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Research from over the past 20 years has implicated dipeptidyl peptidase (DPP) IV and
its family members in many processes and different pathologies of the immune system.
Most research has been focused on either DPPIV or just a few of its family members. It is,
however, essential to consider the entire DPP family when discussing any one of its mem-
bers. There is a substantial overlap between family members in their substrate specificity,
inhibitors, and functions. In this review, we provide a comprehensive discussion on the
role of prolyl-specific peptidases DPPIV, FAP, DPP8, DPP9, dipeptidyl peptidase II, prolyl
carboxypeptidase, and prolyl oligopeptidase in the immune system and its diseases. We
highlight possible therapeutic targets for the prevention and treatment of atherosclerosis,
a condition that lies at the frontier between inflammation and cardiovascular disease.

Keywords: dipeptidyl peptidase, prolyl oligopeptidase, fibroblast activation protein ααα, prolyl carboxypeptidase,
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Introduction

Research from over the past 20 years has implicated the dipeptidyl peptidase (DPP) family in various
physiological processes and pathologies of the immune system.Usually only four prolyl-specific pep-
tidases are considered: DPPIV (EC 3.4.14.5), fibroblast activation protein α (FAP; EC 3.4.21.B28),
and the more recently discovered DPP8 and DPP9 (EC 3.4.14). However, due to similarities in
substrate specificity and structural homology, it is more relevant to consider a broader family
that also includes prolyl oligopeptidase (PREP; EC 3.4.21.26), dipeptidyl peptidase II (DPPII) (EC
3.4.14.2), and prolyl carboxypeptidase (PRCP; EC 3.4.16.2). First, DPPII and PRCP share the α/β
hydrolase fold with the other DPPs and the catalytic triad is completely conserved in both enzymes
(2).Moreover, DPPII can cleave several DPPIV substrates in vitro (3). Conversely, due to its substrate
preference for tripeptides (4), DPPII could actually be considered as a prolyl carboxytripeptidase,
emphasizing its similarities to PRCP. Another argument for considering a broader family stems from
the fact that functional studies on the role of peptidases rely heavily on the use of enzyme inhibitors
and many of the inhibitors used in earlier studies are now known to inhibit more than one family
member. For example, early studies on DPPIV used inhibitors which we now know also inhibit
DPPII, DPP8, DPP9, FAP, and/or PREP due to their sequential and/or structural similarity [e.g., Ref.
(5–9)]. PRCP is known to be inhibited by KYP-2047 and Z-Pro-Prolinal at higher concentrations,
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which have often been used for the functional study of PREP
[e.g., Ref. (10–12)]. Table 1 summarizes the most commonly
used DPP inhibitors and their selectivity compared to DPPIV.
In view of the aforementioned reasons and for the sake of

simplicity, we will use “DPP family” as a blanket term, which
includes DPPII, PRCP, and PREP even though strictly speak-
ing they are not DPPs. Figure 1 provides a general overview
of this broadly defined DPP family. The roles of various family

TABLE 1 | Overview of commonly used inhibitors within the DPP family and the ratio of inhibitor needed to inhibit the respective DPP family member
compared to what is needed to inhibit DPPIV.

Inhibitors DPPII DPP8 DPP9 FAP PREP PRCP Reference

Clinical Alogliptin >14,000 >14,000 >14,000 >14,000 >14,000 ND (16)
Linagliptin >100,000 40,000 >10,000 89 >100,000 ND (17)
Saxagliptin >50,000 390 77 >4,000 ND ND (18)
Sitagliptin >5,550 >5,550 >2,660 >5,550 >5,550 ND (19)
Talabostat 4 8 4 3 44 ND
Vildagliptin >100,000 270 32 285 60,000 ND (20, 21)

Experimental 1G244 1 <10−3 <10−3 1 ND ND (21)
KYP2047 1 ND 1 1 <10−4 1 (12, 22)
UAMC01110 1 ND 0.5 <10−4 0.1 ND (23)
UAMC00039 <10−5 1 2 >10 ND ND (24, 25)
Z-Pro-Prolinal ND ND ND ND <10−2 * (26, 27)

Partly adapted from Deacon (28).
*Z-Pro-Prolinal is currently used as an inhibitor for PRCP although it is in vitro 103 times more selective toward PREP.

FIGURE 1 | The DPP family. Summary of the names, the localization, and most important field of action of all members of the DPP family. sDPPIV, soluble DPPIV;
sFAP, soluble FAP; DPP9-L, long form of DPP9; N, nucleus; LYSO, lysosome; MT, microtubules; in, intracellular; out, extracellular.
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members in certain aspects of the immune system or immune
dysfunction have been reviewed in the past [e.g., Ref. (13–
15)]. In this review, we provide a comprehensive discussion
and update on the roles of DPPIV, DPPII, DPP8, DPP9, FAP,
PREP, and PRCP in the immune system and inflammatory dis-
ease. We highlight the role of these enzymes in atherosclerosis,
a condition that lies at the frontier between inflammation and
cardiovascular disease, as the DPP family encompasses possi-
ble therapeutic targets for the prevention and treatment of this
disease.

A Brief Guide to the DPP Family

Dipeptidyl Peptidase IV
The prototypical DPP, DPPIV (often DPP4 in medical jargon)
cleaves off an N-terminal dipeptide from peptides with Pro or
Ala on the penultimate position. Its localization as a soluble
enzyme in body fluids, or anchored in the plasma membrane
of cells provides it with the necessary access to cleave a wide
range of bioactive peptides. As such, it can modify their biologi-
cal activity. Glucagon-like peptide (GLP)-1 and -2, and glucose-
dependent insulinotropic peptide (GIP) (29, 30), substance P
(31), neuropeptide Y (NPY) (32), stromal cell-derived factor-
1α/β (SDF-1α/β or CXCL12) (33), granulocyte macrophage
colony-stimulating factor (GM-CSF) (1), CXCL10 (34–36), and
high-mobility group box 1 (HMGB1) (37) have been identi-
fied as physiological substrates, while others, such as RANTES,
have been proposed based on in vitro experiments [e.g., Ref.
(38)]. DPPIV also performs many of its physiological func-
tions through interactions with other proteins, such as colla-
gen, fibronectin, adenosine deaminase (ADA), caveolin-1, and
the mannose-6-phosphate/insulin-like growth factor II receptor
(M6P/IGFIIR) (39–41). Some of those will be discussed in more
detail below.

Dipeptidyl peptidase IV is well known for its role in glucose
homeostasis. It has become a validated therapeutic target for the
treatment of type 2 diabetes (T2D) (46). DPPIV inhibitors reduce
the rate of GLP-1 inactivation (Boxes 1 and 2). It has also been
shown to be involved in cancer biology. The role of theDPP family
in cancer has been addressed in several other reviews (39, 47–51).
Finally, DPPIV has recently come back into the center of attention
as the receptor for the MERS coronavirus (52).

BOX 1 Incretins.
The incretins are a group of glucose-lowering molecules produced by the
intestines. The best known incretin is glucagon-like peptide-1 (GLP-1). This
incretin is derived from proglucagon and secreted after a meal from L-cells
in the distal ileum and colon. In the pancreas, it induces insulin secretion and
biosynthesis while lowering glucagon secretion. In addition, GLP-1 increases
the β-cell mass, thereby restoring insulin production. It is clear that GLP-1
also has functions outside glucose metabolism. Its receptor, GLP-1-R, is not
only found in the pancreas but also expressed in brain, lung, kidney, stomach,
and heart (42, 43). Recently, it was shown that stimulation after myocardial
infarction reduces the infarct size (44, 45). Currently, GLP-1 agonists are
approved for the treatment of type 2 diabetes. These incretin mimetics seem
to have a slightly better efficacy as DPPIV inhibitors and lead more frequently
to weight loss. Unfortunately, an important drawback for their therapeutic use
is that they can only be administered by subcutaneous injection (46).

Fibroblast Activation Protein ααα
Fibroblast activation protein α, also known as seprase can present
itself as a type II transmembrane protein or as a shedded plasma
protease (57). In the latter case, it is also known as antiplasmin-
cleaving enzyme, which converts α2-antiplasmin into a more
active form, suppressing fibrinolysis (58). Some of the known
DPPIV substrates were later found to be cleaved in vitro by
FAP as well (59), though any physiological relevance remains
unclear.

Unlike DPPIV, FAP also possesses a gelatinase activity. This
enables FAP to degrade proteins of the extracellular matrix (60).
This is of particular interest with regard to its involvement in
a number of pathological processes (47). FAP is highly induced
during inflammation, activation of hepatic stellate cells in liver cir-
rhosis and strongly expressed bymesenchymal cells of remodeling
tissue (47, 61). FAP is also a key regulator during tumor growth
and metastasis (47). As all these processes require degradation of
the extracellular matrix, FAP’s involvement in these pathologies
is most likely associated with its gelatinase activity (51). Its role
in cancer biology has been reviewed before (47, 62). It is inter-
esting to note that, so far, in clinical trials Talabostat has shown
minimal or no clinical benefit for the treatment of metastatic
colorectal cancer, advanced non-small cell lung cancer, or stage
IV melanoma (63–65). It should be mentioned, however, that
Talabostat is a broad-range inhibitor also targeting DPPIV, DPP8,
and DPP9.

Dipeptidyl Peptidases 8 and 9
Dipeptidyl peptidases 8 and DPP9 show DPPIV-like activity and
share a very high-sequence similarity to each other (77% aa sim-
ilarity, 57% aa identity) (24). These cytoplasmic enzymes have
several isoforms. It has been a matter of debate whether all are
expressed as protein in cells and, if so, whether they are active
(66–69). Interestingly, the N-terminal extension of the longer
DPP9 variant contains a nuclear localization signal and, indeed,
this form localizes to the nucleus (69). DPP8 has been shown to
cleave a number of DPPIV chemokine substrates in vitro (70).
Another DPPIV substrate, NPY, has indirectly been shown to be

BOX 2 DPPIV inhibitors.
Dipeptidyl peptidase IV inhibitors prolong the biological half-life of the incretins
and are therefore used for the treatment of type 2 diabetes. Sitagliptin,
vildagliptin, saxagliptin, linagliptin, and alogliptin are DPPIV inhibitors currently
available on the market for treatment of type 2 diabetes. Sitagliptin and
alogliptin are highly selective toward DPPIV in vitro, whereas vildagliptin and
saxagliptin are less selective with regard to DPP8 and 9, and linagliptin with
regard to FAP (28). Their clinical efficacy and safety in the use of type 2
diabetes seem comparable as far as can be judged from the data available.

There is a growing interest toward a use outside type 2 diabetes as it has
become clear that DPPIV inhibitors have pleiotropic effects. While negative
effects have been found in heart failure (53), some studies suggest them as
a possible therapeutic strategy in cardiovascular pathologies (28, 54). The
SITAGRAMI trial and follow-up studies revealed that the combination of a
DPPIV inhibitor with granulocyte-colony-stimulating factor or in monotherapy
presents a therapeutic option after myocardial infarction (55, 56). As stated
above, the mechanism is not yet clear but may be explained by a longer
biological half-life of DPPIV substrates, glucagon-like peptide-1, B-type natri-
uretic peptide, and stromal cell-derived factor-1 α/β. All three peptides have
a cardioprotective effect that is abolished by DPPIV-mediated cleavage. For
an extensive review of the involved substrates, see Matheeussen et al. (43).
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a DPP8 and DPP9 substrate as well (71). Efforts have been made
to find intracellular DPP8 and 9 substrates using a peptidomic
approach (72), but so far it has been hard to attribute physiological
relevance to the possible substrates beyond the role of DPP8 and
9 in intracellular peptide turnover (73).

The physiological functions of DPP8 and DPP9 are still not
properly understood.Mainly, a lack of available knockout animals,
specific inhibitors, and substrates has hampered progress (24).
A mouse model has been established with a targeted inactiva-
tion of DPP9 enzymatic activity (74), but homozygous DPP9-
inactive neonates die within 8–24 h after birth. Despite these lim-
itations, some indications toward their role are surfacing. Using
immunohistochemistry, DPP8 and 9 were found associated with
spermatozoids and spermatids and the short mRNA of DPP8
is predominantly expressed in testes (75, 76), suggesting a role
in spermatogenesis and male fertility. Recent work has found
SUMO1 to be an allosteric activator of DPP9 (77), whereas a small
peptide corresponding to the interaction surface of SUMO1 is a
non-competitive inhibitor of DPP8 and DPP9 (78). A genome-
wide association study has linked DPP9 to idiopathic pulmonary
fibrosis (79).

Finally, a number of studies have shown a role for DPP8 and
DPP9 in apoptosis (71, 80–83). Two studies showed that overex-
pression enhanced induced apoptosis and impaired cell adhesion
and migration (80, 81). Conversely, DPP8/9 inhibition in tumor
cells decreased the number of viable cells because of a decreased
cleavage of pro-apoptotic NPY (71). In macrophages, inhibition
caused a marginal, yet significant increase in apoptosis, indepen-
dent of NPY cleavage (82). Interestingly, vildagliptin, a DPPIV
inhibitor already on the market to treat type 2 diabetes, but with
poorer selectivity toward DPP8 and 9, was shown to enhance
parthenolide’s anti-leukemic activity through its inhibition of
DPP8 and 9, and not DPPIV (83).

Dipeptidyl Peptidase II and Prolyl
Carboxypeptidase
Prolyl carboxypeptidase, also called angiotensinase C or lyso-
somal Pro-X carboxypeptidase, is a lysosomal carboxypeptidase
sharing strong sequence homology with the likewise lysosomal
DPPII (4, 84). PRCP preferentially cleaves off the C-terminal
amino acid when Ala or Pro is in the penultimate position, while
DPPII targets N-terminal X-Pro or X-Ala dipeptides (85, 86). In
addition to a structural similarity, PRCP and DPPII have partially
overlapping substrate specificities due to DPPII’s preference for
tripeptide substrates (4). Perhaps surprisingly, Gly-Pro-pNA and
Ala-Pro-pNA, two typical synthetic DPP substrates, have actually
been used to perform PRCP activity measurements (87).

Prolyl carboxypeptidase is particularly known as one of the
key enzymes of the renin–angiotensin system (RAS). It inactivates
the vasoactive peptides angiotensin II and angiotensin III by
cleaving off the C-terminal Phe (88). α-Melanocyt-stimulating
hormone 1–13, an anorexigenic neuromodulator, is inactivated
by PRCP, implying a role in body weight control (89). Based
on the involvement of PRCP in the conversion of these peptide
hormones, the enzyme has also been associated with diseases,
such as hypertension, diabetes mellitus, obesity, inflammation,
and cardiovascular dysfunction (90, 91).

Dipeptidyl peptidase II has no known natural substrates. The
DPPIV substrate substance P has been shown to be cleaved
by DPPII in vitro (3), but much less efficiently, casting doubt
over any physiological relevance. It has been shown that inhi-
bition or silencing of DPPII causes apoptosis of quiescent
G0 lymphocytes (92–94). On the other hand, a highly spe-
cific DPPII inhibitor, UAMC00039, did not induce apopto-
sis, autophagy, or necrosis in human leukocytes (25, 95), but
this study did not specifically look at quiescent cells or lym-
phocytes. Finally, changes in DPPII activity levels have been
observed in a number of pathologies, such as neurodegenera-
tive disorders, myopathies, cancer, and gastro-intestinal disor-
ders (4).

Prolyl Oligopeptidase
Prolyl oligopeptidase is an oligopeptidase with endopeptidase
activity. It has been shown to be localized in the cytoplasm (96–
99), but given its ability to inactivate several neuropeptides in vitro
by limited proteolysis (100–115), its involvement in the in vivo
generation of immunoactive peptides N-acetyl-prolyl-glycyl-
proline and N-acetyl-seryl-aspartyl-lysyl-proline (116, 117), and
its presence in plasma (118, 119), it most likely also has an
extracellular role.

Initial interest for PREP derived from the positive effects of
PREP inhibitors on scopolamine-induced amnesia in rats (120–
123). PREP inhibition was also found to promote neuronal sur-
vival and neurite outgrowth of cerebellar granule cells (124). How-
ever, a recent study in mice shows that the lack of PREP in vivo
causes a reduction of synaptic spine density in the hippocampal
region along with reduced long-term potentiation and memory
functions (125).

Many of PREP’s functions aremediated through its interactions
with other proteins. PREP is known to interact with GAP-43 (126,
127), α-tubulin (96), and GADPH (128). Its most studied inter-
action is with α-synuclein (126), reviewed in Ref. (129). PREP
and α-synuclein have been shown to co-localize in cell models of
stress and in the substantia nigra of post-mortem Parkinson’s dis-
ease brain (11, 130). In vitro, the aggregation rate of α-synuclein
increases in the presence of high concentrations of PREP, which
is abolished through active site inhibitors of PREP and absent
with a catalytically impaired PREP mutant (131). In vivo, PREP
inhibition reduces α-synuclein aggregates in a cellular and animal
model for Parkinson’s disease (11).

The DPP Family in the Immune System

The DPP Family in the Innate Immune System
DPP Family Members in Monocytes and
Macrophages
The role of DPPIV in monocytes and macrophages has been
somewhat contested. Whereas DPPIV’s presence on monocytes
and macrophages has been shown repeatedly in mice and rats
(132–134), its expression in human monocytes and macrophages
is less obvious. Figure 2 shows an overview of the expres-
sion of DPPIV throughout the immune system. In visceral obe-
sity, DPPIV expression is low on peripheral blood monocytes,
macrophages, and dendritic cells, but it is upregulated in vitro
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FIGURE 2 | Summary of CD26/DPPIV expression in cells of the immune system.

after differentiation and activation of isolated monocytes into
macrophages or dendritic cells, and in vivo locally in adipose tissue
(135). Interestingly, the authors showed that macrophage- or den-
dritic cell-associated DPPIV most likely binds ADA, promoting
local degradation of adenosine, a T-cell proliferation suppressor,
thereby inducing T-cell proliferation (135). Three other studies
also found no to low DPPIV expression or activity associated with
human monocytes and/or macrophages (82, 136–138). Others
have investigated DPPIV in monocyte- or macrophage-like cell
lines (136, 137, 139–144). In HL-60 cells, its expression has been
found to be regulated by differentiation into macrophage-like
cells (139). DPPIV inhibitor alogliptin can affect ERK activa-
tion, MMP1 and IL-6 secretion in U937 cells (140, 141). How-
ever, these studies employed alogliptin at concentrations lower
than its IC50 for DPPIV. It is therefore questionable whether
the observed effects were mediated by DPPIV at all. On the
other hand, proliferation is reduced in the presence of a DPP
inhibitor in U937 cells expressing high levels of DPPIV, but
not in the same cell type expressing low levels of DPPIV (144).
Moreover, the same inhibitor causes the former cells to secrete
lower amounts of IL-1β, but higher amounts of TNFα (144).
It could be that inhibition merely increases TNFα’s half-life, as
DPPIV has been implicated in its degradation in U937 cells (137).
In THP-1 cells, DPPIV inhibitors alogliptin and sitagliptin both
reduced these cells’ chemotactic potential (142). DPPIV inhibitors
sitagliptin and NVPDPP728 also reduced NLRP3, TLR4, and
IL-1β expression and increased GLP-1R expression in THP-1
cells and this effect was blocked through PMA differentiation
(143). Importantly, such cell lines have been derived from differ-
ent types of myeloid leukemia, and as it is known that DPPIV

expression is often dysregulated in cancer (47–51), the physio-
logical relevance of these findings remains uncertain. FAP has
been shown on tumor-associated macrophages in human breast
cancer (145).

Dipeptidyl peptidase 8/9 activity has been found in human
monocytes and U937 cells (136). DPP8 was found associated
with activated microglia/macrophages in a rat model of cere-
bral ischemia (146). DPP8 and 9 are abundantly present in
macrophage-rich regions of atherosclerotic plaques (82). Interest-
ingly, DPP9 is upregulated after in vitromonocyte-to-macrophage
differentiation. Moreover, inhibition or RNA silencing of DPP9
attenuates pro-inflammatory M1, but not M2, macrophage acti-
vation (82).

In rats, DPPII is expressed in tissue-residentmacrophages (147,
148). Humans show DPPII activity in monocytes as well as U937
cells (25, 136). Human blood derived alveolar macrophages show
high-PRCP activity (138, 149). Interestingly, in a mouse in vivo
angiogenesis assay, macrophage infiltration into the wound was
increased in mice with a PRCP deletion (150).

Prolyl oligopeptidase activity has been shown in mouse and
rat peritoneal macrophages and in rat pulmonary macrophages
(134, 151, 152). Its activity in mouse peritoneal macrophages is
increased after thioglycollate ellicitation (134). In addition, PREP
has been identified as a neurotoxic component in the supernatant
of activated THP-1 cells, which are monocyte-like cells (153).
Apparently, these cells secrete PREP upon activation with IFNγ
and LPS and partly because of this, their supernatant is toxic to
neuroblastoma SH-SY5Y cells, as shown through the use of PREP-
specific inhibitors (153). PREP’s mode of action in this remains
unclear.
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DPP Family Members in Granulocytes
Recently, a study showed that DPPIV acts as a chemorepellent
for human and murine neutrophils (154). Adding recombinant
DPPIV to purified human neutrophils in an Insall chamber causes
the neutrophils to migrate away from the higher concentration
of DPPIV. This effect is blocked by DPPIV inhibitors, meaning
that the effect is mediated through DPPIV’s enzymatic activity,
although a candidate substrate is not obvious. Moreover, in a
mouse model of acute respiratory distress syndrome, oropharyn-
geal aspiration of DPPIV prevented accumulation of neutrophils
in the lung (154). By contrast, PREP is involved in the generation
of prolyl-glycyl-proline, a collagen fragment that is an efficient
neutrophil chemoattractant (155). Human peripheral blood neu-
trophils contain PREP activity and are themselves capable of
generating prolyl-glycyl-proline after LPS-activation, alluding to a
self-sustaining pathway of neutrophil inflammation (116). PRCP
is also abundantly expressed in human neutrophils (90).

The recruitment of eosinophils is affected by DPPIV activity.
CCL11, also known as eotaxin, is a DPPIV substrate and cleavage
by DPPIV prevents the activation of its receptor CCR3 (156).
In rats, it was shown that administration of CCL11 results in
eosinophil recruitment and this recruitment is significantly more
effective in DPPIV-deficient F344 mutants (156).

Finally, DPPII activity has been reported in the granules of
mast cells in several publications (147, 148, 157). It is released
from peritoneal mast cells upon degranulation and is apparently
inhibited by histamine and Zn2+ at concentrations present in the
granules of mast cells (157).

DPP Family Members in Natural Killer Cells
Dipeptidyl peptidase 4 is present in low amounts on freshly iso-
lated human NK cells and its expression is only upregulated in a
small subpopulation after IL-2 stimulation (158). In that study, it
was also shown that DPPIV inhibition suppresses DNA synthesis
and cell cycle progression of NK cells, but these effects may be
DPP8/9 mediated as the inhibitors used in that study are now
known to also inhibit DPP8/9 activity (159). Another study shows
that DPPIV is actually only expressed by a small subpopulation
of peripheral NK cells (160). The natural cytotoxicity of NK cells
is not influenced by the presence or absence of DPPIV on their
cell surface (158, 160). However, DPPIV-negative NK cells show
significantly less CD16-dependent lysis than DPPIV-positive NK
cells (160). Interestingly, NK cytolytic function against tumor
cells was diminished in DPPIV-deficient rats in a model for lung
metastasis (161).

Figure 3 shows an overview of published data on the DPP
family in the innate immune system.

The DPP Family in the Adaptive Immune
Response
DPP Family Members in Humoral Immunity
Only about 5% of freshly isolated CD20-positive B cells express
DPPIV, but this fraction grows significantly upon pokeweedmito-
gen (PWM) or S. aureus protein stimulation (162). Similar to
NK cells, DPPIV inhibitors significantly suppress DNA synthe-
sis in B-lymphocytes (162), but again these inhibitors are now
known to also inhibit DPP8 and 9 (159). Mouse spleen-derived

B-lymphocytes only express low amounts of DPPIVmRNA (163).
DPP8 and 9 mRNA, on the other hand, are expressed at much
greater levels in these cells, and they are upregulated in Raji cells,
a B-lymphocyte-like cell line, after PWM, LPS stimulation or
mitomycin c treatment, and downregulated after DTT treatment
(163). DPP8 and 9 have also been shown immunohistochemically
in human lymph follicular lymphocytes (164). DPPII activity has
also been shown in human B-lymphocytes (25).

DPP Family Members in Cell-Mediated Immunity
Dipeptidyl peptidase IV was originally described as a surface
marker for T-lymphocytes, in which case it is better known as
CD26, and later more specifically for a subset of CD4-positive
memory cells, CD4+ CD45RO+ CD29+ cells, which respond
maximally to recall antigen tetanus toxoid and induce B-cell IgG
synthesis (165, 166). Indeed, CD26 surface expression is aug-
mented along with the antigen sensitivity of a particular CD4+

T-cell clone (167). CD26high CD8+ T-cells belong to the early
effector memory T-cell subset (168). CD26 is also a marker for
T-cell activation (165, 169–171). CD26 expression on CD4+ T-
cells correlates with TH1 responses. Stimuli that typically induce
a TH1 phenotype tend to induce CD26 expression (172). Addi-
tionally, the CD4+ T cells capable of transendothelial migration
in vitro are characterized by a bright expression of CD26 (173,
174), but CD26 does not seem to be actually involved in T-cell
adhesion to endothelial cells or fibroblasts (175). Recently, it was
shown that up to 98% of all TH17 cells show very high CD26
expression, with mean fluorescent intensity on these cells almost
twice as high as on TH1 or TH2 cells. Therefore, the authors of this
study suggest CD26 as a marker for TH17 cells (176). Conversely,
CD26 has been proposed as a negative marker for the selection
Treg cells due to its very low-surface expression on these cells
(176–178).

CD26 is also a costimulatory molecule for T-cell activation.
Crosslinking of CD26, along with CD3, stimulates T-cell activa-
tion and proliferation (168, 179, 180). CD26 can also directly acti-
vate T-cells in an alternative activation pathway, but this requires
the presence of the TCR/CD3 complex (181–183). During cos-
timulation, CD26 is mannose-6 phosphorylated and internalized,
the latter of which is mediated in part by its interaction with
M6P/IGFIIR (184). It then localizes to lipid rafts where it might
interact with CD45, required for TCR signaling, facilitating co-
localization of this molecule with TCR signaling molecules (185,
186). A number of candidate binding partners for costimula-
tion have been proposed. ADA and CD26 are known binding
partners (187). Even though ADA binding to CD26 does not
seem to be essential for immune functions in humans (188),
the nanomolar affinity of this interaction probably reflects its
importance (189). Indeed, association with free ADA or ADA
presented by ADA-anchoring proteins on dendritic cells seems
to costimulate T-cells through CD26 binding (190, 191). On the
other hand, it has been shown that soluble DPPIV enhances T-cell
proliferation independent of its enzyme activity or ADA-binding
capability (192). Interestingly, the ADA–CD26 interaction can
be inhibited by HIV-1 external envelope protein gp120 and this
requires interaction of gp120 with CXCR4 (189). In fact, evi-
dence suggests a physical association between CXCR4 and CD26
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FIGURE 3 | Overview of the expression and function of individual DPP family members in the innate immune system. Expression-based evidence
is in italic.

on peripheral blood lymphocytes (193). Fibronectin is another
known binding partner of CD26 involved in T-cell costimulation
(194–196). Finally, CD26 interacts with caveolin-1 on monocytes.

This interaction causes an upregulation of CD86 on these cells,
which potentiates antigen-specific T-cell activation (197). Most
studies seem to find no need for DPPIV’s enzymatic activity for
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succesful costimulation, as evidenced through the use of inhibitors
and catalytically impaired DPPIV mutants (198–201).

Dipeptidyl peptidase 8 and 9 are present in baboon spleen
interfollicular T-lymphocytes and Jurkat T cells (164). They are
upregulated in the latter after PWM and LPS, but not PHA, stim-
ulation (163, 202, 203). Activation of PWM-stimulated T-cells is
suppressed after DPPIV/8/9 inhibition. Moreover, DNA synthesis
andT-cell proliferation are reduced, aswell as production of IL-2, -
10, -12, and IFN-γ. This is due to an induction of TGF-β secretion
(159, 204–207). Inhibition also upregulates CTLA-4 and down-
regulates DPPIV expression (206, 208). These observations might
be physiologically relevant as endogenous inhibitors of DPPs are
known which have similar effects in cell-based experiments as the
synthetic inhibitors (209, 210).

Dipeptidyl peptidase II activity is higher in T-lymphocytes than
in B-lymphocytes (25) and absence ofDPPII steers T-lymphocytes
toward a TH17 phenotype. T-lymphocytes of DPPII KO mice

hyperproliferate and secrete IL-17 after CD3 crosslinking or after
in vivo priming and in vitro antigen-specific restimulation (211).
PREP activity has also been shown inmouse T-lymphocytes (212).
Its activity is significantly higher in immature, double-positive
thymocytes compared to mature, single-positive thymocytes, or
peripheral T-cells. T-cells stimulated with Con A followed by
IL-2 show a time-dependent increase in PREP activity and pre-
treatment of cells with a PREP inhibitor renders them resistant to
activation-induced cell death (212).

Figure 4 shows an overviewof in vitrodata onDPP involvement
in primary human T cell activation.

The DPP Family in Inflammatory Disease

The DPP family has been reported to be dysregulated or even
involved in a number of inflammatory disorders. Expression levels
of a number of family members are modulated in rheumatoid

FIGURE 4 | Overview of in vitro data on DPP involvement in
primary human T cell activation. (A) M6P/IGFIIR associates with
mannose-6-phosphorylated DPPIV causing it to associate with CD45
in lipid rafts. This facilitates co-localization with the TCR signaling
molecules for T cell costimulation. (B) Interaction of ADA presented by
ADA-anchoring proteins on dendritic cells with DPPIV on T cells

causes costimulation. (C) Interaction of DPPIV on T cells with
caveolin-1 on monocytes induces the expression of CD86 on the
latter. Interaction of CD86 with CD28 costimulates T cells. (D)
Inhibition of DPP8/9 induces TGFβ in PWM-stimulated T cells. TGFβ
attenuates T cell activation. (E) Inhibition or absence of DPPII steers T
cells toward TH17 differentiation.
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arthritis. Whereas the density of CD26 on peripheral T cells is
increased in patients, it is low on synovial fluid T cells (213–215).
DPPIV activity in plasma, serum, or synovial fluid of patients
has also been found to be decreased, similar to results in several
rat models of arthritis (216–222). Interestingly, rats resistant to
induction of arthritis show higher plasma DPPIV levels (222).
By contrast, DPPII and PREP activity are increased in serum
or synovial fluid of arthritis patients (219–221). Likewise, FAP
immunoreactivity is much higher in fibroblast-like synoviocytes
of rheumatoid arthritis patients compared to osteoarthritis con-
trols (223). DPPIV’s involvement in rheumatoid arthritis has been
studied, but remains unclear. On the one hand, inhibition can
suppress development of arthritis in rats (224). Note, however,
that effects mediated through other DPPs are hard to exclude
as these inhibitors were developed before DPP8 and DPP9 were
discovered. On the other hand, induced arthritis is more severe
in DPPIV-deficient mice (216). This may be due to increased
levels of circulatingCXCL12 (216), aDPPIV substrate shown to be
involved in rheumatoid arthritis. Several case reports in patients
seem to suggest a link between the development of rheumatoid
arthritis and the use of DPPIV inhibitors (225–227). PRCP has
also been associated with rheumatoid arthritis as its activity was
shown in synovial fluid isolated from arthritic joints (149).

Inflammatory bowel disease shows a distinct expression pattern
of the DPP family. DPPIV serum or plasma activity seems to
be lower in patients, whereas there is an increase of circulating
CD26+CD25+ cells with a higher CD26 surface expression (228,
229). FAP is heavily expressed bymyofibroblasts in the submucosa
strictures in Crohn’s disease, and is upregulated after stimulation
with TNFα or TGFβ (230). In a mouse model, colonic DPPII
and DPP8 mRNA and DPPII activity are increased, while colonic
DPP8/9 activity only increases significantly in mice that are also
DPPIV knockouts (231). In mouse models, inhibition or abroga-
tion of DPPIV seems to at least partially ameliorate symptoms,
possibly by increasing circulating GLP-2, impairing neutrophil
recruitment, and maintaining Treg populations (231–236). Some
of those beneficial effects may be mediated in part by the other
DPPs, as additive effects were found for DPPIV KO and the
DPP inhibitors (231, 234, 237). A recent study suggests that the
ameliorative effects of DPP inhibitors aremost likely notmediated
through GLP-2 protection (238).

The DPP family has also been studied in neuroinflammation.
Ischemia-induced neuroinflammation in rats prompts a distinct
expression and activity pattern of the DPPs. In the days following
ischemia, the brain of these rats undergoes a complex reorgani-
zation of DPP expression with changes in mRNA, protein, and
activity levels of DPPII, 4, 8, and 9 in cortical neurons, microglia,
and macrophages (146). Similarly, PREP seems to be associated
with astrocytes and microglia in lesioned inflamed brains of rats
(239).DPPIV andPREP alsomay be involved inmultiple sclerosis.
CD26+ T cells were found to correlate with disease scores (240).
SolubleDPPIV levels are elevated in cerebrospinal fluid of patients
(241). Plasma PREP activity, on the other hand, is lower in patients
with relapsing–remitting or primary progressivemultiple sclerosis
and in clinically isolated syndrome (118, 119). Interestingly, PREP
inhibition seems to aggravate symptoms in a mouse model of
multiple sclerosis (118).

In systemic lupus erythematosus, DPPs also seem to be dysreg-
ulated. In mouse models, DPPII and PREP activities are increased
in plasma, spleen, kidney, and liver, whereas DPPIV activity is
decreased (221, 242). Human patients also show elevated DPPII
and reduced DPPIV activities in serum, along with reduced num-
bers of CD26+ T cells (221, 243). Interestingly, serum DPPIV
levels are inversely correlated with disease score (243). FAP
immunoreactivity is decreased in the synovium of lupus patients
(244).

Finally, DPPIV has been studied in psoriasis, an immune-
mediated chronic inflammatory disorder with primary involve-
ment of skin and joints. Its mRNA, protein levels and activity are
higher in psoriatic skin samples (245, 246). By contrast, serum
DPPIV levels and activity seem to be lower in patients (247,
248), accompanied by a reduction of peripheral CD8+CD26+

T cells (249, 250). Two case reports suggest a link between
the use of DPPIV inhibitor sitagliptin and psoriasis. While one
woman developed a psoriaform eruption 6 days after starting
sitagliptin treatment (251), another patient’s psoriatic lesions
gradually diminished and were effectively gone 3months after the
start of sitagliptin treatment (252).

The DPP Family in Atherosclerosis

Dipeptidyl peptidase IV has recently received much attention for
its potential as a therapeutic target for the treatment of atheroscle-
rosis (Box 3) (253). This is not surprising considering the cur-
rent use of DPPIV inhibitors in the treatment of T2D and the
fact that T2D is associated with a higher risk for atherosclero-
sis (28, 254). In the ApoE−/− mouse model of atherosclerosis,
DPPIV inhibition generally reduces plaque area and monocyte
and macrophage plaque infiltration (255–257). A reduction in
the number of plaque lesions or in smooth muscle cell content
have also been observed (255, 256), as well as lower plaque
MMP9 and higher plaque collagen levels, suggesting increased
plaque stability (258). One study reported effects of DPPIV inhi-
bition on atherosclerotic plaques of only diabetic ApoeE−/− mice
(141), but more recently, Terasaki et al. found similar effects
in non-diabetic and diabetic ApoE−/− mice (259). Likely, such
differences can be explained by the fact that different DPPIV
inhibitors were employed. Effects of DPPIV on atherogenesis
similar to those observed in ApoE−/− mice have been reproduced
in LDLR−/− mice (142, 260). In human atherosclerotic plaques,

BOX 3 Atherosclerosis.
Atherosclerosis is the most common underlying cause of cardiovascular
diseases and should be regarded as an inflammatory disease. It starts
with dysfunction of the endothelium leading to the expression of leukocyte
adhesion molecules, such as selectins and integrins. Locally produced pro-
inflammatory cytokines attract the immune cells into the inner layer of the
endothelium. However, not only leukocytes are found in the plaque but
also low-density lipoprotein particles (LDL) and their oxidized counterparts
(oxLDL). In the plaque, monocytes differentiate into macrophages, phagocy-
tose the oxLDL and turn into so-called pro-atherogenic foam cells. This pro-
cess leads to a self-sustaining, local inflammation leading to plaque growth,
and migration of smooth muscle cells into the core. A plaque is defined as
stable as long as it is contained by a thick fibrous cap. However, the latter
is slowly degraded by the proteolytic enzymes from the leukocytes. This
eventually leads to rupture and the formation of arterial thrombi (264, 265).
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DPPIV immunoreactivity could only be found on endothelium of
neovessels (82). It was recently found thatDPPIV activitymay be a
predictor for the onset of atherosclerosis in otherwise healthy Chi-
nese individuals (261). Another prospective study investigated the
influence of vildagliptin or sitagliptin treatment on intima-media

thickness, a surrogate marker for atherosclerosis. This study
found that treatment with vildagliptin or sitagliptin reduced
intima-media thickness, suggesting that DPPIV inhibition might
be beneficial in atherosclerosis in humans as well (262). More-
over, treatment naïve T2D patients treated with alogliptin

FIGURE 5 | Dipeptidyl peptidase inhibition as a putative strategy
for the treatment of atherosclerosis. (1) DPP9 inhibition would
attenuate M1 macrophage activation, reducing local inflammation.
Reduction in TNFα would reduce FAP on smooth muscle cells (SMCs).
This and FAP inhibition (2) would reduce collagen degradation and

therefore plaque instability. PREP inhibition (3) would reduce neutrophil
infiltration and consequently endothelial dysfunction and further
monocyte infiltration. DPPIV inhibition (4) would prevent SMC
proliferation, foam cell formation, endothelial dysfunction, and
monocyte infiltration.

Frontiers in Immunology | www.frontiersin.org August 2015 | Volume 6 | Article 38710

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Waumans et al. The DPP family, PREP and PRCP in immunity and inflammation

for 3months saw a significant decrease in their circulating athero-
genic lipids (263).

It has been suggested that DPPIV inhibitors’ anti-atherogenic
effects are mainly mediated through decreased monocyte infil-
tration, as DPPIV inhibitors suppress monocyte activation and
chemotaxis in vitro (142, 258). DPPIV inhibition also reduces
in vitro foam cell formation in exudate peritoneal macrophages
from ApoE−/− mice (255). Moreover, soluble DPPIV stimulates
in vitro proliferation of smooth muscle cells and this can be
reduced through the addition of a DPPIV inhibitor (256, 260).
Finally, active circulating GLP-1 levels are augmented and this
improves endothelial dysfunction (259, 266). Probably, DPPIV
inhibition improves atherosclerosis through a combination of
all these mechanisms. Indeed, incretin antagonists only partially
attenuate the anti-atherogenic effects of DPPIV inhibition, sug-
gesting that other mechanisms beyond incretin preservation are
in play (259). Interestingly, monocyte–endothelial cell adhesion is
abrogated by an anti-SDF-1α antibody in vitro (267). LDL seems
to induce SDF-1α expression and leads to smooth muscle cell
proliferation and inhibition of cell apoptosis (267, 268). SDF-1α is
a DPPIV substrate, which loses its biological activity after cleavage
(216). As DPPIV inhibition seems to improve atherosclerosis,
whereas intact SDF-1α appears to be deletorious, it could be
argued that SDF-1α cleavage by DPPIV does not play a major role
in atherosclerosis.

Dipeptidyl peptidase 8 and 9 have been found to be abundantly
present in the macrophage-rich regions of human atherosclerotic
plaques and considering DPP9’s role in macrophage activation, it
might potentially be involved in atherogenesis (82). FAP expres-
sion is enhanced in some, but not all types of human atheromata.
It is found on smooth muscle cells, and its expression correlates
with macrophage burden, probably due to the fact that TNFα
upregulates FAP in smooth muscle cells in vitro. As it is mainly
associated with collagen-poor regions and can digest type I col-
lagen and gelatin in vitro, FAP probably contributes to plaque
instability (269).

Interestingly, many of the studies reviewed above show the
potential of targeting DPP family members for the treatment of
atherosclerosis (seeFigure 5). FAP inhibitionmight reduce plaque
instability by decreasing collagen breakdown; DPP9 inhibition is
likely to attenuate M1 macrophage activation, reducing the local
inflammatory cascade; DPPIV inhibition may decrease monocyte
infiltration, foam cell formation, improve endothelial dysfunc-
tion, and reduce smooth muscle cell proliferation; and finally,
PREP inhibition might reduce neutrophil infiltration, preventing
endothelial dysfunction, and monocyte infiltration. All of this
shows the possibilities of repositioning DPPIV inhibitors, cur-
rently being used to treat type 2 diabetes, as well as the potential
of targeting other members of the DPP family.

Conclusion

Caution should be taken when interpreting results from literature
data based on DPP inhibitors, especially from older studies. It is
nowknown that, under the experimental conditions used,many of
these inhibitors are not specific for one particular family member.
The reported findings, however, remain interesting. This review
has shown extensive involvement of members of the DPP family
in the immune system. It is clear that these enzymes hold great
potential as targets for the treatment of certain inflammatory dis-
orders. Particularly, the possibility of targeting DPP family mem-
bers for the prevention and treatment of atherosclerosis warrants
further investigation.
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