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Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflamma-
tion in joints, associated with synovial hyperplasia andwith bone and cartilage destruction.
Although the primacy of T cell-related events early in the disease continues to be debated,
there is strong evidence that autoantigen recognition by specific T cells is crucial to the
pathophysiology of rheumatoid synovitis. In addition, T cells are key components of the
immune cell infiltrate detected in the joints of RA patients. Initial analysis of the cytokines
released into the synovial membrane showed an imbalance, with a predominance
of proinflammatory mediators, indicating a deleterious effect of Th1 T cells. There is
nonetheless evidence that Th17 cells also play an important role in RA. T cells migrate
from the bloodstream to the synovial tissue via their interactions with the endothelial cells
that line synovial postcapillary venules. At this stage, selectins, integrins, and chemokines
have a central role in blood cell invasion of synovial tissue, and therefore in the intensity of
the inflammatory response. In this review, we will focus on the mechanisms involved in T
cell attraction to the joint, the proteins involved in their extravasation from blood vessels,
and the signaling pathways activated. Knowledge of these processes will lead to a better
understanding of the mechanism by which the systemic immune response causes local
joint disorders and will help to provide a molecular basis for therapeutic strategies.
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Rheumatoid Arthritis

Incorrect resolution of inflammation underlies pathologies of clinical importance, including cancer,
atherosclerosis, and rheumatic diseases, and precise understanding of inflammatory responses is a
major challenge to medical science. Of these conditions, rheumatoid arthritis (RA) is an enormous
economic and social problem, highly prevalent in industrialized countries (0.5–1%, with two- to
threefold greater incidence in women), resulting in disability, loss in quality of life, and reduced life
expectancy.

Rheumatoid arthritis is a systemic autoimmune disease, characterized by non-organ-specific
autoantibody production and chronic inflammation of synovial tissues, leading to cartilage and
bone destruction. During disease development, other organs can also become inflamed, and as a
consequence, systemic cardiovascular, pulmonary, and skeletal complications frequently appear (1).
Little is known of the initiating events or factors that perpetuate RA, but advances in understanding
the pathogenesis of the disease have contributed notably to development of new therapies. RA is
a polygenic disease that involves complex interactions between genetic and environmental factors.
The long-established association of RA patients with the human leukocyte antigen (HLA)-DRB1

Frontiers in Immunology | www.frontiersin.org July 2015 | Volume 6 | Article 3841

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2015.00384
https://creativecommons.org/licenses/by/4.0/
mailto:mmellado@cnb.csic.es
http://dx.doi.org/10.3389/fimmu.2015.00384
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00384/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00384/abstract
http://loop.frontiersin.org/people/24130/overview
http://loop.frontiersin.org/people/25282/overview
http://loop.frontiersin.org/people/25276/overview
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://loop.frontiersin.org/people/257083/overview
http://loop.frontiersin.org/people/257070/overview
http://loop.frontiersin.org/people/257069/overview


Mellado et al. T cell migration in rheumatoid arthritis

TABLE 1 | Most relevant genes with single-nucleotide polymorphisms
associated with susceptibility to rheumatoid arthritis and their functional
role.

Gene Location Function

HLA-DRB1 6p21.3 Encodes the cell surface complex for antigen
presentation

PTPN22 1p13.2 Encodes a tyrosine phosphatase involved in the
immune response

STAT4 3q32.2 Encodes a transcription factor implicated in cytokine
and chemokine signaling

TRAF1 3q33.1 Encodes a regulator of the TNFα receptor

PAD14 1p36.13 Encodes a peptidylarginine deiminase that catalyzes
conversion of arginine to citrullin

IRF5 7q32.14 Encodes a member of the interferon regulatory factor

FcGR2a 1q23.2 Encodes the low affinity IgG Fc receptor

IL2RA 10p15.1 Encodes the high affinity IL2 receptor

CD40 20q13.2 Encodes a costimulatory molecule that enhances B/T
cell interactions

CD28 2q33.2 Encodes a negative regulator of DC/T cell interaction

CCL21 3q13.3 Encodes a chemokine implicated in lymphocyte
homing

CCR6 6q27 Encodes a chemokine receptor implicated in Th17
recruitment

locus suggests the influence of T cell selection and antigen presen-
tation in the induction of autoreactive immune responses (2–4).
Other genetic risk alleles/factors in RA include immune regula-
tion (CD28), NF-κB-dependent signaling (TRAF1), control of T
cell activation (PTPN22), and functional differentiation (CTLA-
4) (5–9) (Table 1). Many cytokines, chemokines, growth factors,
intracellular signaling molecules, and transcription factors have
also been implicated in RA pathogenesis (10, 11).

Synovial inflammation, or synovitis, results from leukocyte
infiltration of the synovial compartment, enabled by increased
expression of adhesionmolecules and chemokines in the endothe-
lium (Figure 1) (12–14). The cellular infiltrate includes granulo-
cytes, monocytes/macrophages, NK cells, B cells, and especially
CD4+ and CD8+ T cells, all leading to the production of large
amounts of chemokines and proinflammatory cytokines (15–20).

The role of these infiltrating cells is poorly understood. CD4+

T cells, but not CD8+ T cells or B cells, are necessary for dis-
ease initiation (21), but not for the inflammatory phase of the
disease; hyperactivation of the immune response and the pres-
ence of autoantibodies in the synovial microenvironment are
sufficient for disease development (22, 23). CD4+ T cell deple-
tion using specific antibodies suppresses autoantibody production
and reduces disease severity in the collagen- or antigen-induced
arthritis models in rodents (CIA and AIA, respectively) (22, 24–
27). Disease can nonetheless be induced in murine models of
collagen antibody-induced arthritis (CAIA) in the absence of
T cells (28). These differences indicate that murine RA models
reflect only partial steps in the human disease and underline
the limitations of the in vivo models (29). The limited effec-
tiveness of T cell-depleting strategies (22) in clinical studies is
probably due to immunogenicity and poor reconstitution of the
immune system and emphasizes the restraints of in vitro test-
ing and in vivo models (29). In contrast, therapies that block

T cell co-stimulation are very effective at both early and advanced
disease stages (30, 31).

Although RA was generally considered dependent on IFN-γ-
producing Th1 cells, recent evidence indicates an important role
for Th17 cells in RA development (11, 22) (Figure 1). Cytokines
expressed by these cells (IL-17, GM-CSF, IL-22) are associated
with synovial inflammation, mainly through their effect on neu-
trophil activation (10, 32). IFN-γ levels are not high in synovial
membranes of RA patients, and RA development is reported in
IFNγ-deficient mice (33, 34). In contrast, IL-17 deficiency miti-
gates arthritis development, as seen in mice that lack IL-17A (35,
36) or those treated with anti-IL-17-blocking antibodies (36, 37);
IL-17 overexpression exacerbates disease progression and induces
a chronic, erosive form of the disease (38). Although not the site
of naïve T cell priming, CD4+ T cell commitment might occur
at the inflamed joints that also have larger numbers of activated
macrophages and dendritic cells (DCs) (15, 20). In mice, Th17
cell commitment requires IL-6, TGF-β, and IL-23 expression. In
human beings, Th17 polarization depends on IL-1β, IL-6, IL-21,
and IL-23, but the role of TGF-β is unclear (39). All of these
cytokines are produced by tissue-resident macrophages, although
the importance of specific DC subsets in T cell priming and
polarization is becoming evident. An increase in Th17 cells is
induced by monocyte-derived DC and CD1c+ myeloid DC, both
found at high frequency in RA patient synovial fluid (40, 41), and
by human inflammatory DC (42). DC from RA patient synovial
fluid secrete higher levels of CCL17 than DC in peripheral blood;
this chemokine could contribute to recruitment of CCR6+ cells,
including Th17, to the inflamed joint (41). In mice, disruption
of immune homeostasis by mucosal DC depends on the pres-
ence of commensal bacteria (43). Triggering of Toll-like receptors
by intestinal flora contribute to RA progression by altering the
Th17/regulatory T cells (Treg) balance, suggesting a role for the
microbiota in Th17 response induction in RA (44, 45).

IL-17 has pleiotropic effects on many cell types, induces migra-
tion of innate immune cells, increases production of cytokines,
chemokines, and matrix metalloproteases (46, 47), and enhances
germinal center formation in animal models (48, 49), all of which
contribute to the initiation and inflammatory phases of RA. In
addition, IL-17 drives osteoclastogenesis, leading to bone resorp-
tion (50). Despite success in other types of arthritic diseases,
IL-17-blocking strategies have thus far been less effective than
anticipated in RA; this raises questions regarding the contribution
of Th17 cells to RA development in human beings (51).

Activated naïve CD4+ T cells differentiate to IL-22-producing
Th22 cells in the presence of IL-6 and TNFα. Similar to Th17,
Th22 cells express CCR4 and CCR6, as well as CCR10 (52). Th22
cells are implicated in epidermal immunity, although their role
in RA is unclear (Figure 1). Th22 cell frequencies are increased
in peripheral blood from RA patients (53), and their percentages
correlated positively with plasma IL-22 levels in these individuals
(54). These observations coincidewith reports that link IL-22with
RA activity and bone damage (55, 56). Results in animal models
are also debated, whereas IL-22−/− mice show reduced incidence
of CIA (57), recombinant IL-22 administration prior to arthritis
onset reduces disease severity (58), suggesting a dual role for IL-22
during RA development (59).
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FIGURE 1 | Cell types, cytokines, and chemokine receptors involved in
rheumatoid arthritis development. Environmental factors and susceptibility
gene interactions promote loss of tolerance to citrullinated self proteins
generated by post-translational modifications. Co-stimulation-dependent
interactions among DCs, T cells, and B cells generate an autoimmune response
to these self proteins. This inflammatory process occurs primarily in the lymph
node, but also in the inflamed joint. Adaptive and innate immune cells are
attracted to the joint where immune pathways integrate to promote tissue
remodeling and damage. Positive feedback loops mediated by interactions
among leukocytes, synovial fibroblasts, chondrocytes, and osteoclasts, together

with the molecular products of damage, drive the chronic phase in rheumatoid
arthritis (RA) pathogenesis. High levels of activated memory CD4+ and CD8+ T
cells differentiated through cytokine stimulation of naïve cells infiltrate the synovia
(A). RA was classically considered a type 1 T helper (Th1)-mediated disease,
but today data indicate that type 17 T helper cells (Th17) are more important in
its promotion. Evidence shows that type 22 T helper cells (Th22) also contribute
to RA pathogenesis. Function of regulatory T cells (Treg) is also reduced and
effector cell resistance to suppression thus helps to alter the immune balance in
inflamed joints. The figure shows the chemokine receptor expression pattern (B)
and the main secreted cytokines (C) associated with each T cell subtype.

The inflammatory environment also induces Treg expansion,
and large numbers of proliferating Treg cells can be detected in the
inflamed joints of patients (19). Data frommurinemodels indicate
that TNFα can boost Treg cell expansion (60), and thus protect
mice from induction of autoimmune diseases. In man, however,

TNFα has a negative effect on Treg cell expansion in vitro and
in vivo (61, 62). The data indicate that Treg, Th1, and Th17 cells
are the key T cell subsets in joint inflammation (Figure 1).

T cell plasticity is described in many inflammatory conditions.
IL-1β and IL-6 downregulate FoxP3 expression, thus reducing
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Treg suppressive function (63, 64). In the inflamed synovium,
TNFα promotes FoxP3 dephosphorylation and impaired Treg
function (65). In these conditions, Treg cell dysfunction correlates
with increased IL-17+ and IFN-γ+ CD4+ T cell numbers (65). In
these inflammatory conditions, Treg cells differentiate into IL-17-
and IFN-γ-producing effector cells (66, 67). Th17 cells in joints
also show plasticity, as they co-express IFN-γ and transcription
factors characteristic of Th17 (RORC) or Th1 (T-bet) cells; when
cultured in synovial fluid, Th17 cells are reported to convert to
Th1 cells (68–70). It is thus possible that Th17 cells give rise to a
population of Th1 cells in inflamed joints, which could explain the
pronounced Th1 responses in the inflamed synovium (68, 71, 72).

With activated macrophages and granulocytes, these T cell
subsets contribute to the production of the proinflammatory
cytokine cocktail that aggravates RA. TNFα and its receptors
are expressed in human rheumatoid joint tissue (73, 74) and
have a key role in RA, as they participate in cartilage (75) and
bone degradation (76), and also promote IL-1, IL-6, and IL-
8 production (77). In the CIA model of RA, administration
of a specific anti-TNFα monoclonal antibody (mAb) after dis-
ease onset ameliorated inflammation and joint damage (27, 78).
This therapy restores Treg cell function in RA patients (65),
and antibody-based therapies that target TNFα are widely and
successfully used in the clinic (79). IL-1α and IL-1β are also
expressed in abundance in the synovial membrane (80), and
IL-1Rα-deficient mice develop spontaneous arthritis, mediated

in part by amplification of Th17-dependent inflammation (81).
IL-18, another member of the IL-1 superfamily, is detected in
RA synovium (82); symptoms are reduced for CIA in IL-18-
deficient mice, as are those of RA in rodent models when IL-
18 is blocked using neutralizing antibodies (83, 84). Given its
pleiotropic functions, IL-6 is also important in RA; it regulates
the maturation and activation of B and T cells, macrophages,
osteoclasts, chondrocytes, and endothelial cells and has broad
effects on hematopoiesis in the bone marrow. IL-6 deletion pro-
tects DBA/1 mice from CIA, and neutralization of IL-6 reduces
the disease (85, 86). IL-12 is the main stimulator of IFN-γ pro-
duction and of development of Th1 autoimmune responses (87);
although the use of neutralizing antibodies in a murine CIA
model attenuates symptoms, prolonged treatment worsens the
disease (88).

T Cell Trafficking to the Synovium

Synovial inflammation in RA is partially dependent on migration
of inflammatory cells, their retention at the inflammation site, and
insufficient apoptosis of chronic inflammatory and stromal cells
(89). T cell trafficking to the sites of inflammation is enabled by
local activation in synovial vessels of the mechanisms necessary
for leukocyte recruitment; alterations in these mechanisms can
lead to chronic inflammation and autoimmunity (Figure 2).

FIGURE 2 | Extravasation model for T cells at the inflamed joint. In
response to proinflammatory mediators, leukocytes and vascular cells are
activated. Among other immune cells, T cells (Th1, Th17, Treg, and possibly
Th22) initiate a serial cascade (rolling, arrest, spreading, crawling, and

transmigration) and eventually extravasate from blood vessels to the inflamed
joint. The figure shows inflammatory cytokines, selectins, integrins, adhesion
molecules, chemokines, and chemokine receptors involved in T cell recruitment
to and retention in the joint.
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The leukocyte adhesion cascade is a multistep process that
requires the coordinated action of rolling, adhesion, and trans-
migration events. This cascade is currently seen as the result of a
chain of events initiated by leukocyte rolling along the endothe-
lium, followed by their activation and adhesion to endothelial
cells, and finally, migration to the target tissue (13, 14). Only those
leukocyte subsets that express the appropriate set of adhesion
molecules and chemoattractants will be recruited to specific sites.
Leukocyte rolling is mediated by selectins, which are expressed
by most leukocyte populations (L-selectin) and by inflamed
endothelial cells (E- and P-selectins) (90) (Figure 2). Rolling
involves selectins and P-selectin glycoprotein ligand-1 (PSGL-1),
expressed by leukocytes and inflamed endothelial cells, as well as
other glycosylated ligands (91). Interaction between PSLG1 and L-
selectin is needed for leukocyte–leukocyte interactions that enable
leukocyte tethering and adhesion to the inflamed endothelium in
conditions of blood flow (91). E-selectin, which is upregulated in
the inflamed synovium, is decreased after TNF-α therapy (92).
Although serum levels of P- and L-selectin are reported to be
increased in RA patients (93), the use of blocking antibodies and
selectin-deficientmice only correlate P-selectin levels with disease
activity (94, 95).

Integrins also participate in rolling and are responsible for firm
leukocyte adhesion and arrest (13, 14) (Figure 2). Unlike circu-
lating leukocytes, in the synovia, these populations express high
levels of specific subsets of activated integrins. These integrins
interact on the endothelial cell surface with ICAM1 or VCAM1,
adhesion molecules that belong to the immunoglobulin super-
family, a prerequisite for cell extravasation. Distinct cell types
express specific integrins. Whereas α1 are strongly expressed in
activated CD4+ and CD8+ T cells, Th17 cells upregulate α2
integrins, a costimulatory molecule thought to be necessary for
IL-17 production (96, 97). This specific integrin upregulation is
fostered by proinflammatory cytokines in the synovia such as
IL-1 or TNFα (98, 99) and determines cell localization in the
inflamed joint. In addition to its effect on cell adhesion, inter-
action between integrins and their ligands, including fibronectin,
collagen, VCAM-1, or degraded cartilage, also induces cell pro-
liferation, cytokine production, and angiogenesis, contributing to
disease development (96, 100, 101). Antagonists of integrins and
their ligands thus prevent inflammation and angiogenesis in the
murine CIA model (97, 102).

Stimulation by IL-1, TNFα, or IFNγ induces high levels of
soluble and endothelium-bound ICAM-1, the β2 integrin ligand,
in RA patient synovia (98, 103) (Figure 2). The role of ICAM-1 in
RA is supported by lower disease activity in aCIAmodel in ICAM-
1-deficient mice and by clinical studies that showed beneficial
effects of a blocking anti-ICAM-1 mAb in early RA (104, 105).

Endothelial cells respond to inflammatory conditions by pro-
moting expression of adhesion molecules and chemoattrac-
tants that bind directly or indirectly to glycosaminoglycans
(GAGs) on the endothelial cell membrane. Integrin activation,
initiated through chemoattractant-mediated inside–out signal-
ing, induces the conformational changes responsible for the
increased ligand-binding affinity needed for leukocyte arrest. The
chemokine-activated signaling pathways responsible for integrin
regulation and activation are not yet completely understood. G
protein-dependent signaling through small GTPases is involved

in rapid LFA-1 activation (106, 107). Recent reports suggest the
existence of G protein-independent mechanisms that link Janus
kinase (JAK)-mediated chemokine signaling with integrin activa-
tion via RhoA, RAC1, and Rap1 (108–110).

Transendothelial migration following chemotactic gradients
is the final step in leukocyte migration through paracellular or
transcellular pathways into inflamed tissues (Figure 2). Studies
using knockout mice indicate a role in leukocyte transmigration
of endothelial cell junction molecules such as PECAM1, ICAM2,
JAMA, and ESAM (13).

Specificity of this process is achieved through carefully reg-
ulated cell signatures, that is, differential expression of the dis-
tinct components of this leukocyte adhesion cascade, including
selectins, integrins, chemokines, and their respective ligands or
receptors. For example, naïve T cells express low LFA-1, α4 inte-
grin, and CCR7 levels, which allow cell recirculation through
lymphoid tissues but it is insufficient to permit cells entry into
inflamed tissues. In contrast, T effector and memory cells with
elevated expression of LFA-1, α-integrins, E- and P-selectin lig-
ands, CCR1, CCR5, and CXCR3 enter these tissues. The role of
chemokines in T cell recruitment to the synovia is analyzed in
detail in the next section.

These data indicate the potential of T cell migration inhibitors
as targets for anti-inflammatory therapy. Whereas the limited
number of selectins and integrins raises possible specificity prob-
lems of the drugs that target these molecules, the discovery of
chemokines suggested the development of small molecules and
inhibitors with the desired specificity characteristics. Although
selectin, integrin, or chemokine receptor blockade has proved
highly effective in animal models of disease, the transfer of these
results to human diseases has not yet been successful. Promising
therapies have nonetheless been developed that target molecules
involved in leukocyte trafficking. This is the case of anti-VLA-4
neutralizing antibodies (natalizumab) for multiple sclerosis ther-
apy (111) and of anti-CCR9 compounds now in phase III clinical
trials for treatment of Crohn’s disease and inflammatory bowel
disease (IBD) (112, 113). The blockade of signaling pathways
involved in leukocyte trafficking is also being explored, with
promising results. JAK inhibitors are showing utility in clinic
(114), mainly because they regulate cytokine-mediated leukocyte
activation, although a potential effect on cell migration should
also be considered (115). Other inhibitors that target antigen-
mediated B and T cell activation (Syk inhibitors) also show pos-
itive results in phase III trials (116). Given their roles in cell
proliferation and survival and inmacrophage, B cell, mast cell and
neutrophil activation, PI3K, and Bruton’s tyrosine kinase (BTK)
inhibitors are also candidates for therapy (117, 118).

Chemokines as Target of RA

Due to their central role in the selective recruitment and activa-
tion of immune cells at the inflammation site, chemokines and
chemokine receptors are currently considered to potential thera-
peutic targets in several chronic autoimmune disorders. Inducible
and homeostatic chemokines are heavily expressed in RA joints,
produced mainly by activated synovial tissue and infiltrating
leukocytes (119); elevated levels of several chemokines and their
receptors are detected in serum and synovial fluid of RA patients
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(12) (Figure 2). Their relevance in disease progression has been
determined in various animal models of the disease. Chemokines
are implicated in RAdevelopment through recruitment and reten-
tion of different leukocyte populations in the inflamed joint (120,
121), but also elicit functions that contribute to pathogenesis.
Chemokines can induce cytokine and metalloprotease release by
chondrocytes and synovial fibroblasts, which contribute to carti-
lage destruction (122, 123). Other functions include induction of
human chondrocyte death (124), enhanced cell proliferation (12,
125), angiogenesis, and angiostatic activities.

As indicated above, Th17 cells contribute to initiation and
inflammatory phases of RA. Although Th17 cells express other
chemokine receptors such as CCR4, CCR10, and CXCR3 (126,
127), they are characterized by CCR6 expression. CCL20, the
CCR6 ligand, is a selective chemoattractant for T cells, naïve B
cells, and immature DCs. CCR6+ Th17 cells have been identified
in peripheral blood, synovial fluid, and inflamed tissue (128).
CCL20 is expressed strongly at the inflamed joint, which allows
Th17 cell activation and migration to the arthritic joint at early
stages of the disease. Expression of other chemokine receptors in
CCR6+ Th cells is associated with the expression of specific sets
of cytokines. CCR4+/CCR6+ Th cells express high IL-17A levels,
whereas levels of this interleukin are low inCXCR3+/CCR6+cells,
whose IFN-γ levels are high. CCR6+/CCR10+ Th cells express
high levels of IL-22, which defines the Th22 cell population. Other
chemokine receptors found inCCR6+ Th cells are CCR5, CXCR4,
and CXCR6, although they have not been associated with specific
cytokine profiles. This cytokine production attracts and activates
other cell types to the site of inflammation, including monocytes,
neutrophils, synovial , and osteoclasts, which contribute to disease
progression (128). Given this cytokine production, the induc-
tion of inflammatory chemokines during RA progression is not
surprising.

In most cases, IL-1β- and TNF-α-activated cell types in the
inflamed joint induce chemokine expression, although other
cytokines such as IL-17 and IFNγ were also shown to upregulate
expression of several chemokines. IL-1 and TNF-α stimulation
of cells induce high CXCL8 levels in synovial tissue and fluid of
inflamed joints (129, 130), and anti-CXCL8 treatment prevents
neutrophil infiltration and tissue damage in LPS/IL-1-induced
arthritis in mice (131). Production of CCL13, a major chemoat-
tractant for eosinophils, T cells, and monocytes, is enhanced in
cartilage by IFNγ, IL-1β, and TNF-α stimulation. As anticipated,
the expression of these chemokines correlates with the recruit-
ment of cells that express their receptors to the inflamed joint
(132) (Figure 2).

CCL2 is also upregulated in synovial tissue of RA patients
(130). It is produced by chondrocytes and synovial fibroblasts
and can recruit CCR2+ macrophages to the synovia, as well as
T cells, NK cells, and basophils (133, 134). Injection of a specific
neutralizing anti-CCL2 mAb into rats with CIA reduced ankle
swelling associated with decreased macrophage numbers in the
joints (135); similar treatment inhibited arthritis in a MRL-lpr
mouse model (136). Nonetheless, targeting CCL2 is not always
valuable, and anti-CCL2 mAb treatment during the progression
phase of a murine CIA model aggravated RA (137). Results were
also discouraging in CIA models developed in mice that lacked

the CCL2 receptor, CCR2 (138, 139). CCL3 and CCL5 are both
expressed by activated T cells stimulated with IL-1β and TNF-
α, by fibroblast-like synoviocytes, and by mononuclear cells in
RA synovium (140–143); targeting their receptor, CCR5, could
be of interest in pathological conditions. Whereas the percent-
ages of CCR1+ and CCR5+ monocytes are lower in RA patient
peripheral blood compared with normal controls, synovia of these
patients show abundant CCR1 and CCR5 expression, indicating
upregulation of these receptors and/or accumulation of CCR1+

and CCR5+ cells in the synovial compartment (144, 145). In
mice, subcutaneous treatment with a CCR5 antagonist initiated
a few days before clinical signs of arthritis promoted a marked
decrease in leukocytemigration to joints, and thus reduced disease
incidence and severity (146). Suppression of joint inflammation,
reduced joint destruction, and diminished disease development
was observed in CIA in rhesus monkeys treated with a CCR5
antagonist (147). These data are in agreement with reports show-
ing that CCR5 density on the T cell surface determines the effi-
ciency of T cell attraction to the joint, which might explain intra-
individual variability and resistance of Δ32-CCR5 individuals to
RA development (148, 149).

The CXC chemokine also have a role in RA due to their chemo-
tactic effects on cell populations such as neutrophils (CXCL1,
CXCL5, CXCL8), monocytes, and T cells (CXCL4, CXCL9,
CXCL10, CXCL12, CXCL16), which correlates with the presence
of CXCR3+ T cells, recruitment of CXCR6+ Th1 effector cells,
and accumulation of CD4+ T cells in the RA synovium (143).
There is growing evidence of an important functional role for
CXCR4/CXCL12 in T lymphocyte accumulation and positioning
within the rheumatoid synovium. CD4+ T cells in the inflamed
synovium express high CXCR4 levels, which tallies with the
high CXCL12 concentration in RA patient synovia (121) and
suggests that CXCR4 is important for T cell retention in RA-
affected synovial tissues (120). This is further supported by the
observation that Th1 cells are attracted by RA synovial fluid, and
that this chemotaxis can be inhibited in vitro by anti-CXCL12
antibodies (150). These studies show thatCXCL12production and
CXCR4 expression are responsible for the characteristic pattern
of T lymphocyte accumulation seen in the rheumatoid synovium
(Figure 2). In accordance with the role of CXCL12/CXCR4 in RA,
several CXCR4 antagonists, including the binding site competi-
tor AMD3100, have shown therapeutic activity in arthritic mice
(151).

In contrast to CC chemokine, the CXC group can also par-
ticipate in angiogenic or angiostatic effects in RA patient joints.
Synovia from RA patients show increased numbers of blood ves-
sels compared to healthy synovium (12). It is generally thought
that the new vessels accommodate the influx of immune cells into
the joint and thus contribute indirectly to cell infiltration. RA
synovium can show certain histological similarities to lymphoid
tissue, including the presence of germinal centers, B cells, T cells,
and follicular DCs. This could be due to the induction of newly
expressed homeostatic chemokine receptors by the local microen-
vironment once T cells have entered the synovium, together with
local expression of matching chemokines. Consistent with this
hypothesis, CCR7 and CXCR4 are expressed by CD4+ memory
T cells in RA synovial fluid, whereas circulating CD4+ T cells do
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not express these receptors (152, 153). Homeostatic
chemokines that regulate cell traffic in lymphoid tissues are
similarly found in theRA synovia, includingCCL19,CXCL12, and
CXCL13, and therefore can also participate in this lymphoid-like
organization (154).

Although considered an initially promising therapy, results for
blockade of chemokines or chemokine receptors in patients have
been disappointing (155). AmAb against CCL2, the CCR2 ligand,
showed no beneficial effects when administered to RA patients
(156). Similarly, anti-CXCL8/IL-8 antibody treatment did not lead
to clinical improvement in RA patients (157), and although short-
term treatment of active RA patients with a CCR1 antagonist
showed a tendency toward clinical improvement compared to
controls (158), a phase II clinical study did not demonstrate
clinical efficacy after a 6-month treatment (159).

Chemokine biology is more complex than originally antici-
pated. In addition to their considerable promiscuity and redun-
dancy, the chemokine receptors oligomerize at the cell mem-
brane (160, 161). This oligomerization is not limited to other
chemokine receptors, as they can also interact with other GPCR
(162, 163) and with other cell surface molecules such as CD4
(164). Chemokine signaling requires preformed receptor dimers
(165) that allow G protein coupling to the receptor and activa-
tion of G protein-dependent and -independent signaling path-
ways. Chemokine receptor complexes help to generate diversity
in chemokine signaling and function (160, 166, 167). In a com-
plex microenvironment such as that of the inflamed arthritic
joint, chemokine receptors are co-expressed, and chemokines
and cytokines are upregulated. The lack of drugs that target
chemokine receptors efficiently might also reflect greater com-
plexity of the system than initially predicted and indicate that
efficient chemokine inhibition could require additional therapeu-
tic approaches that regulate interactions between chemokines,
and between chemokines and cytokines that recruit proin-
flammatory cells to the arthritic joint. In addition, in vivo
secreted chemokines bind to GAG, allowing formation of chemo-
tactic gradients that direct leukocytes to inflammation sites.
CXCL12 attached to sulfate proteoglycans has been observed on
endothelial cells of the RA synovium, a process upregulated by
inflammatory cytokines (168). These findings indicate that both
chemokine upregulation and the GAG-dependent immobiliza-
tion of these mediators on endothelial cells are potential targets
for intervention.

Conclusion

During the course of RA, T cells and other immune cells are
recruited to the synovial tissue, where they produce large amounts
of proinflammatory cytokines and interact with synovial fibrob-
lasts and macrophages, all of which contribute to pathogenesis
development. These include CD4+ and CD8+ cells, mostly with
an activated phenotype. RA was classically considered a Th1-
mediated disease, but evidence today indicates clear involvement
of Th17, Th22, and Treg cells; it nonetheless remains unclear
whether these are truly separate subpopulations or they represent
plasticity and heterogeneity within the Th17 lineage. Each of these
cell subsets acts at distinct stages in the course of the disease,
to participate in the complex network of cell–cell interactions
that governs RA initiation and progression, including release
of inflammatory mediators, induction of cell proliferation, and
angiogenesis. Cell migration into the synovium is controlled by
the expression of selectins and their ligands, integrins, adhe-
sion molecules, and chemokines and their receptors; all these
molecules define the specific T cell subsets in the inflamed joint.
The use of antagonists to and mice deficient in these proteins
has been essential for defining their role in different steps of the
disease, and prompted the use of inhibitors in clinical studies.
The diversity of chemokines and receptors suggested they were
ideal targets that only affect specific leukocyte subsets, and over
the last two decades, most pharmaceutical and biotechnology
companies developed chemokine receptor-targeting reagents that
were analyzed for RA therapy. These clinical studies were not
as successful as anticipated and dashed the promise of target-
ing individual chemokine receptors for RA. Alternative strategies
aimed at intracellular signaling pathways or interactions between
chemokine receptors must thus be considered.
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