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Introduction

Multiple sclerosis (MS) is a chronic inflammatory, demyelinating disease that affects the central
nervous system (CNS) resulting in progressive cognitive decline and physical disability. Experi-
mental autoimmune encephalomyelitis (EAE) is an animal model of MS that has been used to
understand the cellular and molecular mechanisms underlying CNS inflammation and autoim-
munity. Since the discovery of IL-17-sereting CD4+ T cells (Th17 cells) over 10 years ago, these
cells have been the main focus of attention as mediators of pathology in MS and EAE (1, 2).
However, in recent years evidence has emerged that lymphocytes with innate-like properties are
potent producers of IL-17 and related pro-inflammatory cytokines (3–6). γδ T cells, NKT, and
innate lymphoid cells have been shown to be major sources of IL-17 in host control of a variety
of bacterial, viral, and fungal infections. However, dysregulation of these innate-like lymphocytes
can also result in severe pathology in EAE and other models of autoimmunity. The role of IFN-γ
in the pathogenesis of autoimmune diseases is more controversial. Like Th17 cells, transfer of
myelin antigen-specific Th1 cells can induce EAE in naïve mice (7, 8). However, IFN-γ, the
signature cytokine of Th1 and natural killer (NK) cells, has been shown to inhibit the function
of pathogenic Th17 cells, as well as promoting development of encephalitogenic T cells during
induction of EAE (8, 9). Immunotherapeutics that suppress the induction or function of Th17
cells have proved successful in treating psoriasis, but have had more variable success in MS
patients (10). Based on recent studies on the role of innate-like lymphocytes in the pathogenesis
of EAE, we propose that these cells may provide more selective and improved drug targets for the
treatment of MS.

CD4+++ T Cells

Th1 cells were originally thought to be the main pathogenic cells in MS and EAE. This was in part
attributed to the fact that IL-12p40−/− mice were resistant to EAE, and treatment of MS patients
with IFN-γ exacerbated disease (11). However, mice deficient in IFN-γ or T-bet, which lack Th1
cells, were not protected from EAE (12, 13). The discovery of IL-23 partly resolved this paradox. IL-
23 and IL-12 share a common p40 chain, which associates with a separate p19 chain to make IL-23
or with a p35 chain to make IL-12. Like IL-23p40−/− mice, IL-23p19−/− mice are resistant to EAE,
whereas IL-12p35−/− mice are susceptible (14). IL-23 was then shown to be essential in driving the
induction or the expansion of IL-17-secreting CD4+ T cells, which were termed Th17 cells (15–17).
IL-17-producing Th17 cells proved to have a key role in inflammation and autoimmunity when they
were found capable of transferring EAE to naive mice (16).
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In addition to IL-17A, Th17 cells produce an array of other
inflammatory cytokines, including IL-17F, GM-CSF, IL-22, IL-21,
IL-26 and TNF-α (16, 18–24). Since their discovery, Th17 cells
have been implicated in the pathogenesis of most common
autoimmune diseases, including psoriasis, rheumatoid arthritis
(RA), and MS, and in animal models of these diseases. Despite
the extensive studies on Th17 cells, the relative roles of Th1 and
Th17 cells in the pathogenesis of MS and other autoimmune
diseases are still unclear. Data from our laboratory and others
show that both Th1- and Th17-polarized T cells are capable of
transferring EAE (7, 8). Furthermore, CD4+ T cells secreting both
IL-17 and IFN-γ are detectable in the CNS of mice with EAE
(25–27). Therefore, it is our opinion that both Th1 and Th17
cell subsets play important roles in autoimmune pathology, but
that there is plasticity between these T cell types and that the
pathogenic function of other immune cells, especially cells of the
innate immune system should not be ignored.

γγγ δδδ T Cells

γδ T cells represent around 2–5% of peripheral lymphocytes and
are known to play an important role in innate and adaptive immu-
nity at mucosal surfaces. γδ T cells have been described as poly-
functional; they produce an array of cytokines, including IL-17A,
IL-17F, IFN-γ, IL-10, IL-22, IL-21, GM-CSF, and TNF-α (28–31).
The IL-17-producing γδ T cells share many features with CD4+

Th17 cells, including expression of RORγt, IL-1R1, IL-23R, and
CCR6 (32). Although γδ T cells do express a unique T cell receptor
(TCR), engagement of this TCR with MHC-antigen complexes
is not a prerequisite for their activation. Unlike conventional αβ
T cells, cytokine stimulation alone is sufficient for activation of
IL-17-secreting γδ T cells, making these cells rapid and potent
mediators of inflammation (28). γδ T cells have been shown
to be pathogenic in a variety of autoimmune diseases, such as
EAE, collagen-induced arthritis (CIA), and most recently in EAU
(33–35). Before the discovery of Th17 cells and their signature
cytokine IL-17, it was assumed that early IFN-γ derived from γδ
T cells was the main pathogenic cytokine driving EAE; this was in
part based on the established role of IFN-γ-secreting γδ T cells
in enhancing CD4+ and CD8+ T cell responses in anti-tumor
immunity (36). However, our studies, supported by recent results
from other labs, suggest that the pathogenic function of γδ T cells
is mediated by their production of IL-17 and related cytokines,
including IL-21 and GM-CSF (28). γδ T cells can secrete IL-17
in response to IL-1, IL-18, and IL-23 without TCR engagement,
promoting the induction of Th1 and Th17 cells and amplifying
their encephalitogenic function during the development of EAE
(28, 37, 38) (Figure 1). Studies from our group have demonstrated
that dendritic cells (DCs) can enhance the ability of IL-1- and
IL-23-activated γδ T cells to promote IL-17 production by Th17
cells (28). Furthermore, DCs express IL-17R and secrete IL-23
in response to IL-17, which was enhanced by LPS and blocked
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FIGURE 1 | Proposed roles for γγγδδδ T cells and NK cells in amplifying pathogenic CD4+ T cell responses in EAE. Dendritic cells (DCs) are activated by TLR
and NLR agonists. Antigenic peptide is presented by MHC class II molecules on DCs to the TCR on T cells. This, along with co-stimulatory signals, activates the
T cell. Once activated, DCs secrete cytokines including IL-1β, IL-6, IL-23, and IL-12 that promote the polarization of naïve T cells into effector cells. IL-12 promotes
the induction of Th1 cells, which are primarily IFN-γ producers. IL-1β, IL-6, and IL-23 promote the differentiation and expansion of Th17 cells, which secrete IL-17
(and IL-22, GM-CSF, IL-21) and mediate protection against extracellular pathogens, such as fungi, and are heavily implicated in the pathology of autoimmune
diseases. γ δ T cells secrete IL-17 and IL-21 following stimulation with IL-1β and IL-23 without TCR engagement, which act in an autocrine loop to promote further
IL-17 production by Th17 cells in the development of EAE. NK cells provide an early source of IFN-γ to drive VLA-4 expression on Th1 and Th17 cells, allowing these
cells to traffic from the peripheral lymphoid organs and into the CNS.
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by anti-IL-17R. These findings suggest that γδ T-cell-derived IL-
17 may act in a positive feedback loop involving DC activation
leading to enhanced Th17 cell effector function during EAE.
In vitro studies have also suggested a pathogenic role for γδ T cells
in demyelinating diseases of the CNS, as γδ T cells are indirectly
responsible for axonal demyelination through toxic destruction of
oligodendrocytes, cells responsible for myelinating axons (39).

Importantly, data from our laboratory and others have shown
that γδ T cells infiltrate the brain and spinal cord in large numbers
during the course of EAE, where they produce IL-17 and related
cytokines (28, 37, 38). Vγ4+ T cells were identified as the main
IL-17-producing γδ T cell in the brains of mice with EAE, but
Vγ1 and Vγ6 T cells are also present (28). Vγ4+ T cells are also
key players in a variety of other autoimmune conditions, such as
myocarditis, (40) psoriasis (41), and CIA (34). The pathogenic
role of γδ T cells in EAE was demonstrated by a reduction in
disease severity in TCRδ−/− mice (42). Furthermore, studies in
the relapsing-remitting EAEmodel showed a significant reduction
in clinical severity when mice were treated with a TCRδ depleting
antibody immediately before disease onset or during the chronic
phase of disease (33). In addition, experiments in the adoptive
transfer model of EAE demonstrated that depletion of γδ T cells
reduced clinical severity and delayed the onset of disease (43).

The pivotal role of γδ T cells in the pathogenicity of EAE is also
reflected in MS, where clonal expansion of γδ T cells has been
observed in the cerebrospinal fluid (CSF) of patients with recent
disease onset (44). Furthermore, an increased frequency of γδ T
cells have been detected in the peripheral blood of patients with
MS (45) and an accumulation of γδ T cells has been described
in acute brain lesions (46). Based on these findings, we propose
that γδ T cells have a critical role in the active stages of both
EAE and MS.

NK Cells

Natural killer cells are innate lymphocytes named for their
cytolytic activity, which can control tumor growth and microbial
infection. NK cells can produce the pro-inflammatory cytokines
IFN-γ and TNF-α, as well as the immunosuppressive cytokine IL-
10 and the growth factor GM-CSF in response to IL-12, IL-15, or
IL-18 (47).

Human NK cells can be broadly separated into two types on
the basis of their expression of CD16 and CD56. CD16+CD56dim

cells express more intracellular perforin and are more efficient
killers, whereas the CD16dim/−CD56bright subset produce greater
amounts and a wider variety of cytokines, and aremore regulatory
in nature (48). The general consensus in the literature is that
the CD56bright NK cells play a protective role in MS. It has been
reported that the ratio of CD56bright:CD56dim cells is higher in
the CSF of MS patients relative to control subjects (49). Fur-
thermore, the CD56bright subtype is expanded in response to the
MS disease modifying therapies IFN-β (50), daclizumab (51, 52)
and natalizumab (53). There is also an established link between
disease relapse and a decrease in the number of total circulating
NK (CD16+CD56+) cells in peripheral blood ofMS patients (54).
Conversely, an increase in NK cell number andmigratory capacity
has been associated with remission (55). Therefore, it is possible

that certain subsets of NK cells may have a role in controlling CNS
inflammation in MS patients.

A potential mechanism underlying the protective effect of NK
cells in MS was provided by the observation that these CD56bright

NK cells can kill activated, but not resting, autologous CD4+ T
cells by inducing apoptosis through degranulation (56).While less
is known about the role of the CD56dim subset in MS, the fre-
quency of these cells in the circulation is enhanced in the progres-
sive forms of the disease, (57) a phenomenon which also occurs
with age (58). Therefore, it is possible that CD56dim NK cells may
contribute to neurodegeneration, however, further investigation
is required to confirm this hypothesis.

Studies in the animal model EAE have generated more exten-
sive data on the role of NK cells that has led to more controversy.
The severity of EAE is enhanced in mice deficient in fractalkine
receptor expression, which is required for NK cell recruitment
to the inflamed CNS (59), suggesting that NK cells may play a
role in limiting CNS inflammation. This is consistent with a more
recent publication suggesting that a population of CNS-resident
NK cells have a protective role in EAE through suppression of
myelin-reactive Th17 cells (60). By contrast, IFN-γ from NK cells
has also been shown to promote autoreactive Th1 responses and
contribute to the pathogenesis of EAE (61).

Depletion of NK cells in EAE using either anti-NK1.1 or
anti-asialo GM1, which induce apoptosis (62) or complement-
dependent lysis (63), respectively, has generated conflicting
reports of both exacerbation (60, 64–66) and amelioration (61,
67) of clinical disease. These discrepancies may reflect differences
in the antibodies used, the depletion regimen, and a focus on
disease peak. Data from our laboratory suggest that NK cells have
a pathogenic role in disease induction; NK cells were found to
infiltrate the CNS of mice with EAE before the onset of clin-
ical symptoms, and depletion of these cells at this early time-
point led to a significant reduction in disease severity (8). The
pathogenic role of NK cells was attributed to early IFN-γ pro-
duction, as early depletion of NK cells did not affect the clinical
course of EAE in IFN-γ−/− mice. IFN-γ from NK cells polarized
macrophages to an M1 phenotype and thus conferred encephali-
togenic potential on CD4+ T cells by upregulating expression of
the integrin VLA-4, which is required for CD4+ T cell infiltra-
tion into the CNS (8) (Figure 1). We believe that NK cells play
a critical pathogenic role in EAE by acting as an early source
of innate IFN-γ in the initiation of disease. However, late in
disease, IFN-γ production by Th1 cells, activated by NK cells,
may have protective role through suppression of cytokine pro-
duction by Th17 cells. This might explain the finding in MS
patients of an association between reduced NK cells numbers
and disease relapse (54) and increased NK cells and disease
remission (55).

Conclusion

Understanding the Th17/IL-17 axis in both protective and dys-
regulated immunity has led to the development of many promis-
ing front line therapies for autoimmune diseases. However, we
believe that research in this area has been too heavily focused
on CD4+ T cells and that further study on innate immunity
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may provide vital insight into mechanisms of disease and
improved therapies. Although much of the attention has been on
Th17 cells, these are not the only source of the pro-inflammatory
cytokine IL-17. Innate-like lymphocytes, such as γδ T cells andNK
cells, provide an early source of IL-17 and IFN-γ, traffic to theCNS
early during development of EAE, and provide an amplification
loop for the activation of pathogenic CD4+ T cells (Figure 1). IL-
17 and IL-21 derived from γδ T cells enhances the pathogenicity
of Th17 cells in EAE. Furthermore, IFN-γ derived from NK cells
polarizes M1-type macrophages and enhances the encephalito-
genic activity of CD4+ T cells by upregulating VLA-4 expres-
sion. Treatment of MS patients with biological drugs designed to
suppress the induction, migration, or function of CD4+ T cells,
such as natalizumab, come with an increased risk of infection,

in particular progressive multifocal leukoencephalopathy (PML)
(68). Given the important role of small populations of γδ T cells
and NK cells in the pathogenesis of EAE, we propose that a better
understanding of the activation and function of these innate-
like lymphocytes and their secreted cytokines may lead to new
and more selective therapeutic interventions for the treatment
of MS.
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