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We report on the role of conserved stress–response pathways for cellular tolerance to
a pore forming toxin. First, we observed that small molecular weight inhibitors including
of eIF2α-phosphatase, jun-N-terminal kinase (JNK), and PI3-kinase sensitized normal
mouse embryonal fibroblasts (MEFs) to the small pore forming S. aureus α-toxin.
Sensitization depended on expression of mADAM10, the murine ortholog of a proposed
high-affinity receptor for α-toxin in human cells. Similarly, eIF2αS51A/S51A MEFs, which
harbor an Ala knock-in mutation at the regulated Ser51 phosphorylation site of eukaryotic
translation initiation factor 2α, were hyper-sensitive to α-toxin. Inhibition of translation
with cycloheximide did not mimic the tolerogenic effect of eIF2α-phosphorylation.
Notably, eIF2α-dependent tolerance of MEFs was toxin-selective, as wild-type MEFs
and eIF2αS51A/S51A MEFs exhibited virtually equal sensitivity to Vibrio cholerae cytolysin.
Binding of S. aureus α-toxin to eIF2αS51A/S51A MEFs and toxicity in these cells were
enhanced as compared to wild-type cells. This led to the unexpected finding that the
mutant cells carried more ADAM10. Because basal phosphorylation of eIF2α in MEFs
required amino acid deprivation-activated eIF2α-kinase 4/GCN2, the data reveal that
basal activity of this kinase mediates tolerance of MEFs to α-toxin. Further, they suggest
that modulation of ADAM10 is involved. During infection, bacterial growth may cause
nutrient shortage in tissues, which might activate this response. Tolerance to α-toxin was
robust in macrophages and did not depend on GCN2. However, JNKs appeared to play a
role, suggesting differential cell type and toxin selectivity of tolerogenic stress responses.
Understanding their function or failure will be important to comprehend anti-bacterial
immune responses.

Keywords: pore forming toxins, S. aureus ααα-toxin, cellular tolerance, EIF2AK4, MAPK

Introduction

Membrane perforation by pore forming toxins (PFT) is an ancient mode of attack employed by
many bacteria, which helps them to establish or sustain infection (1–3). PFT represent a large group
of bacterial toxins, which can be divided into various structural families (2). Many PFT have been
discovered based on their ability not only to lyse red blood cells but they also affect nucleated cells,
with effects ranging from induction of cell death to proliferation, time scales of occurrence from
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seconds to days after attack (4). Of particular relevance in the
present context, cell autonomous defenses are in place to limit
or reverse damage of nucleated target cells of PFT (4–13); they
have been discussed as an integral part of the innate immune
system, defending against bacteria (14). Work in C. elegans identi-
fied MAPK as master regulators of defense against PFT (7, 15).
Whereas the importance of p38 MAPK is well established (3,
4, 9, 16–18), data on the role of jun-N-terminal kinases (JNKs)
are somewhat conflicting (19–21). Large scale analyses of per-
forated cells have identified multiple additional changes taking
place in response to PFT (15, 20, 22, 23), many of which appear
to be triggered by the drop of cytosolic potassium (11, 20, 24,
25). Although the contribution of the various pathways to cell
autonomous defense against PFT remains to be established in
most cases, a basic concept emerges according to which removal
of membrane pores (3, 10, 13, 26–32) and metabolic homeostasis
(10, 12, 13, 20, 33, 34) are cornerstones of early cell autonomous
defense against PFT. Importantly, mechanisms involved in pore
removal depend on PFT and cell type (4, 8, 29). It appears that
MAPK p38 and autophagy are required if the recovery process is
prolonged as with S. aureus α-toxin and aerolysin (8, 20).

Phosphorylation of eukaryotic translation initiation factor 2
α (eIF2α) is a conserved stress–response activated by various
PFT (12, 13, 20, 33–35). How this pathway impacts survival of
target cells remains incompletely understood. Eukaryotic trans-
lation initiation requires assembly of a 43S ternary pre-initiation
complex, consisting ofmet-t-RNAi(Met), eIF2, andGTP. Inmam-
malian cells, this step is controlled through phosphorylation of
eIF2α at serine 51 by 1 of 4 eIF2α-kinases (GCN2, PERK, PKR,
and HRI), which respond to different types of stress (36). GCN2
serves as nutritional sensor, which is activated by uncharged t-
RNAs (37, 38). Several lines of evidence indicate that membrane
stress triggers this pathway: first, mutations that affect vesic-
ular transport in yeast trigger phosphorylation of eIF2α (39).
Second, in mammalian cells, plasma membrane perforation by
bacterial PFT leads to activation of GCN2 (12, 33), phospho-
rylation of eIF2α, transient attenuation of translation, and acti-
vation of autophagy (12, 13, 20). Also, membrane damage by
chlorpromazine or detergent triggers GCN2 (40). S. aureus α-
toxin inhibited uptake of leucine by cells, providing an expla-
nation for activation of GCN2 in target cells of PFT (12). In
human epithelial cells, eIF2α, eIF2α-kinases and the regulatory
eIF2α-phosphatase subunit CReP/Ppp1r15B are all required for
efficient recovery from α-toxin-dependent loss of ATP (13).
Surprisingly, these proteins served to remove membrane pores,
thus, linking control of translation initiation and membrane
traffic (13).

Conspicuously, many rodent cell types are not affected even
by comparably high concentrations (micromolar range) of α-
toxin; but the cause is not known. Receptor density on murine
cells might be low, or murine ADAM10 might be an inefficient
receptor as compared to its human counterpart. Alternatively,
murine cells might be particularly tolerant to the consequences of
successful attack. At any rate, to better understand results of in vivo
experiments with S. aureus or α-toxin in mice, it is important
to comprehend the mechanisms underlying tolerance of murine
cells.

In ecoimmunology, “tolerance” denotes the ability of an organ-
ism to cope with high-pathogen load and resulting damage (41–
43). To elucidate mechanisms of tolerance, it will be important
to investigate the phenomenon at the cellular level using defined
noxious agents. Here, we focus on cellular tolerance to PFT. A PFT
may fail to cause overt damage to a cell if it cannot bind to, or
attack, membranes in the first place. Alternatively, target cells may
be able to cope withmembrane perforation. In both cases, we con-
sider the target cell “tolerant to the PFT.” The term “susceptibility”
shall denote responsiveness of a cell to a PFT as measured by loss
of ATP or loss of potassium ions from the cytosol.

In the present work, we have investigated tolerance of mouse
cells to S. aureus α-toxin. The results support a broader protective
function of MAPK and document a cell type- and toxin-selective
role of eIF2α.

Results

Normal Mouse Embryonal Fibroblasts are
Tolerant to S. aureus ααα-Toxin
Exposure of human keratinocytes (HaCaT) to nanomolar con-
centrations of α-toxin for 2 h leads to significant loss of ATP.
In contrast, murine keratinocytes (PDV) or mouse embryonal
fibroblasts (MEFs) appeared to be not susceptible to α-toxin
(Figure 1A). In contrast, MEFs were exquisitely susceptible to
pVCC (Figure 1B), another PFT of the small β-barrel family (44).

Inhibitors of Various Signaling Pathways
Sensitize MEFs for ααα-Toxin
One potential explanation for selective tolerance of MEF to α-
toxin could be the lack of an appropriate receptor, or lower
expression levels of receptor. Amino acid sequences of human
and murine ADAM10, the proposed high-affinity receptor of α-
toxin, are not identical. Western blots with an antibody against
ADAM10 yieldedweaker bandswith themurine cells (Figure 1C).
Although it cannot be excluded that the antibody binds human
and murine cells with different efficiency, it is therefore possible
that qualitative or quantitative differences in receptor expression
could explain lower susceptibility of murine vs. human cells to
α-toxin. Alternatively, however, efficient ongoing repair of mem-
brane damage and fitness to cope with metabolic stress could also
play a role. Therefore, we tested a panel of small molecular weight
compounds that we knew to inhibit recovery from α-toxin-
dependent ATP-depletion in HaCaT cells. Several (combinations
of) inhibitors sensitized MEFs for α-toxin (Figure 2A). The effect
depended on the concentration of inhibitor, as exemplified for
JNK3XIISR3576 (Figure 2B). Although JNK3XIISR3576 is selec-
tive for JNK3 if applied at nanomolar concentrations,MAPKother
than JNK3 seem to be involved here because MEFs do not express
JNK3 (45). As shown for Sal/Dyn, inhibitors sensitized wild-type
MEF for α-toxin, provided they expressed ADAM10 (Figure 2C).
Thus, inhibitors did not sensitize cells by increasing unspecific
toxicity of α-toxin.

Lack of Phosphorylatable eIF2ααα, GCN2, or
Ppp1r15B Sensitizes MEFs for ααα-Toxin
That Salubrinal, an inhibitor of eIF2α-phosphatases (46)
sensitized MEFs to α-toxin, and similar observations in
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FIGURE 1 | Wild-type MEFs are tolerant to ααα-toxin. (A) HaCaT cells
(human keratinocytes), PDV cells (murine keratinocytes), or MEFs wt cells
(mouse embryonal fibroblasts) were treated or not with α-toxin. Cellular ATP
levels were determined after 2 h; data are percent of untreated controls; mean
values ±SE; n≥4; asterisk denotes p≤0.05. (B) MEFs wt cells were treated
with indicated doses of pVCC and cellular ATP levels were determined after 2,
6, or 24 h; shown are percent of untreated controls; mean values ±SE; n=3.
(C) Cell lysates of wt, PDV, and HaCaT were analyzed by Western blot for
ADAM10 and dynamin II (loading control).

keratinocytes (13), prompted us to investigate the response of
MEFs with defined genetic modifications affecting expression
or function of proteins involved in regulation of translation:
first, in eIF2αS51A/S51A cells, the eIF2α locus is replaced with
a non-phosphorylatable version, thus precluding regulated
attenuation of translation via P-eIF2α. Second, GCN2−/− MEFs
lack nutrient sensitive eIF2α-kinase GCN2/EIF2AK4, thereby
blunting phosphorylation of eIF2α in response to amino acid
deprivation. Third, Ppp1r15B−/− MEFs are devoid of the sole
constitutive regulatory subunits of eIF2α-phosphatase (47);
this defect leads to constitutively higher eIF2α-phosphorylation
levels. Fourth, EeF2K−/− MEFs lack eukaryotic elongation factor
2 kinase (EeF2K), which functions downstream of mTOR to
control protein synthesis (48).

First, we compared ATP levels in these MEFs to assess
metabolic perturbation after treatment with α-toxin. EeF2K−/−

cells were not susceptible to 10 µg/ml of α-toxin and thus
behaved like wild-type MEFs. In contrast, lack of GCN2 or
Ppp1r15B both sensitized cells to α-toxin. The strongest effect
was observed with eIF2αS51A/S51A MEFs, which lost up to ~80%
of ATP (Figure 3A). Although α-toxin led to dose-dependent
loss of ATP in eIF2αS51A/S51A cells, there was barely any effect
on wild-type cells (Figure 3B). Notably, pVCC-dependent loss
of ATP was similar in wild-type or mutant MEFs (Figure 3C).
Next, we determined the frequency of sub-G1 events, a measure
of DNA fragmentation, in cells treated with α-toxin for 48 h.
No significant difference was observed between wild-type and
eIF2αS51A/S51A cells in the presence of β-ME and non-essential
amino acids (NEAA). However, without these supplements, the
number of sub-G1 events was doubled in eIF2αS51A/S51A cells
(Figure 3D), although toxin-dependent loss of ATP and phospho-
rylation of eIF2α were equal in media with or without additives
(data not shown). Additives thus appear to protect cells from
secondary damage.

GCN2/EIF2AK4 Contains ααα-Toxin-Dependent
Stress
Next, we assessed basal or toxin-dependent eIF2α-
phosphorylation in the various MEFs lines. In wild-type
cells, some basal phosphorylation of eIF2α was noted, which was
moderately increased by α-toxin; after normalization for eIF2α,
the effect was, however, statistically insignificant. As expected,
P-eIF2α was not detected in eIF2αS51A/S51A MEFs (Figure 4A). No
P-eIF2α was also discerned with samples of untreated GCN2−/−

cells; this indicated that basal phosphorylation of eIF2α in
cultured MEFs depends on GCN2. Paradoxically, however,
α-toxin-dependent phosphorylation of eIF2α was enhanced
in cells lacking this eIF2α-kinase. This showed that increased
susceptibility of GCN2−/− MEFs to α-toxin (Figure 3A)
cannot be accounted for by diminished toxin-dependent eIF2α-
phosphorylation. Membranes were re-probed with antibodies
against p38, which becomes phosphorylated in response to
PFT. Strikingly, α-toxin caused robust phosphorylation of stress
activated protein kinase p38 in GCN2−/− MEFs, Ppp1r15B
MEFs, and eIF2αS51A/S51A MEFs (Figure 4A), but not in wild-type
MEFs, supporting the notion that cells with imbalanced eIF2α-
phosphorylation experienced more severe toxin-dependent
stress. p70S6K, substrate of mTORC1 became de-phosphorylated
(Figure 4A), indicating that α-toxin inhibits mTORC1, master
regulator of translation and autophagy.

CHX Does Not Tolerize eIF2αααS51A/S51A MEFs to
ααα-Toxin
Results from Western blots (Figure 4A) raised the question
whether α-toxin impacts translation differentially in
eIF2αS51A/S51A vs. wild-type MEFs. Paradoxically, treatment
with α-toxin caused dose-dependent attenuation of translation
in eIF2αS51A/S51A MEFs, but had no such effect on wild-
type MEFs (Figure 4B). This suggested that translation was
inhibited in response to α-toxin through a mechanism that
was independent of eIF2α-phosphorylation. Together with
results from the foregoing ATP-assays, this also revealed that
attenuation of translation per se is insufficient to maintain
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FIGURE 2 | Inhibitors of various pathways sensitize MEFs to ααα-toxin.
(A) wt cells were treated as indicated either with single inhibitors or
combinations of two inhibitors listed below and treated with 10µg/ml
α-toxin. Cellular ATP levels were determined after 2 h; data are percent of
untreated controls; shown are mean values for single inhibitors ±SE with
n≥6, or mean values of n≥2 for combinations of inhibitors, SE was <30%
throughout. Inhibitor concentrations: Salubrinal (40µM), Dynasore (80µM),
Ly29400L (100µM), SB203580 (20µM), Cerulenin (20µM), Cytochalasin D
(20µM), and JNK3XIISR3576 (10µM). (B) MEFs wt were treated with

indicated doses of JNK3XIISR3576 and incubated with 10µg/ml α-toxin.
Cellular ATP levels were determined after 2 h; data are percent of controls
treated with similar concentrations of JNK3XIISR3576 but not treated with
α-toxin; mean values ±SE; n≥3. (C) MEFs wt or MEFs ADAM10−/−

(mouse embryonal fibroblasts) were pretreated with 40µM Salubrinal and
80µM Dynasore or solvent alone for 30min and treated or not with indicated
doses of α-toxin. ATP levels were determined after 2 h; shown are percent of
untreated controls; mean values ±SE; n= 3; two asterisks denote p-values
≤0.001.

metabolic homeostasis upon attack by α-toxin. Conversely,
toxin-dependent ATP-loss in eIF2αS51A/S51A MEFs is not a
consequence of translational arrest, because treatment of wild-
type cells with CHX stops translation (Figure 4B), but does not
hyper-sensitize MEFs for α-toxin (Figure 4C).

Wild-Type eIF2ααα Modulates Binding and Action of
ααα-Toxin
That inhibition of translation did not protect eIF2αS51A/S51A

MEFs provoked the question how phosphorylation of eIF2α
tolerizes MEF. So, we investigated a primary event underly-
ing many of the rapid molecular changes induced by PFT,
i.e., disturbance of natural ion gradients (4). Loss of potassium
appears to be one major trigger (11, 20, 24, 49). We mea-
sured loss of intracellular potassium by flame photometry. In
line with results from ATP-assays, net loss of potassium was
enhanced in GCN2−/− or Ppp1r15B−/− cells and even more so
in eIF2αS51A/S51A MEFs (Figure 5A), suggesting that membrane
damage was more severe in cells with deficiencies in regulation of
eIF2α-phosphorylation.

Pore formation by α-toxin depends on oligomerization and
insertion into the plasma membrane. Because oligomers resist
SDS, they can be detected by SDS-PAGE. Using cell surface label-
ing after incubation with internally radio-labeled α-toxin, we
compared the amount of α-toxin on the surface ofwild-typeMEFs
and eIF2αS51A/S51A MEFs. The fluorographic analysis shown in
Figure 5B reveals that more α-toxin is present at the surface of
eIF2αS51A/S51A MEFs as compared to wild-type cells, providing a

straightforward explanation for enhanced loss of potassium and
ATP from these cells.

Wild-Type eIF2ααα Modulates Expression of
ADAM10
Increased amounts of toxin associated with eIF2αS51A/S51A MEFs
could be due to higher abundance of α-toxin receptors. Therefore,
we compared ADAM10 expression in eIF2αS51A/S51A MEFs and
wild-type MEFs. Western-blot analysis revealed that ADAM10
is over-expressed in eIF2αS51A/S51A MEFs; and more ADAM10
is exposed on the cell surface of eIF2αS51A/S51A MEFs as com-
pared to wild-type cells (Figure 5C). No significant differences
between wild-type cells and eIF2αS51A/S51A MEFs were found in a
lipidomics analysis (data not shown). Treatment with α-toxin led
to down-regulation of ADAM10 at the cell surface of both wild-
type and mutant cells. Because basal eIF2α-phosphorylation in
MEFs depends on GCN2 (Figure 4A), the collective data indicate
that nutrient stress or basal activity of GCN2 modulates levels of
ADAM10 in MEFs.

Role of GCN2 for Tolerance to ααα-Toxin is Not
Conserved in BMDM
Like MEFs, BMDM proved to be highly tolerant to α-toxin
although they were susceptible to Vibrio cholera cytolysin (VCC)
(Figure 6A). However, lack of GCN2-expression in BMDM did
not significantly alter susceptibility to α-toxin (Figures 6A,D);
α-toxin-dependent phosphorylation of eIF2α appeared slightly
reduced (Figure 6B). Further, infection of BMDM by S. aureus
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FIGURE 3 | Dysregulation of eIF2ααα-phosphorylation increases
sensitivity for α-toxin. (A) MEFs eIF2αS51A/S51A, MEFs GCN2−/−,
MEFs Ppp1r15b−/−, or MEFs EeF2K−/− were treated or not with
10µg/ml α-toxin. ATP levels were determined after 2 h; shown are
percent of untreated controls; mean values ±SE; n≥4. Black bars show
data with MEFs cell variants as indicated; white bars corresponding
control cells; two asterisks denote p-values ≤0.001. (B) MEFs wt or
eIF2αS51A/S51A were treated, or not with indicated doses of α-toxin.
Cellular ATP levels were determined after 2 h; data are percent of

untreated control; mean values ±SE; n=5; asterisk: p= 0.026.
(C) MEFs wt or MEFs eIF2αS51A/S51A treated or not with indicated doses
of pVCC. Cellular ATP levels were determined after 2 h; data are percent
of untreated control; mean values ±SE; n= 3. (D) MEFs wt or MEFs
eIF2αS51A/S51A were cultured in standard media or in presence of β-ME
and additional non-essential amino acids and treated with 10µg/ml
α-toxin for 48 h, stained with Propidium iodide and subsequently
frequency of Sub-G1-DNA was determined; data show percent of
untreated controls; mean values ±SE; n= 3; asterisk denotes p≤0,05.

was equally efficient with both strains whether or not bacteria
produced toxin or not (Figure 6C). Therefore, GCN2 seemed
to play no major role for resistance or tolerance to α-toxin of
BMDMs.

Small MW inhibitors of JNK and dynamin, a cocktail, which
efficiently breaks tolerance to α-toxin in MEFs, moderately sen-
sitized BMDM to purified α-toxin (Figure 6D). Inhibitors did
not enhance ADAM10 expression (Figure 6E). Thus, MAPK
enhance natural tolerance of BMDM to α-toxin, but modulation
of ADAM10 expression appears not to be involved.

Discussion

One conclusion of this work is that regulators of translation ini-
tiation (eIF2α, GCN2, and Ppp1r15B) render murine embryonic
fibroblasts tolerant to S. aureus α-toxin. This is consistent with
our previous finding in human epithelial cells that these proteins

promote recovery from successful attack (13). Although it remains
to be investigated whether a priori tolerance of MEFs to α-
toxin is likewise based on efficient endocytic removal of α-toxin
pores from the cell surface, the present results document that the
tolerogenic effect of eIF2α, GCN2, and Ppp1r15B is conserved in
mice and man, and that it is observable in fibroblasts. That both
lack of an eIF2α-kinase and of constitutive eIF2α-phosphatase
reduce tolerance to α-toxin could be interpreted to show that
balanced phosphorylation of eIF2α, or cycling of eIF2α between
phosphorylated and unphosphorylated state is required for the
tolerogenic effect.

A role of translational regulation for various aspects of innate
immunity, and a protective function against PFT has been dis-
cussed in the recent literature (34, 50, 51). One established func-
tion of eIF2α-phosphorylation and the integrated stress–response
is to reprogram expression of genes, including of genes that
regulate immunity. Translational attenuation in host cells might
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FIGURE 4 | ααα-toxin causes translational arrest in MEFs eIF2αααS51A/S51A.
(Continued)

FIGURE 4 | Continued
Cycloheximide does not sensitize wild-type MEFs (A) MEFs wt, MEFs
eIF2αS51A/S51A, MEFs GCN2−/−, or MEFs Ppp1r15b−/− were treated or not
with 10µg/ml α-toxin for 2 h. Cell lysates were analyzed by Western blot for
P-eIF2α, eIF2α, P-p70S6 kinase, p70S6 kinase P-p38, and p-38. One of
three similar blots is shown; lower panel summarizes densitometric data for
(P)-eIF2α, mean±SE; n= 3 (B) MEFs wt or MEFs eIF2αS51A/S51A cells were
treated or not with indicated concentrations of α-toxin and incubated for 1 h
at 37°C. Treatment with CHX served as positive control for translational arrest.
Subsequently, the cells were incubated for 1 h at 37°C with 10µg/ml
puromycin, which incorporates during ongoing synthesis into nascent
proteins. Eventually, cells were analyzed by Western blot for puromycin.
(C) MEFs wt or MEFs eIF2αS51A/S51A cells were treated or not with 10µg/ml
α-toxin and incubated with or without CHX at 37°C. Cellular ATP levels were
determined after 2 h; data are percent of untreated controls; mean values
±SE; n= 5.

also help them to conserve energy, as proposed by some authors
(20). However, (P)-eIF2α-dependent tolerance of MEF could not
be explained by toxin-dependent translational attenuation per se:
actually, α-toxin caused inhibition of translation in eIF2αS51A/S51A

MEFs, but not in wild-type MEFs, and CHX did neither pro-
tect nor hyper-sensitize wild-type cells from/for α-toxin. Yet,
eIF2αS51A/S51A MEFs proved to be significantly less tolerant to α-
toxin. Probably as a consequence, protein synthesis was halted
through alternative pathways. This could occur, for instance, by
deactivation ofmTOR, as indeed suggested by α-toxin-dependent
dephosphorylation of p70S6K, a target of mTOR. The data may
reflect a hierarchy of stress responses: Activation of eIF2α via
nutritional sensor GCN2 contains α-toxin-dependent damage
and stress, which would otherwise lead to exaggerated hyper-
phosphorylation of eIF2α by (an)other eIF2α-kinase(s), possibly
PERK and PKR. If eIF2α-phosphorylation fails, translation would
be halted via robust deactivation of mTOR. Sustained inhibi-
tion of translation is obviously not tolerated by cells (35), but
marked α-toxin-dependent inhibition of translation, observed in
eIF2αS51A/S51A MEFs, does not explain the increased loss of ATP
and potassium from these cells, because CHX did not affect these
parameters in wild-type cells.

The fact that lack of phosphorylatable eIF2α was associ-
ated with increased toxin-dependent loss of potassium and ATP
prompted us to measure the binding of α-toxin and expression of
ADAM10, the proposed high-affinity receptor for α-toxin (52).
This led to the unexpected finding that ADAM10 levels were
significantly higher in eIF2αS51A/S51A cells. Therefore, tolerance to
α-toxin in MEFs may be well due to GCN2/P-eIF2α-dependent
modulation of its receptor, ADAM10. Whether or not the appar-
ent link between basal nutrient stress and expression of ADAM10
was shaped by co-evolution of S. aureus and humans, it may also
bear on functions of ADAM10 that are not related to infection.

How basal phosphorylation of eIF2α-levels modulates
ADAM10-expression remains to be elucidated. Because P-
eIF2α is required for starvation-dependent autophagy (53), a
possible role of eIF2α in this context could be to maintain basal
autophagic flux, which in turn could impact ADAM10 levels.
Recently, Atg16L1, a protein essential for autophagy, has been
shown to confer tolerance to α-toxin; the authors proposed that
autophagy constitutively dampens ADAM10 levels in a cell-type
selective manner (54). Similarly, eIF2α-dependent modulation
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FIGURE 5 | MEFs eIF2αααS51A/S51A over-express ADAM10 and bind higher
amounts of ααα-toxin.

(Continued)

FIGURE 5 | Continued
(A) MEFs eIF2αS51A/S51A, MEFs GCN2−/−, MEFs Ppp1r15b−/−, or
corresponding control cells were treated or not with 10µg/ml α-toxin.
Potassium levels were determined after 2 h, shown are percent of untreated
controls; mean values ±SE; n≥4. Black bars show data of MEFs cell
variants as indicated; white bars corresponding control cells. (B) Right: MEFs
wt or MEFs eIF2αS51A/S51A cells were incubated with radio-labeled α-toxin 2
and 8µg/ml α-toxin at 37°C for 15min. Subsequently, cells were surface
biotinylated, lysates were obtained and subjected to sequential
neutravidin-pulldown (NP) and immunoprecipitation (IP) followed by
PAGE/fluography, as described in Kloft et al. (13). Left: band intensities were
measured by densitometry using ImageJ software. Shown are mean values
±SE; n= 4. Variations of loading with toxin and plating of cells were <1 and
<10%, respectively. (C) MEFs wt or MEFs eIF2αS51A/S51A were treated or not
with 10µg/ml α-toxin for 2 h. Subsequently, cells were surface biotinylated or
not and lysed. Lysates were subjected to NP; both lysates and precipitation
were analyzed by Western blot for ADAM10 and eIF2α (loading control);
upper panel: one of four similar blots; lower panel: bar chart summarizing data
(mean±SE; n=4).

of ADAM10 shown in the present work is constitutive and
cell-type selective. Together this seems to suggest that basal
eIF2α-phosphorylation functions upstream of autophagy to
mediate tolerance. Alternatively, P-eIF2α, eIF2α-kinases, and
-phosphatases could function through mechanisms acting in
parallel to autophagy, for instance, by regulating endocytosis
of membrane pores, as has been shown in epithelial cells (13).
Whatever the effector mechanism(s) downstream of eIF2α are,
our data reveal that GCN2-dependent basal phophorylation of
eIF2α in MEF modulates ADAM10 levels as well as binding and
action of α-toxin. Because GCN2 is activated by low levels of
amino acids in cells, basal nutrient stress might be the driving
force; the potential links discussed here are summarized in a
model (Figure 7).

Inhibitors of various pathways hyper-sensitized MEFs to S.
aureus α-toxin, which supports the notion that multiple signaling
pathways are required to confer cellular tolerance to α-toxin. This
raises the possibility that drugs used in pharmaco-therapy may
have potential tolerance-modulating effects, an issue that warrants
further investigation. The present data support a tolerogenic role
of JNKs in both MEFs and BMDM. More work is required to
understand the underlying mechanisms, but they seem to be
distinct fromeIF2α-dependent cellular tolerance to α-toxin. Con-
served stress responses may fail to protect against some PFT, as
exemplified here by V. cholerae cytolysin. Whether cells of the
immune system tolerate attack of a given PFT will co-determine
the ability of an organism to mount an effective “classic” immune
response to infection with corresponding bacteria.

Materials and Methods

Antibodies
Antibodies against P-eIF2α (phosphorylated at Ser51), eIF2α,
P-p38 (phosphorylated at Thr180/Tyr182), p-38, P-p70S6K
(phosphorylated at Thr389), p70S6K, ADAM10, and α-tubulin
were from Cell Signaling Technology. Antibodies against
dynamin II were purchased from Santa-Cruz Biotechnology.
Anti-Puromycin-antibody was from Merck Millipore. Antibodies
against LC3 were bought from Sigma. HRP-conjugated secondary
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FIGURE 6 | GCN2 does not render BMDMs tolerant to ααα-toxin.
(A) BMDMs isolated from GCN2−/− mice or control mice (B6/J) were
treated or not with indicated doses of α-toxin, VCC, or SLO. Cellular ATP
levels were determined after 2 h. White bars show BMDMs from GCN2−/−

mice and black bars show BMDMs from control mice; mean values ±SE,
n≥3 (B) BMDMs of GCN2−/− mice or control mice were incubated with
10µg/ml α-toxin for indicated times. Cell lysates were analyzed by Western
blot for P-eIF2α and eIF2α. (C) MEFs variants (right graph) or BMDMs of
GCN2−/− and control mice (left graph) were incubated with
fluorescein/biotin labeled S. aureus hla(−) or hla(+) strains (MOI 1:30) for
1 h, washed and incubated for an additional hour at 37°C. After fixation,
extracellular bacteria were stained with streptavidin-coupled Alexa 647.
Upper: exemplary picture of solely fluorescein-stained S. aureus,

representing intracellular bacteria, and extracellular S. aureus that were
accessible for Alexa 647-Streptavidin. Lower: graphs show counts of solely
fluorescein-stained (intracellular) bacteria per cell; mean values ±SE;
BMDMs n= 2; MEFs n= 3. (D) BMDMs of GCN2−/− mice or control mice
were incubated with combinations of JNK3XIISR3576 (10µM), Dynasore
(80µM), JNK3 XIISR3576 (10µM), and Ly29400L (100µM) or solvent alone
and treated with 10µg/ml α-toxin. Cellular ATP levels were determined
after 2 h (percentage of controls). (Mean values ±SE; n= 3). (E) BMDMs of
GCN2−/− and control mice were treated with the combination of
Dynasore (80µM) and JNK3XIISR3576 (10µM), Dynasore (80µM) alone,
JNK3XIISR3576 (10µM) alone, or solvent alone (DMSO) for 2.5 h. Cell
lysates were analyzed by Western blot for ADAM10 and α-tubulin (loading
control).
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FIGURE 7 | Model of eIF2ααα-dependent cellular tolerance to ααα-toxin.
Disruption of membrane integrity by insertion of membrane pores causes
various forms of stresses in target cells (e.g., loss of potassium, starvation),
which trigger an array of conserved responses, including phosphorylation of
MAPK and of eIF2α. Not only may these pathways feed back to alleviate
stress but also eIF2α may modulate formation of S. aureus α-toxin
membrane pores (this work; highlighted in red in the scheme), or persistence
of lesions (13), root causes of α-toxin-dependent stress. Notably, basal
activity of GCN2 maintains low levels of ADAM10, resulting in bated binding of
α-toxin. Thus, basal nutrient stress in cells could serve as a preemptive
stimulus of cellular tolerance to S. aureus α-toxin. This link, which might have
evolved from mutual adaptation of S. aureus and humans, is selective, as
suggested by the fact that Vibrio cholerae cytolysin breaks cell autonomous
defense.

antibodies were from Santa-Cruz Biotechnology (mouse) and
Cell Signaling Technology (rabbit).

Inhibitors
Salubrinal (SAL), Cycloheximid (CHX), JNK3XIISR3576
(JNK3XII), and SB203580 (SB) were obtained from Calbiochem.
Ly29400L (Ly)was fromCell Signaling. Bafilomycin, Cytochalasin
D (CytoD), andCerulenin (Ceru) were from Sigma andDynasore
(Dyn) was from Tocris bioscience.

Chemicals
RNase, propidium iodide, and puromycin were purchased from
Sigma. NHS-fluorescein and EZ-Link Sulfo-NHS-LC-biotin were
from Thermo Fisher Scientific and Streptavidin-Alexa 647
was obtained from Molecular Probes. Rapamycin was from
Calbiochem.

Toxins
α-toxin, internally radio-labeled α-toxin, streptolysin (SLO), and
VCC were made as published elsewhere (10, 12).

S. aureus
In this study, S. aureus strain DU1090 (55) and α-toxin producing
S. aureus strain, plasmid transformed derivative of DU1090 (55),
were employed and referred to as hla(−) and hla(+), respectively.

Cells and Culture
Mouse embryonal fibroblasts GCN2−/− (56) were purchased
from ATCC and PDV from CLS Cell Lines Service GmbH.
MEFs eIF2αS51A/S51A and corresponding control cells MEFs
eIF2αS51/S51(57), MEFs Ppp1r15b−/− (58), MEFs EeF2K−/−

(59), and MEFs ADAM10−/− (60) were kindly provided by
Heather Harding and David Ron, Randal Kaufman, Alexey
Ryazanov, and Paul Saftig, respectively. All MEFs cell lines were

cultured in DMEM GlutaMAX™-I medium with 10% fetal calf
serum, 1% HEPES buffer, 1% penicillin/streptomycin, 1% MEM
NEAA, and 55mM 2-mercaptoethanol. Under these conditions,
we did not note significant differences in morphology, viabil-
ity, or growth rate. PDV (murine keratinocyte cell line) were
grown in DMEM GlutaMAX™-I medium with 10% fetal calf
serum, 1% HEPES buffer, 1% penicillin/streptomycin without
MEM NEAA, and 2-mercaptoethanol. HaCaT (non-virally trans-
formedHaCaT) (61) were cultured in DMEM/F-12 GlutaMAX™-
I medium with 10% fetal calf serum, 1% HEPES buffer, and
1% penicillin/streptomycin. All media and medium additives
were obtained from Gibco by life technologies™. BMDMs were
isolated from C57BL/6J (B6/J) or B6.129S6-EIF2αk4tm1.2Dron/j

(GCN2−/−) mice (Charles River laboratories) and cultured in
DMEM GlutaMAX™-I supplemented with 20% fetal calf serum
and M-CSF by adding 10% supernatant of L929 cells.

Western Blot
For Western blots, cell lysates were mixed with 2× SDS-
loading buffer [65 mM Tris, 10% (v/v) glycerol, 5% (v/v) 2-
mercaptoethanol, 2% (w/v) SDS, and bromphenol blue] and
boiled for 5min at 95°C. Proteins were separated by SDS-PAGE
(10%) and electroblotted onto nitrocellulose membrane. After
blocking for 1 h at room temperature in BSA or skim milk in
TBST [Tris 50 µM, NaCl 0.15M, Tween 0.1% (v/v)], membrane
was incubated with a primal antibody in BSA or skim milk in
TBST, washed three times in TBST and incubated with HRP-
conjugated second antibody for 1 h at room temperature. After
three washing steps, bound antibody was detected by ECL (Roche
Applied Science).

Puromycin Incorporation
The assay has been described elsewhere (62).MEFs eIF2αS51A/S51A

cells were seeded at a density of 2× 105 cells/well into six-well
plates. Cells were incubated as indicated with several concentra-
tions of pVCC or α-toxin for 1 h at 37°C. Thereafter, 10 µg/ml
puromycin was added and cells were incubated for an addi-
tional hour at 37°C. Subsequently, medium was removed; cells
were washed with PBS and analyzed by Western blot using anti-
Puromycin-antibody in 2.5% (w/v) skim milk in TBST.

ATP-Measurements
Measurements of intracellular ATP were performed, as described
elsewhere (22).

Potassium Efflux Measurements
For measurements of intracellular potassium, cells were seeded
at a density of 3× 105 cells/well into six-well plates. Cells were
incubated or not with 8 µM Rapamycin for 3 h before adding
10 µg/ml α-toxin. After 2 h incubation at 37°C, cells were washed
three times on ice with cold Choline-chlorid-buffer and solubi-
lized in 2ml Choline-chlorid-buffer containing 0.5% Triton X-
100 (63) for 30min at room temperature under constant shaking.
Potassium content of supernatants of centrifuged cell lysates was
determined using Sherwood single channel flame photometer
M401.
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Quantitation of Surface-Exposed or Internalized
ααα-Toxin/ADAM10
Surface labeling, neutravidin pull-down, and fluorometric detec-
tion of α-toxin have been described previously (13). Variation of
input (labeled S35-Met-α-toxin) was<1%; equal amounts of total
protein were loaded.

Quantification of Internalized Bacteria
The assay has been performed, as described elsewhere (64).

Sub-G1 Analysis
Cells were seeded at a density of 1× 105 cells/well into six-well
plates and treated or not with 10 µg/ml α-toxin permanently for
48 h at 37°C. Cells were harvested including the detached cells
in the supernatant, washed in PBS and centrifuged. Cells were
resuspended and fixed in cold 70% ethanol in PBS/EDTA for 2 h at
4°C. Subsequently, the cells were washed and treated with RNase
for 10min at 37°C. Then, propidium iodide was added and cells
were incubated for 5min at room temperature. Eventually, cells

were analyzed using a FACScan flow cytometer (BD Biosciences)
and CellQuest software.

Statistical Analysis
Two-sided, unpaired Student’s t-test was employed to assess statis-
tical significance of differences betweenmean values. Significance
was assumed at p< 0.05.
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