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The primary event for initiating adaptive immune responses is the encounter between T 
lymphocytes and antigen presenting cells (APCs) in the T cell area of secondary lymphoid 
organs and the formation of highly organized intercellular junctions referred to as immune 
synapses (IS). In vivo live-cell imaging of APC–T cell interactions combined to functional 
studies unveiled that T cell fate is dictated, in large part, by the stability of the initial contact. 
Immune cell interaction is equally important during delivery of T cell help to B cells and 
for the killing of target cells by cytotoxic T cells and NK cells. The critical role of contact 
dynamics and synapse stability on the immune response is well illustrated by human 
immune deficiencies in which disease pathogenesis is linked to altered adhesion or defec-
tive cross-talk between the synaptic partners. The Wiskott–Aldrich syndrome (WAS) is a 
severe primary immunodeficiency caused by mutations in the Wiskott–Aldrich syndrome 
protein (WASp), a scaffold that promotes actin polymerization and links TCR stimulation 
to T cell activation. Absence or mutations in WASp affects intercellular APC–T cell com-
munications by interfering with multiple mechanisms on both sides of the IS. The warts, 
hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is caused 
by mutations in CXCR4, a chemokine receptor that in mutant form leads to impairment 
of APC–T cell interactions. Present evidences suggest that other recently characterized 
primary immune deficiencies caused by mutation in genes linked to actin cytoskeletal 
reorganization, such as WIP and DOCK8, may also depend on altered synapse stability. 
Here, we will discuss in details the mechanisms of disturbed APC–T cell interactions in 
WAS and WHIM. Moreover, we will summarize the evidence pointing to a compromised 
conjugate formation in WIP, DOCK8, and X-linked lymphoproliferative syndrome.
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introduction

Cells of the immune system communicate with one another by physical contacts and by soluble 
signals that may act on the interacting cells or at a distance. The formation of intercellular junctions 
is essential to bring receptor–ligand couples close enough to trigger downstream signaling and to 
transmit activatory/inhibitory signals between the two cells. Tight membrane apposition is also a 
prerequisite to allow focused delivery of soluble factors in a spatially confined fashion, ensuring 
specificity and effectiveness during killing of targets or polarized secretion of soluble mediators. 
Immune cell interaction is supported by several interconnected systems that assist the various 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=fimmu.2015.00433&domain=pdf&date_stamp=2015-08-xx
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2015.00433
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2015.00433&domain=pdf&date_stamp=2015-08-28
https://creativecommons.org/licenses/by/4.0/
mailto:benvenut@icgeb.org
http://dx.doi.org/10.3389/fimmu.2015.00433
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00433/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00433/abstract
http://loop.frontiersin.org/people/246315/overview
http://loop.frontiersin.org/people/181523/overview


August 2015 | Volume 6 | Article 4332

Kallikourdis et al. Human immunodeficiencies related to APC/T cell interaction

Frontiers in Immunology | www.frontiersin.org

stages of contact formation from initial scouting to adhesion and 
stabilization of the junction. The importance of such pathways is 
underscored by human pathologies caused by mutations in genes 
controlling these systems.

APC–T Cell encounter in the T Cell Area of 
Lymph Nodes

The first challenge for a T cell entering the T cell area of a lymph 
node is to find its cognate antigen on the surface of a dendritic 
cell (DC). This process is aided by the strategic distribution 
of DCs in an extensive network and by chemokine cues that 
guide motility and positioning in lymph nodes. In vivo imaging 
experiments have shown that lymphocytes entering the T-cell 
zones move randomly over densely packed networks of DCs and 
fibroblastic reticular cells (FRCs) (1, 2). This motility is driven by 
CCR7-binding chemokines. Besides CCL21, other chemokines 
produced in lymph nodes may coordinate specific encounters 
between cells. Thus, CCL3 and CCL4 seem to be involved in 
recruitment of naïve CD8+ T cells, which can upregulate CCR5 
expression during inflammation, to sites where they can receive 
help from CD4+ T cells (3). CXCR3 expression on CD4+T cells 
is important for the interaction with antigen bearing DCs and 
for the global intranodal positioning of T cells (4). Moreover, the 
same chemokine receptor selectively controls repositioning of 
memory T cells within lymph nodes during a recall response (5).

Interaction of the TCR with cognate antigen results in the acti-
vation of phospholipase C-γ and Ca2+ influx via calcium release 
activated channels (CRAC) Orai1/CRACM1 in the plasma 
membrane (6, 7). Among the other effects, Ca2+ influx induces 
ATP synthesis and release (8) that, in turns, induces P2X4/P2X7-
mediated calcium waves in the neighboring lymphocytes and acts 
as a paracrine signaling molecule that regulates T cell motility 
during immune responses (9). ATP-induced Ca2+ waves induce 
a “stop” not only in cells that have already found their antigenic 
partners but also in lymphocytes that may be potentially triggered 
within the tissue. Several studies have indeed observed that in the 
lymph node microenvironment there is a significant drop in the 
velocity of polyclonal T cells during antigenic stimulation of TCR-
specific cells (10, 11). The reduced motility of T lymphocytes in a 
tissue where antigenic recognition is occurring may be strategic 
for a better scanning of resident DCs and, in this perspective, 
extracellular ATP may alter the equilibrium between adhesive 
and chemoattractant forces operating in lymph nodes during 
T cell priming and thus modify T cell activation. Interestingly, 
destabilization of T–DCs conjugates in vivo by regulatory T cells 
is, in part, due to high levels of expression of CD39 and CD73, 
two cell surface ecto-enzymes that hydrolyze extracellular ATP to 
ADP, AMP and adenosine that, acting through the A2A receptor, 
prevents activation and proliferation of CD4+ T cells (12, 13).

The Duration of APC–T Cell Contacts and 
the Consequences for T Cell Activation

The dynamics of cellular contacts and the functional conse-
quences of short and prolonged cellular interactions in terms of 

T cell activation have been investigated mostly in the context of 
naïve T cells priming by DCs. In vitro studies showed that T cells 
remain stably attached to DCs in conditions that lead to T cell 
activation, whereas short intermittent contacts dominate when 
DCs are immature and unable to induce activation. With the 
limits of an in vitro analysis, these findings provided one of the 
first correlations between contact duration and function (14). 
An opposite result, i.e., short contacts may be enough to trigger 
naïve T cell activation, was obtained when analyzing cells in a 
collagen 3D matrix, suggesting that the requirements for T cell 
activation may depend on the context (15). Direct imaging of the 
immune response in lymph nodes revealed the presence of both 
sequential, brief, T–DC contacts (kynapses) and long antigen-
specific contacts (synapses) (16). Different phases of short- and 
long-lasting antigen presenting cell (APC)–T contacts alternates 
during initial priming and longer arrest of T cells on the APC sur-
face predominates in conditions of full T cell activation (17–19). 
This concept was later refined by studies showing that the affinity 
of the pMHC for the TCR critically determines contact duration. 
High-affinity antigens induce a complete T cell stop, whereas 
low-affinity antigens cause only T cell deceleration (20–22). 
Interestingly, the presence of bystander cells, such as regulatory 
T cells, modifies contact dynamics hampering the formation of 
stable contacts (12, 20). The state of T cell activation is a further 
critical parameter that determines contact dynamics. Naïve T 
cells stop and form mostly synapses upon antigen recognition, 
whereas previously activated T cells can collect activatory signals 
from kinapses (23). It has also emerged that kinapses may lead 
to T cell activation when antigen density is high enough to allow 
integration of signals over multiple serial encounters (24).

Molecular Structure of the immune 
Synapse

Ex-vivo analysis of single T cells engaged in contact with APCs has 
been instrumental to understand the subcellular reorganization 
occurring in T cells during activation (Figure 1). Because of some 
analogies with the mode of intercellular communication used by 
neurons, the specialized structure formed between a T cell and an 
antigen presenting B cell was named as “immune synapse” (25, 
26). The immune synapse (IS) was initially described as a central 
area containing signaling components such as the TCR and PKC-θ 
kinase (cSMAC), a peripheral ring containing adhesive molecules 
(pSMAC), and a distal region rich in actin (dSMAC). Subsequent 
studies using planar bilayer as surrogate APCs allowed the 
quantitative and dynamic analysis of synapse formation in T cells 
and to assess the contribution of single receptors (MHC peptide 
complexes, adhesion, and co-stimulatory molecules) on the reor-
ganization of signaling platforms, cytoskeletal remodeling, and 
polarized vesicular trafficking (Figure 1). These studies revealed 
that microclusters (MCs) of 10–20 TCRs molecules forms in the 
dSMAC and are translocated into the cSMAC, where the signaling 
activity of the TCR extinguishes [(27–30) and reviewed in Ref. (31)].  
An essential component to coordinate TCR signaling is the actin 
cytoskeleton. This is needed to support early events of T cell 
activation, such as clustering of TCRs in MCs, recruitment of 
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signaling complexes to MC, and later mobility of signaling platforms.  
In turn, recruited signaling molecules, such as the adaptor LAT, 
serve as platforms to dock cytoskeletal regulatory proteins, such 
as Vav and Wiskott–Aldrich syndrome protein (WASp), necessary 
to sustain T cell activation (30, 32). Most recently, a novel view 
of the actin cytoskeleton as a global regulator of the cytoplasm 
poroelasticity and consequently of T cell signaling is emerging 
(33).

Interconnected to the role of actin cytoskeleton, the integrin 
LFA-1, acts at several levels in the IS. First of all, lateral move-
ments of LFA-1, ensured by linkage with the underlying actin 
cytoskeleton, are essential to ensure correct T cell activation (31, 
34). Besides its function in supporting synaptic architecture, 
LFA-1 is also an important co-stimulatory molecule during T cell 
activation by increasing the sensitivity for antigen by 100-fold. 
Mechanistically, LFA-1 engagement is known to enhance activa-
tion of early TCR signaling molecules and to promote later events 
of T cell proliferation and cytokine production (35, 36). LFA-1 
plays a role also at earlier stages of synapse formation. During 
scanning in search of matching TCR/pMHC, the initial adhesive 
interactions between T cells and APC are mediated by LFA-1 and 
ICAM-1,3 on T cells and APCs, respectively (37). The functional 
relevance of LFA-1 on contact duration has been addressed by 
in vivo studies that correlated contact duration with acquisition 

of effector functions. Expression of the LFA-1 ligand ICAM-1 is 
required to sustain long antigen-specific DC–T contacts, whereas 
short interactions can still occur in the absence of ICAM-1. 
Importantly, T cells primed by ICAM-1 deficient DCs undergo 
early events of activation but fail to differentiate into effective 
memory CD8 T cells (38, 39). A mirroring finding in CD4 T cells 
lacking LFA-1 support is the importance of the LFA-1/ICAM-1 
adhesion module to achieve optimal T cell priming in vivo (38). 
Interference with positive regulator of integrin activation yielded 
similar results. For instance, deletion of Talin in T cells leads to 
unstable contacts with APCs and failure to undergo full T cell 
activation (40, 41).

Soluble immunotransmitters like chemokines play also an 
important role in IS stabilization and T cell proliferation (42, 
43). When approaching an APC, T cells emit CCR5 (or CXCR4)-
enriched protrusions that indent the APC surface; this situation 
resembles the concentration of chemokine receptors at the lead-
ing edge of chemoattractant-stimulated T cells (44). These inter-
actions culminate in the formation of a stable synapse, whereas 
CCR5 and CXCR4 are stably concentrated. Chemokine release at 
the immunological synapse and chemokine receptor recruitment 
into this region result in prolonged T-cell–APC interaction, and 
facilitate T cell activation by reinforcing T cell–APC pair attrac-
tion and delivering co-stimulatory signals (43). Interestingly, 
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FiGURe 1 | Mutations in proteins controlling synapse stability linked to 
development of primary immune deficiencies. (A) Schematic 
representation of the molecules implicated DC–T cells cross-talk during 
synapse formation. Several interconnected systems, including membrane 
receptors and cytosolic proteins, contribute to form and stabilize the interaction 
between the two cell types. (B) Disease-causing mutations targeting proteins 
that control synapse stability. Wiskott–Aldrich syndrome protein WASp, 

causative of WAS syndrome, is a key node controlling actin polymerization in 
immune cells. Mutations in WASp have been associated to several defects in 
synapse formation on both the T-cell and the DC side. Most recently 
discovered mutations in DOCK8 and WIP cytoskeletal regulators cause 
immunodeficiency syndromes whose cellular basis include disturbance of the 
intercellular interactions. SAP, an adaptor for SLAM receptors mutated in XLP 
syndrome, is affecting selectively the stability of the B–T synapse.
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chemokine recognition in the context of the immunological 
synapse induces a Gq/11-mediated CCR5 signaling, suggesting 
that chemokine receptor signaling pathways are modified by 
TCR triggering (43). Notably, coupling of Gq to the chemokine 
receptors delays their internalization, explaining the accumula-
tion of CCR5 and CXCR4 at the T cell immunological synapse. 
In this scenario, chemokine receptors prolong the duration of T 
cell–APC interaction and facilitate T cell activation by increas-
ing LFA-1 affinity (45), reinforcing T cell–APC pair attraction 
and avoiding pre-mature splitting due to other chemoattractant 
sources. On the basis of their actions, a dual role for chemokines 
in T-cell activation has been proposed, while the presence of 
chemoattractant forces when T cells are searching for the right 
partner may indeed prevent T cell–APC pairing, production of 
chemokines by the APCs, and subsequent accumulation and 
trapping of Gq-coupled chemokine receptors at the IS, may rep-
resent a strategy to reinforce T-cell–APC interaction and facilitate 
T-cell activation (46, 47).

The wiskott–Aldrich Syndrome

Cytoskeletal remodeling is a highly dynamic process that ensures 
spatio-temporal coordination of diverse functions, such as 
mechanical support to the cell cortex, migration, phagocytosis, 
intercellular interactions, and subcellular distribution of signaling 
molecules and vesicles flow. Actin dynamics are tightly controlled 
by several different nucleation-promoting factors in turn activated 
by multiple complex pathways. Formation of branched actin net-
works is regulated by the Arp2/3 complex that is induced by the 
VCA domain contained in the WASp family of actin regulatory 
proteins. The eight members of the family (N-WASp, WAVE 1–3, 
WASH, JMY, and WHAM (48)] have different activation modes 
and control differential functions in various tissues. WASp, the 
founding member of the family, is expressed exclusively in the 
hematopoietic lineage and it was first discovered because loss-
of-function mutations in its coding gene are associated with the 
X-linked immunodeficiency Wiskott–Aldrich syndrome (WAS) 
(49). The disease is characterized by multiple clinical manifesta-
tions, including susceptibility to infections, hemorrhages and 
eczema, and multiple forms of autoimmune disorders (50).

Wiskott–Aldrich syndrome protein mutations impact on 
disparate cellular functions in different hematopoietic lineages 
(51, 52). T cells were the first lineage recognized as being heavily 
affected by WASp mutations. A detailed review on the role of 
WASp in T cells has been recently published (53). Here, we will 
recall the main features of WASp deficient T cells and present the 
emerging defects in WASp null APCs.

Initial studies identified defects in TCR signaling and activation 
of IL-2 in T cells from WAS patients (54–56). WASp null T cells, 
similarly to cells of other hematopoietic lineages, also present with 
alteration of motility (57, 58). Later studies helped to better define 
how WASp controls selectively multiple sequential events in T 
cell activation. WASp is recruited to sites of early TCR receptor 
signaling in multimeric complex together with LAT, SLAP-76, 
Nck, and the cdc24 GEF Vav (32, 59, 60). At the synaptic interface, 
binding of activated cdc42, PIP2, and phosphorylation of tyrosine 
291 by Src family kinases cooperate to release the auto-inhibited 

conformation of WASp, exposing the VCA domain and inducing 
acting nucleating activity [reviewed in Ref. (61)]. Genetic deletion 
of WASp in T cells causes alterations in the early dynamic events of 
stabilization of the synapse. Upon TCR triggering cycles of stable 
symmetric synapse structure alternates to phases of T cell motility 
when the synaptic structure is lost. WASp is required to reform 
the synaptic structure after these periodic breaking rather than for 
the initial synapse formation (62). This is in line with the finding 
that T cells derived from WASp patients, despite normal conjugate 
formation, fail to spatially organize signaling in the cSMAC and 
to polarize the microtubules organizing center (63). Downstream 
events of T cell activation, such as calcium fluxes, IL-2 production, 
and T cell proliferation, are also affected by WASp deficiency both 
in mouse models and in patient’s-derived cells (64–68). The exact 
role of WASp-mediated F-actin dynamics in regulating synaptic 
structure and downstream signaling is still not fully resolved. A 
recent study proposes that WASp controls selectively a small frac-
tion of synaptic F-actin required to sustain PLC-γ activation and 
calcium ion elevation, thereby linking the control of early events to 
later T cell activation (69). It is also emerging that WASp can have 
actin-independent activities in T cells, functioning as a transcrip-
tion factor to regulate transcription of cytokine genes (70). Thus, 
WASp plays a central role in controlling multiple integrated func-
tions that link TCR signaling to full T cell activation. Moreover, its 
role varies depending on the T cell subset, reflecting the existence 
of cell type-specific modes of actin regulation besides common 
shared mechanism (53).

Regulated cytoskeletal remodeling is needed also to support 
the function of APCs during synapse formation and maintenance. 
DCs are active player in synapse formation by virtue of their mem-
brane protrusions that facilitate scanning of the T cell repertoire 
and interaction with T cells (14, 71, 72). This flypaper membrane 
activity of DCs is regulated by members of the Rho family of small 
GTPase and by actin regulatory proteins. Genetic deletion of an 
upstream regulator of cytoskeletal remodeling, the Rho GTPases 
Rac, inhibits dendrites extension, resulting in reduced DC–T 
contact time and inefficient priming (71). In WAS, loss of proper 
actin cytoskeletal rearrangement hampers the function of DCs at 
several levels. Defects in adhesion to ICAM-1, polarization and 
responses to chemokine gradients (73, 74) render DCs unable to 
properly migrate from site of antigen acquisition in the periphery 
to lymph nodes. Failure to properly initiate adaptive immunity 
by WASp deficient DCs arises from defects that go beyond the 
capacity to properly home to lymph nodes (75). Delivery of the 
model antigen DEC205-OVA to resident DCs resulted in poor 
activation of antigen-specific CD8+ T cell in WASp null recipi-
ent. Further experiments to dissect the individual contribution of 
migration, antigen processing and DC–T cell interaction in vivo 
demonstrated that WASp null DCs fail to efficiently prime naïve 
CD8 T cells even when the migratory defect is compensated 
(75). Imaging of DC–T cell contacts in vitro and by two-photon 
microscopy in vivo indeed showed that WASp null DCs fail to 
form stable and long-lasting interactions with antigen-specific T 
cells (75). Interestingly, T cells primed by WASp null DCs can 
enter the cell cycle but fail to accumulate, similarly to what hap-
pens when priming is promoted by Cdc42 knock down DCs, an 
upstream regulator of WASp (76). A similar defect in the stability 
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of DC–T cell contacts and in the capacity to support formation of 
an organized synaptic structure was seen also using CD4+ T cells 
(77). Taken together, these data indicate that defective cytoskeletal 
organization in WAS DCs affects two key steps during priming, 
i.e., migration to lymph nodes and formation of stable DC–T cell 
contacts and T cell activation once in lymph nodes. Thus, not only 
presentation of antigens that are taken up in the periphery and 
transported to secondary lymphoid organs but also presentation 
of blood born antigens by lymph node resident DCs is likely to be 
compromised in WAS. The impact of DCs to the overall immune 
deficiency is demonstrated by the fact that rescue of DCs func-
tions upon gene therapy is capable to improve T cell priming (78).

It is also emerging that plasmacytoid DCs and myeloid cells 
present with defects in innate immunity pathways in WAS (79). 
The role that an altered cytokine secretion profile may have on 
synapse stability and signaling at the IS is an intriguing aspect that 
is currently being investigated by our group.

Wiskott–Aldrich syndrome patient experience recurrent 
autoimmune manifestations, whose cellular basis are not yet 
fully understood (80). Functional defects in regulatory T cells are 
likely to contribute to loss of peripheral tolerance (81–83). DC–T 
cell interactions are critical for the establishment of peripheral 
T tolerance besides initiation of adaptive immunity (17, 84). It 
is interesting to speculate that besides cell intrinsic Tregs abnor-
malities, defective interaction with APC may contribute to loss of 
peripheral tolerance in WAS.

Other Actin-Related immune Deficiencies

Recently, a new cytoskeletal-related immunodeficiency caused by 
mutation in the WASp interacting protein WIP has been identi-
fied (85). WIP controls WASp activity in at least three different 
ways: regulating its stability, controlling its activation by Cdc42, 
and bringing WASp to sites of active polymerization (86). Indeed, 
a stop codon mutation in the WIP sequence that silenced protein 
expression resulted in almost undetectable WASp level, and clini-
cal features similar to WAS (85). At the cellular level, WIP was 
shown to control podosomes assembly and cell migration in DCs 
(87, 88). In addition, WIP binds to actin and controls cytoskeletal 
integrity independently of WASp. The WASp-independent actin 
regulation exerted by WIP is essential for T cell homing to infected 
tissue (89). A further interesting function that has been attributed 
to WIP, independently of its binding to WASp, is the control of 
lytic granule secretion in NK cells. The failure in cytolytic activity 
of WIP null NK cells is due to lack of transport and polarization 
of granules at the IS (90). The role of WIP in controlling IS forma-
tion in T cells and DCs has not yet been addressed. However, it is 
likely that priming will not be efficient because of defects on both 
sides of the IS, thus explaining the poor immune responses (91).

A further example of immunodeficiency arising form cytoskel-
etal abnormalities that affect synapse formation is DOCK8 defi-
ciency. DOCK8 is a GTP-exchange factor for Rho and Rac GTPases 
that controls conversion of extracellular signals into activation of 
actin regulatory proteins. Mutations in DOCK8 were found to be 
the genetic basis of a combined immunodeficiency characterized 
by increased susceptibility to skin viral infections, hyper IgE syn-
drome, T cell lymphopenia, and impaired antibody response (92). 

At the cellular level, DOCK8 was shown to be required for the 
accumulation of the integrin ICAM-1 at the B cell synapse and its 
mutation compromise synaptic architecture and B cell functions 
(93). Marginal zone B cells are highly reduced in DOCK8, similarly 
to what has been observed in WAS (94). DOCK8 mutant T cells 
were also shown to have defective LFA-1 polarization in synapse, 
resulting in decreased T cell proliferation and survival (95). The 
DC compartment is also affected in a way reminiscent of defects 
observed in WAS, such as defective homing to lymph nodes and 
reduced T cell priming activity (96). Although the direct role 
of DOCK8 in controlling the stability of the DC-T synapse has 
not been addressed, it is reasonable to predict that alterations in 
contact duration may contribute to disease pathology.

The wHiM Syndrome

As discussed above, chemokines and their receptors have a 
dual role in localization of T cells and APCs within second-
ary lymphoid organs, as well as in enhancing the strength 
of the T–APC interaction. Intriguingly, the relevance of the 
chemokine–chemokine receptor axis in promoting stable syn-
apses has been further emphasized by recent studies on the rare 
immune deficiency warts, hypogammaglobulinemia, infections, 
and myelokathexis (WHIM). A chemokine-mediated regulation 
of the duration of T–APC interactions was shown to contribute 
to the cellular basis of T cell-dependent response defects in this 
disease (47). The WHIM syndrome is an inherited immuno-
deficiency that features a wide range of symptoms, including 
recurring infections, human papillomavirus (HPV)-induced 
warts, reduced long-term immunoglobulin G (IgG) titers, 
myelokathexis, and leukopenia (97–100). The syndrome is 
associated with dominant mutations in the chemokine receptor 
CXCR4 that lead to truncation of its carboxy-terminal domain. 
This leads to a defect in the ability of the receptor to internalize 
after binding its cognate ligand, CXCL12. As a consequence, 
immune cells bearing the WHIM-mutant receptor display 
increased signaling and enhanced migration after stimula-
tion by chemokine (98, 101–103). Historically, this enhanced 
functionality of the mutant CXCR4 has provided a mechanistic 
explanation for the abnormal retention of neutrophils in the 
bone marrow (myelokathexis), as demonstrated by experiments 
in a human-to-mouse in vivo xenograft model and in a zebrafish 
model (101, 104). Yet, symptoms of WHIM syndrome patients, 
such as the inability to successfully mount responses to a recur-
ring pathogen and the decreased capacity to produce hyper-
mutated IgG signify that antigen-specific memory responses, 
antibody class-switching and affinity maturation are defective 
in these individuals (99). The finding that CXCR4, along with 
other chemokines, is utilized in the organization of lymphoid 
organ follicles enabled the speculation that possible aberrations 
in lymphoid organ architecture could be the cause of the above 
adaptive immunity defects in WHIM (99). Reports of disrupted 
lymph node spatial organization in a recent mouse knock-in 
model of WHIM support this hypothesis (105). Nonetheless, the 
generation of antigen-specific memory, Ig class switching and 
affinity maturation do depend on the formation of successful T 
cell–APC interactions via immunological synapses (106). Recent 
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work has identified that T cells from WHIM patients, or indeed 
healthy donor T cells transfected with the dominant, WHIM-
mutant CXCR4, form less stable conjugates with superantigen-
pulsed B cells. Importantly, this only occurs in the presence of 
competing migratory (“go”) signals from exogenous CXCL12, 
which appear to affect the mutant but not the wild-type receptor. 
A very similar impairment of T–APC immunological synapse 
stability occurs between antigen-specific WHIM-mutant T cells 
and antigen-loaded DCs in ex vivo lymph node slice cultures 
derived from a retrogenic model of WHIM, imaged via 2-photon 
microscopy (47). While both wild-type and WHIM-mutant 
CXCR4 are recruited to the immunological synapse, exogenous 
CXCL12, which is present in lymph nodes (107), is able to “dis-
tract” only the hyperfunctional WHIM-mutant CXCR4 away 
from the synapse. Indeed, wild-type CXCR4 is unable to impair 
immunological synapse formation (108) and has no effect on T 
cell activation (109, 110). Intriguingly, however, the hyperfunc-
tional WHIM-mutant CXCR4 appears to exceed a threshold that 
favors motility over formation of stable immunological synapses, 
resulting in aberrant T cell activation (47). Further molecular 
studies will tell us more about the regulation of T–APC interac-
tions. Nonetheless, the finding that many of the WHIM defects 
are reversible using a pharmacological inhibitor of CXCR4 is an 
interesting demonstration of how chemokines and their recep-
tors, in specific circumstances, have the ability to affect T cell 
function.

Synaptic Defects in Patients with X-Linked 
Lymphoproliferative Disease

X-linked lymphoproliferative disease (XLP) is caused by 
loss-of-function mutations in signaling lymphocyte activation 
molecule-associated protein (SAP), an adaptor linking SLAM 
family receptors to downstream signaling. The protein is pri-
marily expressed in T cells, NK cells, and B cells. XLP patients 
are subjected to severe Epstein–Barr viral infections and develop 
lymphomas and lymphoproliferative disorders (111). At the cel-
lular level, the disease is characterized by a defect in germinal 
center formation and consequently poor humoral response, 
abnormalities in NKT cell development, NK cell cytotoxicity, 
and cytokine production (112). In the context of this review, 
it is interesting to discuss the evidences pointing to disturbed 
B–T cell interaction to explain poor germinal center formation. 
Upon initial activation of T cells by DCs in lymph nodes, the 
second circuit of immune cell interaction includes motile but 
prolonged interactions between activated B cells and T cells at 
the border between the follicle and the T cell zone, followed by 
translocation of T cells in the germinal center to sustain the 
germinal center reaction. Follicular helper T cells, specialized 

in this process, express high levels of SAP and SLAM (113). 
In vivo imaging of B–T interactions during T cell-dependent B 
cell-activation revealed that SAP-deficient T cells are intrinsi-
cally unable to form stable contact with B cells. Interestingly, this 
defect is selective for B–T cell interaction, as DC–T cell interac-
tions proceed normally. These data show that SAP-associated 
family members controls, selectively, adhesive mechanism 
required to stabilize T cell–B cell conjugates required to deliver 
to B cells the signals supporting full B cell proliferation (112, 
114). Further insight into the role of SAP and SLAM receptor in 
assembling B–T synapse comes from the finding that the SLAM 
receptor Ly108 is a potent negative regulator of T–B cell adhe-
sion, counteracted by SAP, that act by recruiting the phosphatase 
SHP-1 at the synapse (115).

SAP functions also in controlling adhesion during cytolysis. 
SAP-deficient cytotoxic T lymphocytes fail to assemble a proper 
synaptic structure during conjugation to target cells, with altered 
polarization of perforin granules and lipid raft at the contact site 
(116, 117). In line with this observation, SAP-deficient NKT cells 
fail to polarize the microtubule-organizing center toward the 
target cell, resulting in reduced killing ability (118).

Conclusion

A class of primary immunodeficiency is caused by pathogenic 
mutations in genes controlling immune cell trafficking and cel-
lular interactions dynamics (Figure 1). The cellular basis of these 
diseases has been increasingly investigated helping to improve 
patients management. Moreover, analysis of these naturally 
aris ing mutant cells revealed important insights into basic 
functioning of the immune system. As a prominent example, 
WASp mutant cells have been instrumental in understanding 
actin-mediated signal transduction during TCR triggering and 
to unveil the importance of an intact actin cytoskeleton in APCs. 
Characterization of mutant T cells in less common immuno-
deficiency like WHIM, WIP, DOCK8, and SAP is still at early 
stages and it will help to dissect subtle details of immune cell 
interaction regulation. Further analysis is needed to understand 
the reciprocal contribution of alterations on both sides of the 
IS to gain an integrated view of the parameters that control, in 
normal and pathological conditions, the transfer of information 
between APC and T cells during priming of adaptive immune 
responses.
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