritic cells after receptor mediated endocytosis, and
antigen processing (15, 16, 20-22, 24, 25, 28, 32, 38). In the
case of lupus, uptake of immune complexes of dsDNA/anti-
dsDNA could recruit Th responses directed against V region
peptides. Recruitment would be facilitated by efficient antigen
loading of immune complexes via Fc receptors, establishment
of a pro-inflammatory microenvironment (serving as TLR lig-
ands and inducing type I cytokines and chemokines) and con-
tribute to a reduced regulatory activity, as has also been asso-
ciated with Th cell responses directed toward antibody-based
biologics (44).

The current results suggest that in settings with 1) skewed
expression and presentation of endogenous V regions by B cells, 2)
presentation of V regions from immune complexes by non-B cell
APC, and 3) ongoing inflammation may lead to epitope spread-
ing. Hence, it is possible that cationic CDR3 dsDNA-binding
sequences may also provide mimics for Th cell responses directed
against cationic peptides in dsDNA-associated proteins.

What is the potential for mimicry and TCR cross reactions?
In general terms, TCRo.B diversity has been estimated to poten-
tially exceed 10%° as a result of nucleotide insertions and somatic
recombination of gene segments (45). However, estimates suggest
that there are <10° different antigen receptors in the naive T
cell pool (46). In any case, these numbers are dwarfed by the
potential number of antigenic peptide-MHC molecules related
to pathogens. Nevertheless, the relatively small number of TCRs
provides an effective immune recognition to most pathogens.
To bridge the gap of many orders of magnitude, it was sug-
gested that TCR recognition may be degenerate (3, 4, 47). As
a consequence, TCRs may be widely cross reactive. In fact,
TCR cross reactivity has been implicated in both pathogenic
and protective immunity in a number of diseases or infections
(7, 48-52). TCR cross reactivity has recently been studied in
context of class I (4) and class II (53). With regards to pMHC
class I binding, the TCRo.p was estimated to potentially bind
10° peptides (4). This is more than three orders of magnitude
higher than that found for MHC class II by pMHC display
libraries in yeast (53). TCR specificity resides in the arrange-
ment of the variable CDR3 loop that may interact with TCR
contact residues of the peptides (53). Cross reactive peptides could
harbor interchangeable aa similars (53), as has also described
earlier (5, 7). In terms of the current results, it is likely that
the cationic CDR3 peptides enriched for DNA-binding could
provide a potential mimic for cationic DNA-associated peptide
sequences.

As anti-dsDNA antibodies share canonical properties across
mouse models as well as between species, Th cell responses
toward such idiotypes may be accompanied with the potential for
responses toward seemingly not related DNA-associated proteins.
For example, histone H4 (aa 71-94) has been described to be a
Th cell epitope in lupus mice and in SLE patients. This peptide
contains the following DNA-associated motif: HAKRKTVTAMD
(13). The sequence is comparable to the IgVH CDR3 from that
of several previously described anti-DNA IgVH CDR3 derived
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peptides (33). If Th cells respond to cationic Id peptides of such
B cells, it could be hypothesized that established Th cell responses
would potentially cross react to peptide mimics from other DNA-
binding proteins, including histones as well as bacterial sequences
with the same flavor (14).

In addition to this mimicry on the level of peptide presentation,
B cell immune responses toward pathogens may initiate anti-
DNA responses as demonstrated for pneumonia vaccines, and
polysaccharide-binding antibodies (54, 55). In such situations
expansion of anti-DNA B cells presenting a skewed CDR3 pMHC
may result in Th responses that could cross react to a range of
potential mimics. If so, the immune responses to these seemingly
disparate peptides are related in Lupus.
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