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Intravenous immunoglobulin (IVIg) is a polyclonal immunoglobulin G preparation with 
potent immunomodulatory properties. The mode of action of IVIg has been investigated 
in multiple disease states, with various mechanisms described to account for its ben-
efits. Recent data indicate that IVIg increases both the number and the suppressive 
capacity of regulatory T cells, a subpopulation of T cells that are essential for immune 
homeostasis. IVIg alters dendritic cell function, cytokine and chemokine networks, and T 
lymphocytes, leading to development of regulatory T cells. The ability of IVIg to influence 
Treg induction has been shown both in animal models and in human diseases. In this 
review, we discuss data on the potential mechanisms contributing to the interaction 
between IVIg and the regulatory T-cell compartment.

Keywords: intravenous immunoglobulin, regulatory T cell, dendritic cell, autoimmunity, immune modulation, 
cytokine

introduction

intravenous immunoglobulin
Intravenous immunoglobulin (IVIg) is prepared from polyclonal immunoglobulin G (IgG) purified 
from pooled plasma samples of several thousand healthy donors. IgG has been the standard treat-
ment for primary immunodeficiency diseases since Bruton’s identification of a patient with agam-
maglobulinemia in the early 1950s (1). However, Imbach et al. (2), in the early 1980s, demonstrated 
that administration of high doses of human polyclonal IgG in children with immune deficiency who 
concomitantly suffered from immune thrombocytopenic purpura (ITP) had a dramatic increase 
in platelet counts. Since then, there has been a progressive increase in the use of IVIg in patients 

Abbreviations: APC, antigen-presenting cell; CLRs, C-type lectin receptors; DC, dendritic cell; EAE, experimental autoim-
mune encephalitis; F(ab), fragment antibody-binding region; Fc, fragment crystallizable region; FcγR, Fc-gamma receptor; 
GFP, green fluorescent protein; IgG, immunoglobulin G; ITAM, immunoreceptor tyrosine-based activation motif; ITIM, 
immunoreceptor tyrosine-based inhibition motif; ITP, immune thrombocytic purpura; IVIg, intravenous immunoglobulin; 
KS, Kawasaki syndrome; MHC, major histocompatibility complex; NK, natural killer; saIVIg, sialylated fraction of IVIg; TCR, 
T-cell receptor; Treg, regulatory T cell.
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with a wide variety of autoimmune and inflammatory disorders. 
IVIg is used as a primary treatment for ITP, Kawasaki Syndrome 
(KS), Guillain–Barré syndrome, myasthenia gravis, chronic 
inflammatory demyelinating polyneuropathy, systemic lupus 
erythematosus, and other autoimmune and neurologic disorders 
(3). IVIg is commonly used in the prevention or treatment of 
neonatal sepsis. Rationally, those infants who are premature 
or suffer from very low birth weights should benefit from the 
immune supplementation provided by IVIg. However, large 
randomized clinical trials have failed to show consistent benefit 
in terms of prevention or outcomes from septic episodes (4–6). 
Novel preparations enriched in IgM may have some promise, but 
to date results are inconsistent (7, 8).

Intravenous immunoglobulin is now the most commonly 
prescribed plasma-based product worldwide (3, 9). This 
increased use raises questions regarding the long-term viability 
of this therapy. Considering the high cost and limited availability 
of this resource, it is imperative to investigate the underlying 
mechanisms of IVIg in order to tailor the anti-inflammatory 
response obtained by treatment, allowing for better therapies 
for inflammatory and autoimmune diseases. Furthermore, this 
can lead to the development of non-plasma-derived drugs with 
similar therapeutic benefits.

Many mechanisms explaining the immune-regulatory actions 
of IVIg have been postulated, including modulation of inhibitory 
Fc-gamma receptor (FcγR) expression, blockade of activating 
FcγR on antigen-presenting cells (APCs), interference with 
cytokine production, inhibition of cell activation, or induction of 
apoptosis in a variety of immune cells, including dendritic cells 
(DCs), macrophages, natural killer (NK) cells, and T and B lym-
phocytes (3, 9, 10). However, a key factor in immune modulation 
is the ability to counter inflammatory responses with regulatory 
cells. In this review, we will explore the links between IVIg and 
regulatory T-cell responses.

Regulatory T Cells
Regulatory T cells (Treg) were initially described in the 1990s 
as a specialized subpopulation of T cells that maintain immune 
system homeostasis and tolerance to self-antigens (11, 12). The 
transcription factor forkhead box P3 (FOXP3) is considered the 
marker of choice for this cell (13). FOXP3 is a master-switch 
transcription factor: its expression modifies T cells toward a 
regulatory phenotype, enabling many of the anti-inflammatory 
functions of Treg (14). The fundamental property that defines 
Treg is their ability to transfer immune suppression in vivo from 
one animal to another or in vitro from one cell culture to another 
(15). Based on their developmental or functional differences, Treg 
are categorized into two main populations: naturally occurring 
Treg that are generated in the thymus (tTreg) and peripherally 
induced Treg (pTreg) generated in peripheral lymphoid tissues 
from non-Treg precursor CD4+ cells. While Treg are CD4+ 
T-effector cells with characteristic FOXP3 expression, this is 
not sufficient to define a cell population as Treg: single-cell flow 
cytometric sorting experiments have shown the importance of 
elevated expression of the high-affinity IL-2 receptor, CD25, as a 
hallmark of Treg (16). Other markers, including HLA-DR, GARP, 
and low CD127 expression, along with CTLA-4 and Helios, are 

not entirely consistent or reliable and depend on the activation 
state of the cell (17). Recent work by Bin Dhuban et al. (18) has 
identified two cell-surface Treg markers: TIGIT, a novel CD28-
related protein, and FCRL3, an Fc-receptor-like glycoprotein, 
which allow for high-consistency detection of Treg in human 
peripheral blood mononuclear cells (PBMCs).

Pre-clinical studies have shown that freshly isolated or ex vivo-
expanded Treg can confer immunological tolerance in subjects 
with autoimmune and inflammatory disorders (19, 20). However, 
human Treg infusion therapy has been difficult to implement, and 
relatively few clinical trials have been initiated (21). Therefore, 
developing new therapeutic approaches with the capability 
to modulate the immune system through activation and/or 
expansion of Treg has been the subject of many recent studies. 
Several therapeutic immunosuppressive compounds, including 
rapamycin (22) and glucocorticoids (23), have been identified as 
promoting the expansion or suppressive activity of Treg.

Intravenous immunoglobulin has been proposed as a treat-
ment that can promote development or activation of Treg in 
autoimmune diseases (24). Herein, we provide an overview 
examining if IVIg indeed influences induction of Treg in the 
context of different inflammatory and autoimmune conditions 
and discuss mechanisms underlying Treg induction by IVIg.

evidence for the Action of ivig in the 
Promotion of Treg in Human Clinical Trials

An early clue suggesting regulatory effects of IVIg was the obser-
vation that T cells, purified from IVIg-treated individuals, had 
significant suppressive effects when cultured with proliferating 
T and B cells (25). Subsequent studies demonstrated that IVIg 
therapy was associated with enhanced mitogen-induced “sup-
pressor T-cell function” in rheumatoid arthritis (26), ITP (27), 
and pediatric acquired immune deficiency syndrome (28). More 
recently, Kessel et al. (29) demonstrated that in vitro culture of 
IVIg with peripheral T cells led to increases in intracellular TGF-
β, IL-10, and FOXP3 expression as well as improvement in their 
suppressive functions when cocultured with effector T cells.

T cells from patients treated with IVIg have been examined 
for increases in Treg. In Guillain–Barré syndrome, IVIg therapy 
increases the expression of FOXP3 and the production of inhibi-
tory cytokines in Treg (30). In systemic lupus erythematosus, 
IVIg-treated patients show significant increases in Treg numbers; 
moreover, IVIg appeared to convert naive FOXP3−CD25− into 
activated FOXP3+CD25+ Treg (31). Consistently, IVIg therapy 
of EGPA patients increased FOXP3+ Treg numbers and produc-
tion of IL-10 in CD4+ T cells (32). In mononeuritis multiplex, a 
peripheral neuropathy, steroid unresponsive patients treated with 
IVIg exhibit enhanced populations of Treg (33).

Mechanisms of Action of ivig in KS
Kawasaki syndrome is an acute systemic vascular inflammation, 
primarily affecting children. A single IVIg treatment is generally 
successful in reducing fever and associated disease manifestations 
(34). Extensive work has focused on characterizing the IVIg-
induced Treg response in KS. Burns et al. (35) investigated the 
link between TNF-α and IVIg therapy in KS, hypothesizing that 
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TNF-α inhibition may decrease cell activation. They determined 
that infliximab treatment does not interfere with Treg induction 
by IVIg, finding that the expansion of CD14+ CD86+ tolerogenic 
DC correlated with increased Treg after IVIg treatment. They 
postulate that the IVIg-induced Treg pool secretes IL-10 and 
responds to the Ig heavy-chain Fc region.

In a subsequent study from the same group, Franco et al. (36) 
investigated the specificity of IVIg-induced Treg in subacute KS 
patients. IVIg treatment induced a subset of Treg that expressed 
high levels of CTLA-4, and secreted IL-10, but not TGF-β. This 
Treg expansion appeared to be key to controlling vascular inflam-
mation in KS. Cloned Treg expanded ex vivo only responded to 
soluble IgG Fc and not to F(ab)′2 fragments, indicating that these 
Treg were Fc-specific and that the mechanism was likely T-cell 
receptor (TCR)-dependent. Coculture experiments revealed 
that the Fc region of IgG was presented in a major histocompat-
ibility complex (MHC)-restricted, TCR-mediated manner by 
EBV-transformed B cells. Further investigation of the Fc peptide 
specificities of the tTreg population revealed similar profiles in 
both IVIg-treated KS patients and in healthy controls, suggesting 
that Treg responses are functionally inadequate in KS and that 
this can be reversed by IVIg (37).

In KS patients, IVIg treatment enhances the expression of 
genes related to Treg activation, including FOXP3, CTLA4, 
GITR, and TGFB1. The expression levels of these genes were sig-
nificantly lower in KS patients prior to treatment than in healthy 
controls (38, 39). Ni et al. (40) examined the mechanisms of Treg 
dysfunction in KS, focusing on microRNAs (miR). While acute 
KS patients had lower Treg numbers and decreased Treg marker 
expression, IVIg treatment increased Treg numbers and FOXP3, 
CTLA4, and GITR gene expression. Treg from untreated KS have 
down-regulated miR-155 and miR-21 microRNAs; miR-155 
down-regulation leads to increased SOCS1 signaling, decreased 
STAT-5 signaling, and miR-31 microRNA overexpression. IVIg 
treatment reversed these effects, restoring the SOCS1/STAT5 
balance and decreasing miR-31 expression. FOXP3-dependent 
miR-155 inhibited SOCS1, and STAT3 suppressed miR-21, which 
down-regulated FOXP3. IVIg treatment of KS patients lowered 
elevated IL-6 and pSTAT3, restoring miR-21 levels, providing 
an explanation for the increase in Treg numbers following IVIg 
infusion.

Modulatory effects of ivig in Animal 
Models of inflammatory Disorders via Treg 
expansion and induction

Role of ivig in experimental Autoimmune 
encephalomyelitis
In experimental autoimmune encephalomyelitis (EAE), an 
antigen-driven murine model of multiple sclerosis, IVIg 
treatment reduced the disease severity scores, promoted the 
expansion of Treg and enhanced their suppressive capacity, 
both in  vivo and in  vitro (39). Importantly, administration of 
IVIg failed to confer protection in EAE mice that were depleted 
of Treg prior to treatment, suggesting a critical role of endog-
enous Treg in conferring protection by IVIg. In line with these 

findings, Okuda et al. (41) replicated the effects of IVIg in EAE 
and showed that sulfonated IVIg was effective in increasing the 
frequency of Treg.

A potential target for IVIg in EAE is NK cells. NK cells have a 
wide variety of immunomodulatory functions, interacting with 
B cells, DC, and Treg (42, 43). Chong et al. (44) hypothesized 
that in IVIg-treated subjects, NK cells suppress disease by 
regulating inflammatory T-cell responses. Using an EAE model, 
they demonstrated that IVIg treatment blocks EAE develop-
ment and reduces demyelination by diminishing IL-17 and 
IFN-γ. NK cell depletion by anti-asialo GM1 antibody resulted 
in the loss of IVIg-mediated protection, and adoptive transfer 
of IVIg-treated NK cells was as equally protective as IVIg 
treatment. IVIg-treated NK cells induced CD4+ Foxp3+ Treg in 
spleen and draining lymph nodes, which were suppressive to 
antigen-specific effector T cells in ex vivo proliferation assays. 
Upon further investigation using an in vitro coculture system, 
Treg induction was determined to depend on IL-2 and TGF-β1 
production by NK cells. Chong et al. posit that IVIg may pro-
mote redistribution of NK cells in peripheral tissues, depending 
on the inflammatory stimulus. Since NK cells modulate their 
chemokine receptor expression to facilitate migration to local 
and peripheral sites of inflammation (45), IVIg may increase 
NK cell homing to inflammatory microenvironments and sec-
ondary lymphoid organs, where they can induce Treg. NK cell 
costimulatory molecule expression may also drive Treg induc-
tion: IL-2 and plate-bound anti-CD16 treatment up-regulate 
CD86 and OX-40 ligand on NK cells in  vitro (46). CD86 has 
been implicated in Treg generation (47), and OX-40 ligand can 
deliver a survival signal to Treg (48).

Treg induction in Allergen-Driven and 
Autoimmune Models
We have recently demonstrated, using an ovalbumin-driven 
murine model of allergic airway disease, that therapeutic 
administration of IVIg attenuated airway hyper-reactivity 
(AHR) and alleviated airway inflammation. This was accom-
panied by induction of highly suppressive, antigen-specific 
Treg derived from pre-existing T-effector cells. Treg induc-
tion was dependent on the interaction of IVIg with CD11c+ 
DC (49). Similarly, in a murine model of ITP, IVIg increased 
thymic and splenic Treg, accompanied by restoration of plate-
let counts (50).

Different dosing regimens have been used for IVIg to increase 
Treg (51). Our laboratory, as well as most other groups, uses high-
dose IVIg (2 g/kg), which is analogous to the immunomodula-
tory dose used in clinical practice (49). Other studies have used 
typical antibody-replacement doses of 400–800  mg/kg (52). 
Ramakrishna et  al. (53) reported an anti-inflammatory effect 
using extremely low-dose IVIg (187.5 mg/kg) in a HSV-mediated 
encephalitis murine model, which was felt to be dependent on 
enhancement of Treg. This dose range is rarely used clinically, 
making this work difficult to apply to standard practice. In 
addition, work from our laboratory and others (38, 54) suggests 
that a minor fraction of IVIg is required for some, but not all 
immunomodulatory effects. This will be discussed in more detail 
below.
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Mechanisms of Action of ivig in induction 
of Treg

The mechanisms by which IVIg induces Treg may involve direct 
interaction of IgG with T cells, or modulation of other cellular 
or molecular targets, particularly APCs such as DC and mac-
rophages. IVIg can also interact with other cells, such as B cells 
or NK cells. In addition, IVIg can modulate the production of 
proinflammatory cytokines, which may play a role in maintaining 
T-cell tolerance.

The effect of ivig on DC Activation
Induction of protective T-cell responses requires naive T cells to 
receive signals via the TCR, costimulatory molecules, and cytokine 
receptors. These signals, via cell–cell contact and through soluble 
mediators, are provided by professional APCs, such as DC. While 
DC represent the most efficient APC in capturing, processing, 
and presenting antigens to T cells (55), DC also play an active 
role in maintaining immune tolerance, as constitutive DC abla-
tion results in spontaneous fatal autoimmunity (56). Tolerogenic 
DCs are characterized by decreased expression of costimulatory 
molecules (CD40, CD80, and CD86), decreased antigen pres-
entation (due to reduced MHC class II expression), enhanced 
expression of coinhibitory molecules (e.g., PD-L1, CTLA-4, and 
OX-40), and enhanced inhibitory cytokine production (57, 58). 
This DC subset is essential for maintaining tolerance via extra-
thymic induction of pTreg and maintenance of pre-existing tTreg 
(59–62).

Induction of tolerance is critically dependent on the matura-
tion state of DC. An immature DC phenotype is associated with 
induction, expansion, or enhancement of the suppressive capac-
ity of Treg (63). Direct cell-to-cell interaction of DC and T cells 
via TCR (64), induction of indolamine-2,3-dioxygenase (IDO) 
(65), as well as secretion of IL-10, TGF-β, and retinoic acid by DC 
(66) are all implicated in the peripheral induction or expansion 
of Treg by DC.

Although both myeloid and plasmacytoid DC may be involved 
in maintaining peripheral tolerance (67), polyclonal human IgG 
appears to target CD11c+ DC rather than CD11c− plasmacytoid 
DC (49, 68). We have demonstrated that CD11c+ DC from IVIg-
treated mice are necessary and sufficient for peripheral induction 
of Treg in lung and draining thoracic lymph nodes (49). IVIg 
decreases CD80 and CD86 both in vitro and in vivo; in addition, 
adoptively transferred IVIg-treated DC can increase Treg in lungs 
of antigen-exposed and challenged mice (49, 69).

Intravenous immunoglobulin-exposed CD11c+ DCs are less 
competent in driving lymphocyte proliferation, potentially due to 
decreased MHC-II and CD80/CD86 expression (68, 70–72). Work 
from the group of Bazin suggests that internalized IVIg interferes 
with antigen presentation by competing with antigen peptides 
for loading on MHC-II molecules in the intracellular MHC-II 
compartment (MIIC) (73, 74). Inhibition of T-cell responses by 
reducing antigen presentation may also interfere with the activa-
tion of autoreactive pathogenic T cells. In addition, IVIg alters 
the pattern of DC cytokine production, including up-regulation 
of inhibitory cytokines, such as IL-10, and down-regulation of 
proinflammatory cytokines, such as IL-12 and IFN-γ (53, 71, 75).

Proinflammatory cytokines counteract Treg differentiation 
or decrease Treg suppressive effects. For example, IL-6 secretion 
from DC is known to abrogate Treg anergy, reverse Treg sup-
pression, and skew Treg differentiation toward Th-17 (76, 77). 
In contrast, IVIg reduces the production of IL-6 and TNF-α by 
peripheral blood monocytes (78, 79); it can therefore maintain 
Treg homeostasis. It is conceivable that IVIg-generated Treg may 
attenuate DC maturation by anti-inflammatory cytokine produc-
tion, expanding the inhibitory effects of IVIg by further tolerizing 
DC in a negative feedback loop.

How IVIg targets DC is still incompletely elucidated, and dif-
ferent mechanisms have been postulated. The effect of polyclonal 
IgG on DC appears to involve activating FcγR, by triggering 
immunoreceptor tyrosine-based activation motifs (ITAM) 
(80). However, both Fc and F(ab′)2 fragments of IgG have been 
shown to suppress DC maturation and modulate DC cytokine 
production (71). F(ab′)2 fragments have been shown to inhibit 
LPS-induced phosphorylation of extracellular signal-regulated 
kinase (ERK1/2), an intracellular signaling molecule that medi-
ates the inflammatory response induced by Toll-like receptor 
(TLR) ligation in DC (81).

Although a full discussion of IVIg-Fcγ receptor biology is 
beyond the scope of this review, it is important to note that inhibi-
tory FcγRIIB were required for the anti-inflammatory effects of 
IVIg in murine models of ITP (72), nephrotoxic nephritis (82), 
and epidermolysis bullosa acquisita (EBA) (54). Similarly, we 
have found that FcγRIIB is required for IVIg-mediated abroga-
tion of allergic airways disease (Kaufman et al., in preparation). 
Up-regulation of FcγRIIB expression on DC, and on APC in 
general, likely plays a role in the suppression of DC activation, 
although no direct physical interaction between IVIg with this 
receptor has been reported (83).

De Groot et al. (84) proposed another DC-dependent mecha-
nism by which IVIg promotes Treg expansion. They described 
promiscuous IgG-derived T-cell epitope peptides (Tregitopes) 
containing epitopes from both Fc and Fab fragments of the IgG 
molecule, with the capability of activating Foxp3+ Treg. They 
postulated that these Tregitopes are presented in the context of 
MHC-II by APC to Treg and contribute to Treg activation and 
expansion (85, 86). This is consistent with the results of Franco 
et al. (36) discussed earlier where B cells presented Fc regions of 
IgG in a MHC-restricted and TCR-mediated manner.

The Anti-inflammatory effects of Sialylated igG 
and its Relationship to Treg Development
Human IgG therapy has two consistently used dosing regimens. 
Patients requiring immune supplementation for immune defi-
ciency typically receive between 400 and 800  mg/kg monthly. 
After many years of using lower doses, these were deemed ineffec-
tive in crossover studies. Individuals requiring immune modula-
tion frequently receive infusion of IVIg containing two to five 
times the immune supplementation dose. It has therefore been 
hypothesized that minor fractions of IVIg provide molecules that 
supply the anti-inflammatory components needed for immune 
modulation. This has been demonstrated regarding specific neu-
tralizing antibodies, anti-idiotypic antibodies, or anti-apoptosis 
antibodies.
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The Ravetch group developed the concept that the anti-
inflammatory properties of IVIg were isolated to an IgG subset 
characterized by terminal α-2,6-sialylation of the Fc glycan. 
Specifically, the Fc portion of the IgG molecule contained an 
N-linked glycan moiety covalently bound to a highly conserved 
glycosylation site at Asn297 (87, 88). In various clinical scenarios, 
lower serum levels of sialylated IgG were found in individuals 
with systemic lupus erythematosus or juvenile-onset rheumatoid 
arthritis when compared with healthy controls (89–91). This 
sialylated fraction of IVIg (saIVIg) makes up roughly 1–2% of the 
total IgG in pooled therapeutic preparations. In proof-of-concept 
studies, saIVIg was therapeutically effective in animal models of 
rheumatoid arthritis (92), ITP (93), and allergic airways disease 
(94) at doses 10 times lower than unfractionated IVIg.

The mechanism of action of saIVIg is still under investigation. 
Kaneko et al. (87) proposed that saIVIg interacts with DC-SIGN 
(DC-specific intercellular adhesion molecule-3 grabbing 
non-integrin) on human DC or the murine ortholog SIGN-R1 
(specific intracellular adhesion molecule-3 grabbing non-
integrin homolog-related 1) on murine splenic macrophages. 
This triggers increased expression of the inhibitory Fc receptor 
FcγRIIB (88). This may contribute to the induction and expan-
sion of Treg; FcγRIIB-deficient mice are incapable of generating 
Treg in a model of mucosal antigen tolerance (95). Guilliams et al. 
reviewed the role of FcγRIIB in IVIg therapy and suggested that 
IVIg increases FcγRIIB expression in inflamed tissues during the 
effector phase of the immune response (96).

Using experimental models of multiple sclerosis (EAE) and 
serum-induced arthritis, Fiebiger et  al. (97) recently reported 
that saIVIg Fc confers protective effects in T-cell-mediated and 
antibody-mediated diseases. They developed a mutated IgG 
Fc construct (F241A), which had a similar structure to saIVIg 
Fc, but displayed DC-SIGN binding independent of sialyla-
tion. Both saIVIg Fc and F241A IgG Fc alleviated arthritis and 
EAE by inducing Treg expansion and activation, up-regulating 
FcγRIIB on effector macrophages, and suppressing Th17 and Th1 
responses. The anti-inflammatory responses required expression 
of DC-SIGN as well as secretion of IL-33 by macrophages.

Washburn et al. described a novel hypersialylated IgG deriva-
tive, tetra-Fc-sialylated IVIg (s4-IVIg), which was maximally 
sialylated but lacked advanced glycation end products (AGEs) 
that are hazardous to human health. s4-IVIg was efficacious in 
animal models of arthritis, ITP, and EBA (91). These results sub-
stantiate data obtained by Schwab et al. (54) who demonstrated 
requirements for IgG sialylation and FcγRIIB expression in their 
disease models.

As IVIg is a heterogeneous compound, it is not surprising that 
non-sialylated IgG is also biologically active. Othy et al. demon-
strated the effects of IVIg on Th17 and Treg cells independent 
of Fc sialylation (98). Similarly, there are studies using different 
murine models of ITP (99, 100) and rheumatoid arthritis (101), 
which did not require sialylated IgG. Differences in strains or 
induction of pathological conditions in various murine models 
are reasons for the discrepancies in the dependence on sialyla-
tion. To obtain more definitive results, it will be critical to evaluate 
the role of minor IgG fractions in subjects with inflammatory and 
autoimmune diseases.

ivig Binds C-Type Lectin Receptors on DCs
DC-specific intercellular adhesion molecule-3 grabbing non-
integrin and SIGN-R1 are C-type lectin receptors, which bind 
mannosylated and fucosylated structures, such as HIV envelope 
protein gp120 (102). While ligation of DC-SIGN by mannose-
expressing pathogens stimulates proinflammatory cytokine 
secretion by DC, fucose-expressing pathogens or synthetic 
fucose-containing ligands inhibit LPS-induced production of 
IL-6 and IL-12 and stimulate the secretion of anti-inflammatory 
IL-10 by DC (103). Hence, ligation of these innate receptors by 
saIVIg may regulate cytokine production by DC and therefore 
contribute to Treg homeostasis. Smits et  al. (104) showed that 
binding of Lactobacillus reuteri and Lactobacillus casei bacteria 
to DC-SIGN on monocyte-derived DC drove the development 
of Treg. These Treg produced increased levels of IL-10 and were 
capable of inhibiting the proliferation of bystander T cells in an 
IL-10-dependent fashion.

Work from the group of Ravetch and other investigators sug-
gests that the conformational changes in IgG molecules induced 
by sialylation lead to a reduction in binding affinity of IgG to FcγR 
by masking the FcγR binding site (105). Furthermore, sialylation 
exposes a binding site on IgG for carbohydrate-binding C-type 
lectin receptors such as DC-SIGN or SIGN-R1 (89, 97, 106). In 
contrast, the group of Crispin were unable to reproduce these 
findings, claiming that sialylation of IgG does not result in con-
formational changes to the IgG molecule or increases in binding 
affinity of IgG to DC-SIGN (107, 108). They suggest that cross-
linking of sialic-acid-binding Siglecs (sialic acid binding Ig-like 
lectins), such as CD22, and direct binding of Fc receptors induce 
inhibitory signaling through immunoreceptor tyrosine-based 
inhibition motif (ITIM) pathways. We have recently described 
that IVIg efficiently modifies DCs to induce regulatory T cells 
in the absence of activating FcγR (94). It is worth noting that the 
sialylation of IgG is not restricted to the Fc fragment, and a high 
proportion of sialic acid residues on the F(ab′)2 fragments of IgG 
has been identified recently by Kasemann et al. (109).

In addition to DC-SIGN, other C-type lectin receptors may 
interact with IVIg and contribute to induction and/or expansion of 
Treg. We have recently reported (94) that saIVIg specifically inter-
acts with the C-type lectin dendritic cell immunoreceptor (DCIR) 
on CD11c+ DC. This appears to lead to internalization of IgG into 
DC and is associated with inhibitory signaling in ligated DC that 
consequently results in the peripheral induction of Foxp3+ Treg. 
The contribution of DCIR+ DC in the induction and expansion 
of Treg has been demonstrated in previous studies, although not 
in the context of IVIg therapy. Yamazaki et al. (110) showed that 
two subsets of CD8+CD205+ and CD8−DCIR+ DC differentiate 
peripheral Foxp3+ Treg, in part through the endogenous produc-
tion of TGF-β. These data indicate that multiple C-lectin receptors 
are implicated in the generation of tolerogenic DC by IVIg.

interaction of ivig with Treg
Direct interaction of polyclonal IgG with Treg may represent 
another mechanism by which IVIg can induce tolerance. Kessel 
et al. (29) demonstrated that IVIg increases expression of intra-
cellular FOXP3, TGF-β, and IL-10 when added to culture with 
human CD4+ T cells. IgG was shown to bind to both human 
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and mouse Treg (39, 111), which increased FOXP3 expression, 
accompanied by augmented ex vivo suppressive function. IVIg 
stimulated phosphorylation of ZAP-70 in Treg (111), which is 
known to enhance suppressive activity (112).

Additionally, interaction of IgG with effector T cells can 
affect the balance of cytokine production, mainly by down-
regulating proinflammatory cytokines, such as IL-2, IFN-γ, and 
TNF-α, and increasing inhibitory cytokines (113, 114). Early 
work (115) on cytokine networks elucidated that IVIg abro-
gated production of both Th1- and Th2-type proinflammatory 
cytokines from PBMC in culture. Maddur et  al. (116) dem-
onstrated the reciprocal enhancement of Treg differentiation 
compared to inhibition of Th17 differentiation in culture, in 
association with decreases in Th17 effector cytokines (IL-17A, 
IL-17F, IL-21, and CCL20). In clinical trials, two groups have 
investigated the effect of IVIg therapy on the profile of intracel-
lular cytokine expression in T cells. In ITP patients who were 
responsive to IVIg therapy, there was increased production of 
IL-10 and TGF-β by CD4+ T cells as well as decreased Th-1 
cytokine production (117, 118).

Experiments from our laboratory could not confirm direct 
action of IVIg on T cells on the induction of Treg. We examined 
naive CD4+ Foxp3− T cells from Foxp3-GFP reporter mice in the 
absence of APC. Pre-treatment of these cells with IVIg, followed 
by coculture with DC and a source of antigen, did not result in the 
induction of Foxp3 expression, whereas IVIg pretreatment of DC 
prior to coculture induced Treg ex vivo. Further, we found that 
(49), in allergic airways disease, Treg induction required CD11c+ 
DC both in vitro and in vivo, suggesting that the DC compartment 
is the main target of IVIg in our system. We therefore hypothesize 
that IVIg first tolerizes DC, which in turn induce Treg.

Modification of chemokine or chemokine receptors on cir-
culating leukocytes is another potential mode of action of IVIg, 
which would lead to recruitment of cells to specific tissue sites. 
Evidence suggests that Treg compartmentalization and trafficking 
are tissue- or organ-specific and that distinct chemokine receptor 
and integrin expression may contribute to selective trafficking of 
Treg to inflammatory microenvironments (119). For instance, 
expression of chemokine receptors CCR4 and CCR8 are required 
on Treg for tissue homing (120). Treg may switch their homing 
receptor expression profiles depending on the direction of their 
trafficking. A majority of Treg found in secondary lymphoid 
tissues express CD62L and CCR7 (121). Moreover, while both 
effector and regulatory T cells might express similar patterns of 
chemokine receptors, both subsets may compete for interaction 
with APC or access to the site of inflammation.

We have demonstrated in a mouse model of ovalbumin-
driven allergic airway disease that IVIg specifically increases the 
expression of CCR4 on the induced Treg population, suggesting 
their enhanced ability to recruit to the site of inflammation. 
Additionally, we found that expression of CD62L, which acts as a 
homing receptor for lymphocytes entering secondary lymphoid 
tissues, is decreased in Treg isolated from inflamed lung tissues 
(49). In a murine model of ITP, Treg compartmentalization was 
also modified by IVIg therapy (50), stressing the potential for 
action of IVIg on chemokine receptor expression. It is unclear if 
this action is direct or indirect, via signals from APC.

Conclusion

Intravenous immunoglobulin is an extremely complex prepara-
tion that contains a multitude of biologically active moieties: it 
likely achieves immunomodulation through a number of syner-
gistic mechanisms, which provide positive therapeutic effects. The 
immune-regulatory effects of IVIg appear to be pleiotropic and 
involve different stages of the inflammatory cascade, with a com-
plex interplay of IgG molecules with different cells and mediators.

In this review, we describe potential mechanisms behind the 
actions of IVIg in the generation and differentiation of Treg. Recent 
findings reinforce the efficacy of IVIg in the enhancement of Treg 
in various autoimmune disorders. The action of IVIg in the modu-
lation of Treg, and the consequent maintenance of immune toler-
ance, provides a rationale for therapeutic approaches specifically 
targeting this axis of the immune system. This also renews interest 
in developing alternative treatments, such as Tregitopes or mono-
clonal antibodies, for refractory inflammatory and autoimmune 
diseases, which are often associated with deficiencies in Treg and 
are difficult to manage with conventional therapeutic approaches.

The effects of IVIg on the potentiation of Treg appear to 
involve the interaction of IgG with APC and potentially T cells 
and are dependent on the modulation of cytokine networks 
within different immune cell types. Based on our own studies 
and the conclusions of this review, we suggest a set of potential 
cellular mechanisms, which are summarized schematically in 
Figure 1. Initially, saIVIg binds C-type lectin receptors on DCs 
(Figure  1A), which induces inhibitory FcγRIIB expression on 
DC or on effector macrophages (Figure 1B), thus potentiating 
the activation threshold of the adaptive arm of the immune 
system. The associated inhibitory receptor signaling renders the 
DC tolerogenic, reducing DC costimulatory molecule expression 
(Figure 1C) and proinflammatory cytokine secretion (Figure 1D). 
Anti-inflammatory cytokine and mediator production by both 
DC and Treg (Figure  1E) and presentation of IgG regulatory 
epitopes (Figure 1F) to Treg by DC decrease proinflammatory 
cytokine production in naive effector T cells (Figure  1G) and 
generate Treg from non-Treg precursors (Figure  1H). These 
Treg inhibit effector Th1, Th2, and Th17 cell proliferation and 
activity (Figure 1I) in the inflammatory microenvironment and 
secrete anti-inflammatory cytokines (Figure  1E) that tolerize 
DC. In addition, IVIg-mediated modulation of chemokine or 
chemokine receptor expression in T-cell subsets might contribute 
to the homeostasis or regulation of trafficking of Treg, although 
proper functional characterization is needed. NK cells play a role 
in processing of innate antigens and have multiple known ITIM-
linked receptors: IVIg may target NK cells to directly induce Treg 
by cytokine production or cell–cell contact (discussed earlier). 
IVIg-treated NK cells may also induce antibody-dependent cel-
lular cytotoxicity of mature DC, which reduces antigen presenta-
tion and inhibits proinflammatory effector T-cell function (122).

Interaction of sialylated IgG with C-type lectin receptors 
triggers an inhibitory response in ligated cells that might 
consequently provide the required signals for maintaining 
immune tolerance. In this review, we bring evidence that shows 
the association of this interaction with the promotion of Treg. 
However, more investigation is still required to elucidate the 
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beneficial effects of IVIg in modulation of Treg, particularly in 
clinical trials. Further avenues of research include identifying 
specific cellular markers or phenotypic patterns associated with 
DC tolerogenicity as well as precise characterization of the IVIg-
generated Treg population.
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FiGURe 1 | ivig tolerizes DC, which interacts with T cells to induce Treg. Sialylated IVIg ligates C-type lectin receptors on DC (A), which induces FcγRIIB 
expression (B) and reduces costimulatory molecule expression (C) and proinflammatory cytokine secretion (D). Anti-inflammatory cytokine and mediator production 
(e) and presentation of IgG regulatory epitopes (F) decrease proinflammatory cytokine production in naive effector T cells (G) and generate Treg from non-Treg 
precursors (H). These Treg inhibit effector Th1, Th2, and Th17 cell proliferation and activity (i) in the inflammatory microenvironment and secrete anti-inflammatory 
cytokines (e) that tolerize DC. CLRs, C-type lectin receptors; GITR, glucocorticoid-induced TNFR family related gene; ITIM, immunoreceptor tyrosine-based 
inhibition motif; RA, retinoic acid.

Acknowledgments

We acknowledge the financial support of Talecris and Grifols 
Bioscience (Clinical Investigation Program), Canadian 
Institutes for Health Research [CIHR grants ISO115295 (BM) 
and MOP67211 (CP)], The Research Institute of the McGill 
University Health Centre (RI-MUHC), the Fonds de recherche 
du Québec – Santé (FRQS) and the Strauss Family Foundation. 
We thank Marylin Desjardins, MD, for her expert advice and criti-
cal comments. GK is the recipient of a CIHR Canada Graduate 
Scholarships Doctoral Research Award. CP holds a CIHR Canada 
Research Chair.

References

 1. Bruton OC. Agammaglobulinemia. Pediatrics (1952) 9(6):722–8. 
 2. Imbach P, Barandun S, Baumgartner C, Hirt A, Hofer F, Wagner HP. 

High-dose intravenous gammaglobulin therapy of refractory, in particular 
idiopathic thrombocytopenia in childhood. Helv Paediatr Acta (1981) 
36(1):81–6. 

 3. Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intravenous immu-
noglobulin. Annu Rev Immunol (2008) 26:513–33. doi:10.1146/annurev.
immunol.26.021607.090232 

 4. Group IC, Brocklehurst P, Farrell B, King A, Juszczak E, Darlow B, et  al. 
Treatment of neonatal sepsis with intravenous immune globulin. N Engl J 
Med (2011) 365(13):1201–11. doi:10.1056/NEJMoa1100441 

 5. Ohlsson A, Lacy JB. Intravenous immunoglobulin for preventing infection in 
preterm and/or low birth weight infants. Cochrane Database Syst Rev (2013) 
7:CD000361. doi:10.1002/14651858.CD000361.pub3 

 6. Ohlsson A, Lacy JB. Intravenous immunoglobulin for suspected or proven 
infection in neonates. Cochrane Database Syst Rev (2013) 7:CD001239. 
doi:10.1002/14651858.CD001239.pub4 

 7. Akdag A, Dilmen U, Haque K, Dilli D, Erdeve O, Goekmen T. Role of 
pentoxifylline and/or IgM-enriched intravenous immunoglobulin in the 
management of neonatal sepsis. Am J Perinatol (2014) 31(10):905–12. doi:10
.1055/s-0033-1363771 

 8. Capasso L, Borrelli AC, Parrella C, Lama S, Ferrara T, Coppola C, et  al. 
Are IgM-enriched immunoglobulins an effective adjuvant in septic VLBW 
infants? Ital J Pediatr (2013) 39:63. doi:10.1186/1824-7288-39-63 

 9. Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and 
inflammatory diseases with intravenous immune globulin. N Engl J Med 
(2001) 345(10):747–55. doi:10.1056/NEJMra993360 

 10. Gold R, Stangel M, Dalakas MC. Drug Insight: the use of intravenous immu-
noglobulin in neurology –  therapeutic considerations and practical issues. 
Nat Clin Pract Neurol (2007) 3(1):36–44. doi:10.1038/ncpneuro0376 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1146/annurev.immunol.26.021607.090232
http://dx.doi.org/10.1146/annurev.immunol.26.021607.090232
http://dx.doi.org/10.1056/NEJMoa1100441
http://dx.doi.org/10.1002/14651858.CD000361.pub3
http://dx.doi.org/10.1002/14651858.CD001239.pub4
http://dx.doi.org/10.1055/s-0033-1363771
http://dx.doi.org/10.1055/s-0033-1363771
http://dx.doi.org/10.1186/1824-7288-39-63
http://dx.doi.org/10.1056/NEJMra993360
http://dx.doi.org/10.1038/ncpneuro0376


September 2015 | Volume 6 | Article 4698

Kaufman et al. Treg induction by IVIg

Frontiers in Immunology | www.frontiersin.org

 11. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tol-
erance maintained by activated T cells expressing IL-2 receptor alpha-chains 
(CD25). Breakdown of a single mechanism of self-tolerance causes various 
autoimmune diseases. J Immunol (1995) 155(3):1151–64. 

 12. Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all 
trades,   master of regulation. Nat Immunol (2008) 9(3):239–44. 
doi:10.1038/ni1572 

 13. Piccirillo CA, Shevach EM. Naturally-occurring CD4+CD25+ immunoreg-
ulatory T cells: central players in the arena of peripheral tolerance. Semin 
Immunol (2004) 16(2):81–8. doi:10.1016/j.smim.2003.12.003 

 14. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development 
by the transcription factor Foxp3. Science (2003) 299(5609):1057–61. 
doi:10.1126/science.1079490 

 15. Vigouroux S, Yvon E, Biagi E, Brenner MK. Antigen-induced regulatory T 
cells. Blood (2004) 104(1):26–33. doi:10.1182/blood-2004-01-0182 

 16. d’Hennezel E, Yurchenko E, Sgouroudis E, Hay V, Piccirillo CA. Single-
cell analysis of the human T regulatory population uncovers functional 
heterogeneity and instability within FOXP3+ cells. J Immunol (2011) 
186(12):6788–97. doi:10.4049/jimmunol.1100269 

 17. Bin Dhuban K, Kornete M, Mason SE, Piccirillo CA. Functional dynamics 
of Foxp3(+) regulatory T cells in mice and humans. Immunol Rev (2014) 
259(1):140–58. doi:10.1111/imr.12168 

 18. Bin Dhuban K, d’Hennezel E, Nashi E, Bar-Or A, Rieder S, Shevach EM, 
et al. Coexpression of TIGIT and FCRL3 identifies Helios+ human mem-
ory regulatory T cells. J Immunol (2015) 194(8):3687–96. doi:10.4049/
jimmunol.1401803 

 19. Pilat N, Baranyi U, Klaus C, Jaeckel E, Mpofu N, Wrba F, et  al. Treg-
therapy allows mixed chimerism and transplantation tolerance without 
cytoreductive conditioning. Am J Transplant (2010) 10(4):751–62. 
doi:10.1111/j.1600-6143.2010.03018.x 

 20. Xu W, Lan Q, Chen M, Chen H, Zhu N, Zhou X, et al. Adoptive transfer 
of induced-Treg cells effectively attenuates murine airway allergic 
inflammation. PLoS One (2012) 7(7):e40314. doi:10.1371/journal.
pone.0040314 

 21. Riley JL, June CH, Blazar BR. Human T regulatory cell therapy: take a 
billion or so and call me in the morning. Immunity (2009) 30(5):656–65. 
doi:10.1016/j.immuni.2009.04.006 

 22. Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands 
CD4+CD25+FoxP3+ regulatory T cells. Blood (2005) 105(12):4743–8. 
doi:10.1182/blood-2004-10-3932 

 23. Ray A, Khare A, Krishnamoorthy N, Qi Z, Ray P. Regulatory T cells in many 
flavors control asthma. Mucosal Immunol (2010) 3(3):216–29. doi:10.1038/
mi.2010.4 

 24. Bayry J, Mouthon L, Kaveri SV. Intravenous immunoglobulin expands 
regulatory T cells in autoimmune rheumatic disease. J Rheumatol (2012) 
39(2):450–1. doi:10.3899/jrheum.111123 

 25. Durandy A, Fischer A, Griscelli C. Dysfunctions of pokeweed mitogen-stim-
ulated T and B lymphocyte responses induced by gammaglobulin therapy. 
J Clin Invest (1981) 67(3):867–77. doi:10.1172/JCI110104 

 26. Sany J, Clot J, Bonneau M, Andary M. Immunomodulating effect of human 
placenta-eluted gamma globulins in rheumatoid arthritis. Arthritis Rheum 
(1982) 25(1):17–24. doi:10.1002/art.1780250103 

 27. Delfraissy JF, Tchernia G, Laurian Y, Wallon C, Galanaud P, Dormont J. 
Suppressor cell function after intravenous gammaglobulin treatment in 
adult chronic idiopathic thrombocytopenic purpura. Br J Haematol (1985) 
60(2):315–22. doi:10.1111/j.1365-2141.1985.tb07417.x 

 28. Gupta A, Novick BE, Rubinstein A. Restoration of suppressor T-cell functions 
in children with AIDS following intravenous gamma globulin treatment. Am 
J Dis Child (1986) 140(2):143–6. 

 29. Kessel A, Ammuri H, Peri R, Pavlotzky ER, Blank M, Shoenfeld Y, et  al. 
Intravenous immunoglobulin therapy affects T regulatory cells by increasing 
their suppressive function. J Immunol (2007) 179(8):5571–5. doi:10.4049/
jimmunol.179.8.5571 

 30. Chi LJ, Wang HB, Zhang Y, Wang WZ. Abnormality of circulating 
CD4(+)CD25(+) regulatory T cell in patients with Guillain-Barre 
syndrome. J Neuroimmunol (2007) 192(1–2):206–14. doi:10.1016/j.
jneuroim.2007.09.034 

 31. Barreto M, Ferreira RC, Lourenco L, Moraes-Fontes MF, Santos E, Alves M, 
et al. Low frequency of CD4+CD25+ Treg in SLE patients: a heritable trait 

associated with CTLA4 and TGFbeta gene variants. BMC Immunol (2009) 
10:5. doi:10.1186/1471-2172-10-5 

 32. Tsurikisawa N, Saito H, Oshikata C, Tsuburai T, Akiyama K. High-dose 
intravenous immunoglobulin treatment increases regulatory T cells in 
patients with eosinophilic granulomatosis with polyangiitis. J Rheumatol 
(2012) 39(5):1019–25. doi:10.3899/jrheum.110981 

 33. Tsurikisawa N, Taniguchi M, Saito H, Himeno H, Ishibashi A, Suzuki S, et al. 
Treatment of Churg-Strauss syndrome with high-dose intravenous immu-
noglobulin. Ann Allergy Asthma Immunol (2004) 92(1):80–7. doi:10.1016/
S1081-1206(10)61714-0 

 34. Burns JC, Glodé MP. Kawasaki syndrome. Lancet (2004) 364(9433):533–44. 
doi:10.1016/S0140-6736(04)16814-1 

 35. Burns JC, Song Y, Bujold M, Shimizu C, Kanegaye JT, Tremoulet AH, et al. 
Immune-monitoring in Kawasaki disease patients treated with infliximab 
and intravenous immunoglobulin. Clin Exp Immunol (2013) 174(3):337–44. 
doi:10.1111/cei.12182 

 36. Franco A, Touma R, Song Y, Shimizu C, Tremoulet AH, Kanegaye JT, 
et al. Specificity of regulatory T cells that modulate vascular inflam-
mation. Autoimmunity (2014) 47(2):95–104. doi:10.3109/08916934.2
013.860524 

 37. Burns JC, Touma R, Song Y, Padilla RL, Tremoulet AH, Sidney J, et al. Fine 
specificities of natural regulatory T cells after IVIG therapy in patients with 
Kawasaki disease. Autoimmunity (2015) 48(3):181–8. doi:10.3109/08916934
.2015.1027817 

 38. Anthony RM, Ravetch JV. A novel role for the IgG Fc glycan: the anti-in-
flammatory activity of sialylated IgG Fcs. J Clin Immunol (2010) 30(Suppl 
1):S9–14. doi:10.1007/s10875-010-9405-6 

 39. Ephrem A, Chamat S, Miquel C, Fisson S, Mouthon L, Caligiuri G, 
et  al. Expansion of CD4+CD25+ regulatory T cells by intravenous 
immunoglobulin: a critical factor in controlling experimental auto-
immune encephalomyelitis. Blood (2008) 111(2):715–22. doi:10.1182/
blood-2007-03-079947 

 40. Ni FF, Li CR, Li Q, Xia Y, Wang GB, Yang J. Regulatory T cell microRNA 
expression changes in children with acute Kawasaki disease. Clin Exp 
Immunol (2014) 178(2):384–93. doi:10.1111/cei.12418 

 41. Okuda S, Kamei S, Harano S, Shinya N, Hayashida K, Sasaki T. [Enhancement 
of regulatory T cell induction by intravenous S-sulfonated Immunoglobulin 
during the treatment of experimental autoimmune encephalomyelitis]. 
Yakugaku Zasshi (2012) 132(2):243–9. doi:10.1248/yakushi.132.243 

 42. Bao Y, Han Y, Chen Z, Xu S, Cao X. IFN-alpha-producing PDCA-1+ 
Siglec-H- B cells mediate innate immune defense by activating NK cells. Eur 
J Immunol (2011) 41(3):657–68. doi:10.1002/eji.201040840 

 43. Bergmann C, Wild CA, Narwan M, Lotfi R, Lang S, Brandau S. Human 
tumor-induced and naturally occurring Treg cells differentially affect NK cells 
activated by either IL-2 or target cells. Eur J Immunol (2011) 41(12):3564–73. 
doi:10.1002/eji.201141532 

 44. Chong WP, Ling MT, Liu Y, Caspi RR, Wong WM, Wu W, et al. Essential role 
of NK cells in IgG therapy for experimental autoimmune encephalomyelitis. 
PLoS One (2013) 8(4):e60862. doi:10.1371/journal.pone.0060862 

 45. Moretta A. Natural killer cells and dendritic cells: rendezvous in abused 
tissues. Nat Rev Immunol (2002) 2(12):957–65. doi:10.1038/nri956 

 46. Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL. Cross-
talk between activated human NK cells and CD4+ T cells via OX40-OX40 
ligand interactions. J Immunol (2004) 173(6):3716–24. doi:10.4049/
jimmunol.173.6.3716 

 47. Liang S, Alard P, Zhao Y, Parnell S, Clark SL, Kosiewicz MM. Conversion 
of CD4+ CD25- cells into CD4+ CD25+ regulatory T cells in vivo requires 
B7 costimulation, but not the thymus. J Exp Med (2005) 201(1):127–37. 
doi:10.1084/jem.20041201 

 48. Griseri T, Asquith M, Thompson C, Powrie F. OX40 is required for regula-
tory T cell-mediated control of colitis. J Exp Med (2010) 207(4):699–709. 
doi:10.1084/jem.20091618 

 49. Massoud AH, Guay J, Shalaby KH, Bjur E, Ablona A, Chan D, et  al. 
Intravenous immunoglobulin attenuates airway inflammation through 
induction of forkhead box protein 3-positive regulatory T cells. J Allergy Clin 
Immunol (2012) 129(6):1656–65. doi:10.1016/j.jaci.2012.02.050 

 50. Aslam R, Hu Y, Gebremeskel S, Segel GB, Speck ER, Guo L, et al. Thymic 
retention of CD4+CD25+FoxP3+ T regulatory cells is associated with 
their peripheral deficiency and thrombocytopenia in a murine model of 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1038/ni1572
http://dx.doi.org/10.1016/j.smim.2003.12.003
http://dx.doi.org/10.1126/science.1079490
http://dx.doi.org/10.1182/blood-2004-01-0182
http://dx.doi.org/10.4049/jimmunol.1100269
http://dx.doi.org/10.1111/imr.12168
http://dx.doi.org/10.4049/jimmunol.1401803
http://dx.doi.org/10.4049/jimmunol.1401803
http://dx.doi.org/10.1111/j.1600-6143.2010.03018.x
http://dx.doi.org/10.1371/journal.pone.0040314
http://dx.doi.org/10.1371/journal.pone.0040314
http://dx.doi.org/10.1016/j.immuni.2009.04.006
http://dx.doi.org/10.1182/blood-2004-10-3932
http://dx.doi.org/10.1038/mi.2010.4
http://dx.doi.org/10.1038/mi.2010.4
http://dx.doi.org/10.3899/jrheum.111123
http://dx.doi.org/10.1172/JCI110104
http://dx.doi.org/10.1002/art.1780250103
http://dx.doi.org/10.1111/j.1365-2141.1985.tb07417.x
http://dx.doi.org/10.4049/jimmunol.179.8.5571
http://dx.doi.org/10.4049/jimmunol.179.8.5571
http://dx.doi.org/10.1016/j.jneuroim.2007.09.034
http://dx.doi.org/10.1016/j.jneuroim.2007.09.034
http://dx.doi.org/10.1186/1471-2172-10-5
http://dx.doi.org/10.3899/jrheum.110981
http://dx.doi.org/10.1016/S1081-1206(10)61714-0
http://dx.doi.org/10.1016/S1081-1206(10)61714-0
http://dx.doi.org/10.1016/S0140-6736(04)16814-1
http://dx.doi.org/10.1111/cei.12182
http://dx.doi.org/10.3109/08916934.2013.860524
http://dx.doi.org/10.3109/08916934.2013.860524
http://dx.doi.org/10.3109/08916934.2015.1027817
http://dx.doi.org/10.3109/08916934.2015.1027817
http://dx.doi.org/10.1007/s10875-010-9405-6
http://dx.doi.org/10.1182/blood-2007-03-079947
http://dx.doi.org/10.1182/blood-2007-03-079947
http://dx.doi.org/10.1111/cei.12418
http://dx.doi.org/10.1248/yakushi.132.243
http://dx.doi.org/10.1002/eji.201040840
http://dx.doi.org/10.1002/eji.201141532
http://dx.doi.org/10.1371/journal.pone.0060862
http://dx.doi.org/10.1038/nri956
http://dx.doi.org/10.4049/jimmunol.173.6.3716
http://dx.doi.org/10.4049/jimmunol.173.6.3716
http://dx.doi.org/10.1084/jem.20041201
http://dx.doi.org/10.1084/jem.20091618
http://dx.doi.org/10.1016/j.jaci.2012.02.050


September 2015 | Volume 6 | Article 4699

Kaufman et al. Treg induction by IVIg

Frontiers in Immunology | www.frontiersin.org

immune thrombocytopenia. Blood (2012) 120(10):2127–32. doi:10.1182/
blood-2012-02-413526 

 51. Kerr J, Quinti I, Eibl M, Chapel H, Spaeth PJ, Sewell WC, et al. Is dosing of 
therapeutic immunoglobulins optimal? – A review of a 3-decade long debate 
in Europe. Front Immunol (2014) 5:629. doi:10.3389/fimmu.2014.00629 

 52. Roifman CM, Levison H, Gelfand EW. High-dose versus low-dose intra-
venous immunoglobulin in hypogammaglobulinaemia and chronic lung 
disease. Lancet (1987) 1(8541):1075–7. doi:10.1016/S0140-6736(87)90494-6 

 53. Ramakrishna C, Newo AN, Shen YW, Cantin E. Passively administered 
pooled human immunoglobulins exert IL-10 dependent anti-inflammatory 
effects that protect against fatal HSV encephalitis. PLoS Pathog (2011) 
7(6):e1002071. doi:10.1371/journal.ppat.1002071 

 54. Schwab I, Mihai S, Seeling M, Kasperkiewicz M, Ludwig RJ, Nimmerjahn F. 
Broad requirement for terminal sialic acid residues and FcgammaRIIB for the 
preventive and therapeutic activity of intravenous immunoglobulins in vivo. 
Eur J Immunol (2014) 44(5):1444–53. doi:10.1002/eji.201344230 

 55. Cines DB, Blanchette VS. Immune thrombocytopenic purpura. N Engl J Med 
(2002) 346(13):995–1008. doi:10.1056/NEJMra010501 

 56. Ohnmacht C, Pullner A, King SB, Drexler I, Meier S, Brocker T, et  al. 
Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T 
cells and results in spontaneous fatal autoimmunity. J Exp Med (2009) 
206(3):549–59. doi:10.1084/jem.20082394 

 57. Adorini L. Tolerogenic dendritic cells induced by vitamin D receptor ligands 
enhance regulatory T cells inhibiting autoimmune diabetes. Ann N Y Acad 
Sci (2003) 987:258–61. doi:10.1111/j.1749-6632.2003.tb06057.x 

 58. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic 
cells. Annu Rev Immunol (2003) 21:685–711. doi:10.1146/annurev.
immunol.21.120601.141040 

 59. Kushwah R, Hu J. Role of dendritic cells in the induction of regulatory T cells. 
Cell Biosci (2011) 1(1):20. doi:10.1186/2045-3701-1-20 

 60. Zou T, Caton AJ, Koretzky GA, Kambayashi T. Dendritic cells induce regula-
tory T cell proliferation through antigen-dependent and -independent inter-
actions. J Immunol (2010) 185(5):2790–9. doi:10.4049/jimmunol.0903740 

 61. Sun Y, Brown NK, Ruddy MJ, Miller ML, Lee Y, Wang Y, et  al. B and T 
lymphocyte attenuator tempers early infection immunity. J Immunol (2009) 
183(3):1946–51. doi:10.4049/jimmunol.0801866 

 62. Brandl C, Ortler S, Herrmann T, Cardell S, Lutz MB, Wiendl H. B7-H1-
deficiency enhances the potential of tolerogenic dendritic cells by activating 
CD1d-restricted type II NKT cells. PLoS One (2010) 5(5):e10800. doi:10.1371/
journal.pone.0010800 

 63. Kubo T, Hatton RD, Oliver J, Liu X, Elson CO, Weaver CT. Regulatory T 
cell suppression and anergy are differentially regulated by proinflammatory 
cytokines produced by TLR-activated dendritic cells. J Immunol (2004) 
173(12):7249–58. doi:10.4049/jimmunol.173.12.7249 

 64. Bhattacharya P, Gopisetty A, Ganesh BB, Sheng JR, Prabhakar BS. GM-CSF-
induced, bone-marrow-derived dendritic cells can expand natural Tregs 
and induce adaptive Tregs by different mechanisms. J Leukoc Biol (2011) 
89(2):235–49. doi:10.1189/jlb.0310154 

 65. Loubaki L, Chabot D, Bazin R. Involvement of the TNF-alpha/TGF-beta/
IDO axis in IVIg-induced immune tolerance. Cytokine (2015) 71(2):181–7. 
doi:10.1016/j.cyto.2014.10.016 

 66. Maldonado RA, von Andrian UH. How tolerogenic dendritic cells 
induce regulatory T cells. Adv Immunol (2010) 108:111–65. doi:10.1016/
B978-0-12-380995-7.00004-5 

 67. Kuipers H, Lambrecht BN. The interplay of dendritic cells, Th2 cells and 
regulatory T cells in asthma. Curr Opin Immunol (2004) 16(6):702–8. 
doi:10.1016/j.coi.2004.09.010 

 68. Kaufman GN, Massoud AH, Audusseau S, Banville-Langelier AA, Wang 
Y, Guay J, et  al. Intravenous immunoglobulin attenuates airway hyperres-
ponsiveness in a murine model of allergic asthma. Clin Exp Allergy (2011) 
41(5):718–28. doi:10.1111/j.1365-2222.2010.03663.x 

 69. Yamamoto M, Kobayashi K, Ishikawa Y, Nakata K, Funada Y, Kotani Y, et al. 
The inhibitory effects of intravenous administration of rabbit immunoglob-
ulin G on airway inflammation are dependent upon Fcgamma receptor IIb 
on CD11c(+) dendritic cells in a murine model. Clin Exp Immunol (2010) 
162(2):315–24. doi:10.1111/j.1365-2249.2010.04243.x 

 70. Qian J, Zhu J, Wang M, Wu S, Chen T. Suppressive effects of intravenous immu-
noglobulin (IVIG) on human umbilical cord blood immune cells. Pediatr 
Allergy Immunol (2011) 22(2):211–20. doi:10.1111/j.1399-3038.2010.01049.x 

 71. Bayry J, Lacroix-Desmazes S, Carbonneil C, Misra N, Donkova V, Pashov 
A, et  al. Inhibition of maturation and function of dendritic cells by 
intravenous immunoglobulin. Blood (2003) 101(2):758–65. doi:10.1182/
blood-2002-05-1447 

 72. Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG 
mediated through the inhibitory Fc receptor. Science (2001) 291(5503):484–6. 
doi:10.1126/science.291.5503.484 

 73. Trepanier P, Aubin E, Bazin R. IVIg-mediated inhibition of antigen presen-
tation: predominant role of naturally occurring cationic IgG. Clin Immunol 
(2012) 142(3):383–9. doi:10.1016/j.clim.2011.12.014 

 74. Aubin E, Lemieux R, Bazin R. Indirect inhibition of in vivo and in vitro T-cell 
responses by intravenous immunoglobulins due to impaired antigen presen-
tation. Blood (2010) 115(9):1727–34. doi:10.1182/blood-2009-06-225417 

 75. Ohkuma K, Sasaki T, Kamei S, Okuda S, Nakano H, Hamamoto T, et  al. 
Modulation of dendritic cell development by immunoglobulin G in 
control subjects and multiple sclerosis patients. Clin Exp Immunol (2007) 
150(3):397–406. doi:10.1111/j.1365-2249.2007.03496.x 

 76. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta 
in the context of an inflammatory cytokine milieu supports de novo 
differentiation of IL-17-producing T cells. Immunity (2006) 24(2):179–89. 
doi:10.1016/j.immuni.2006.01.001 

 77. Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T 
cell-mediated suppression by dendritic cells. Science (2003) 299(5609):1033–
6. doi:10.1126/science.1078231 

 78. Andersson JP, Andersson UG. Human intravenous immunoglobulin modu-
lates monokine production in vitro. Immunology (1990) 71(3):372–6. 

 79. Darville T, Tabor D, Simpson K, Jacobs RF. Intravenous immuno-
globulin modulates human mononuclear phagocyte tumor necrosis 
factor-alpha production in  vitro. Pediatr Res (1994) 35(4 Pt 1):397–403. 
doi:10.1203/00006450-199404000-00004 

 80. Clynes R. IVIG therapy: interfering with interferon-gamma. Immunity 
(2007) 26(1):4–6. doi:10.1016/j.immuni.2007.01.006 

 81. Bayry J, Bansal K, Kazatchkine MD, Kaveri SV. DC-SIGN and alpha2,6-si-
alylated IgG Fc interaction is dispensable for the anti-inflammatory activity 
of IVIg on human dendritic cells. Proc Natl Acad Sci U S A (2009) 106(9):E24. 
author reply E5.

 82. Kaneko Y, Nimmerjahn F, Madaio MP, Ravetch JV. Pathology and protection 
in nephrotoxic nephritis is determined by selective engagement of specific Fc 
receptors. J Exp Med (2006) 203(3):789–97. doi:10.1084/jem.20051900 

 83. Siragam V, Crow AR, Brinc D, Song S, Freedman J, Lazarus AH. Intravenous 
immunoglobulin ameliorates ITP via activating Fc gamma receptors on 
dendritic cells. Nat Med (2006) 12(6):688–92. doi:10.1038/nm1416 

 84. De Groot AS, Moise L, McMurry JA, Wambre E, Van Overtvelt L, 
Moingeon P, et  al. Activation of natural regulatory T cells by IgG 
Fc-derived peptide “Tregitopes”. Blood (2008) 112(8):3303–11. doi:10.1182/
blood-2008-02-138073 

 85. Cousens LP, Najafian N, Mingozzi F, Elyaman W, Mazer B, Moise L, et al. 
In  vitro and in  vivo studies of IgG-derived Treg epitopes (Tregitopes): a 
promising new tool for tolerance induction and treatment of autoimmunity. 
J Clin Immunol (2013) 33(Suppl 1):S43–9. doi:10.1007/s10875-012-9762-4 

 86. Elyaman W, Khoury SJ, Scott DW, De Groot AS. Potential application of 
tregitopes as immunomodulating agents in multiple sclerosis. Neurol Res Int 
(2011) 2011:256460. doi:10.1155/2011/256460 

 87. Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immu-
noglobulin G resulting from Fc sialylation. Science (2006) 313(5787):670–3. 
doi:10.1126/science.1129594 

 88. Anthony RM, Wermeling F, Karlsson MC, Ravetch JV. Identification of a 
receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad 
Sci USA (2008) 105(50):19571–8. doi:10.1073/pnas.0810163105 

 89. Chen XX, Chen YQ, Ye S. Measuring decreased serum IgG sialyla-
tion: a novel clinical biomarker of lupus. Lupus (2015) 24(9):948–54. 
doi:10.1177/0961203315570686 

 90. Sondermann P, Pincetic A, Maamary J, Lammens K, Ravetch JV. General 
mechanism for modulating immunoglobulin effector function. Proc Natl 
Acad Sci USA (2013) 110(24):9868–72. doi:10.1073/pnas.1307864110 

 91. Washburn N, Schwab I, Ortiz D, Bhatnagar N, Lansing JC, Medeiros A, et al. 
Controlled tetra-Fc sialylation of IVIg results in a drug candidate with con-
sistent enhanced anti-inflammatory activity. Proc Natl Acad Sci USA (2015) 
112(11):E1297–306. doi:10.1073/pnas.1422481112 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1182/blood-2012-02-413526
http://dx.doi.org/10.1182/blood-2012-02-413526
http://dx.doi.org/10.3389/fimmu.2014.00629
http://dx.doi.org/10.1016/S0140-6736(87)90494-6
http://dx.doi.org/10.1371/journal.ppat.1002071
http://dx.doi.org/10.1002/eji.201344230
http://dx.doi.org/10.1056/NEJMra010501
http://dx.doi.org/10.1084/jem.20082394
http://dx.doi.org/10.1111/j.1749-6632.2003.tb06057.x
http://dx.doi.org/10.1146/annurev.immunol.21.120601.141040
http://dx.doi.org/10.1146/annurev.immunol.21.120601.141040
http://dx.doi.org/10.1186/2045-3701-1-20
http://dx.doi.org/10.4049/jimmunol.0903740
http://dx.doi.org/10.4049/jimmunol.0801866
http://dx.doi.org/10.1371/journal.pone.0010800
http://dx.doi.org/10.1371/journal.pone.0010800
http://dx.doi.org/10.4049/jimmunol.173.12.7249
http://dx.doi.org/10.1189/jlb.0310154
http://dx.doi.org/10.1016/j.cyto.2014.10.016
http://dx.doi.org/10.1016/B978-0-12-380995-7.00004-5
http://dx.doi.org/10.1016/B978-0-12-380995-7.00004-5
http://dx.doi.org/10.1016/j.coi.2004.09.010
http://dx.doi.org/10.1111/j.1365-2222.2010.03663.x
http://dx.doi.org/10.1111/j.1365-2249.2010.04243.x
http://dx.doi.org/10.1111/j.1399-3038.2010.01049.x
http://dx.doi.org/10.1182/blood-2002-05-1447
http://dx.doi.org/10.1182/blood-2002-05-1447
http://dx.doi.org/10.1126/science.291.5503.484
http://dx.doi.org/10.1016/j.clim.2011.12.014
http://dx.doi.org/10.1182/blood-2009-06-225417
http://dx.doi.org/10.1111/j.1365-2249.2007.03496.x
http://dx.doi.org/10.1016/j.immuni.2006.01.001
http://dx.doi.org/10.1126/science.1078231
http://dx.doi.org/10.1203/00006450-199404000-00004
http://dx.doi.org/10.1016/j.immuni.2007.01.006
http://dx.doi.org/10.1084/jem.20051900
http://dx.doi.org/10.1038/nm1416
http://dx.doi.org/10.1182/blood-2008-02-138073
http://dx.doi.org/10.1182/blood-2008-02-138073
http://dx.doi.org/10.1007/s10875-012-9762-4
http://dx.doi.org/10.1155/2011/256460
http://dx.doi.org/10.1126/science.1129594
http://dx.doi.org/10.1073/pnas.0810163105
http://dx.doi.org/10.1177/0961203315570686
http://dx.doi.org/10.1073/pnas.1307864110
http://dx.doi.org/10.1073/pnas.1422481112


September 2015 | Volume 6 | Article 46910

Kaufman et al. Treg induction by IVIg

Frontiers in Immunology | www.frontiersin.org

 92. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch 
JV. Recapitulation of IVIG anti-inflammatory activity with a recombinant 
IgG Fc. Science (2008) 320(5874):373–6. doi:10.1126/science.1154315 

 93. Schwab I, Biburger M, Kronke G, Schett G, Nimmerjahn F. IVIg-mediated 
amelioration of ITP in mice is dependent on sialic acid and SIGNR1. Eur 
J Immunol (2012) 42(4):826–30. doi:10.1002/eji.201142260 

 94. Massoud AH, Yona M, Xue D, Chouiali F, Alturaihi H, Ablona A, et  al. 
Dendritic cell immunoreceptor: a novel receptor for intravenous immuno-
globulin mediates induction of regulatory T cells. J Allergy Clin Immunol 
(2014) 133(3):853–63. doi:10.1016/j.jaci.2013.09.029 

 95. Samsom JN, van Berkel LA, van Helvoort JM, Unger WW, Jansen W, Thepen 
T, et al. Fc gamma RIIB regulates nasal and oral tolerance: a role for dendritic 
cells. J Immunol (2005) 174(9):5279–87. doi:10.4049/jimmunol.174.9.5279 

 96. Guilliams M, Bruhns P, Saeys Y, Hammad H, Lambrecht BN. The function 
of Fcgamma receptors in dendritic cells and macrophages. Nat Rev Immunol 
(2014) 14(2):94–108. doi:10.1038/nri3582 

 97. Fiebiger BM, Maamary J, Pincetic A, Ravetch JV. Protection in antibody- and 
T cell-mediated autoimmune diseases by antiinflammatory IgG Fcs requires 
type II FcRs. Proc Natl Acad Sci USA (2015) 112(18):E2385–94. doi:10.1073/
pnas.1505292112 

 98. Othy S, Topcu S, Saha C, Kothapalli P, Lacroix-Desmazes S, Kasermann F, 
et al. Sialylation may be dispensable for reciprocal modulation of helper T 
cells by intravenous immunoglobulin. Eur J Immunol (2014) 44(7):2059–63. 
doi:10.1002/eji.201444440 

 99. Guhr T, Bloem J, Derksen NI, Wuhrer M, Koenderman AH, Aalberse 
RC, et  al. Enrichment of sialylated IgG by lectin fractionation does not 
enhance the efficacy of immunoglobulin G in a murine model of immune 
thrombocytopenia. PLoS One (2011) 6(6):e21246. doi:10.1371/journal.
pone.0021246 

 100. Leontyev D, Katsman Y, Ma XZ, Miescher S, Kasermann F, Branch DR. 
Sialylation-independent mechanism involved in the amelioration of murine 
immune thrombocytopenia using intravenous gammaglobulin. Transfusion 
(2012) 52(8):1799–805. doi:10.1111/j.1537-2995.2011.03517.x 

 101. Campbell IK, Miescher S, Branch DR, Mott PJ, Lazarus AH, Han D, et al. 
Therapeutic effect of IVIG on inflammatory arthritis in mice is dependent on 
the Fc portion and independent of sialylation or basophils. J Immunol (2014) 
192(11):5031–8. doi:10.4049/jimmunol.1301611 

 102. Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors: 
shaping immune responses. Nat Rev Immunol (2009) 9(7):465–79. 
doi:10.1038/nri2569 

 103. Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TB. 
Carbohydrate-specific signaling through the DC-SIGN signalosome tailors 
immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat 
Immunol (2009) 10(10):1081–8. doi:10.1038/ni.1778 

 104. Smits HH, Engering A, van der Kleij D, de Jong EC, Schipper K, van Capel 
TM, et  al. Selective probiotic bacteria induce IL-10-producing regulatory 
T cells in  vitro by modulating dendritic cell function through dendritic 
cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. 
J Allergy Clin Immunol (2005) 115(6):1260–7. doi:10.1016/j.jaci.2005.03.036 

 105. Anthony RM, Wermeling F, Ravetch JV. Novel roles for the IgG Fc glycan. Ann 
N Y Acad Sci (2012) 1253:170–80. doi:10.1111/j.1749-6632.2011.06305.x 

 106. Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, et al. 
Type I and type II Fc receptors regulate innate and adaptive immunity. Nat 
Immunol (2014) 15(8):707–16. doi:10.1038/ni.2939 

 107. Crispin M, Yu X, Bowden TA. Crystal structure of sialylated IgG Fc: implica-
tions for the mechanism of intravenous immunoglobulin therapy. Proc Natl 
Acad Sci USA (2013) 110(38):E3544–6. doi:10.1073/pnas.1310657110 

 108. Yu X, Vasiljevic S, Mitchell DA, Crispin M, Scanlan CN. Dissecting the 
molecular mechanism of IVIg therapy: the interaction between serum IgG 
and DC-SIGN is independent of antibody glycoform or Fc domain. J Mol Biol 
(2013) 425(8):1253–8. doi:10.1016/j.jmb.2013.02.006 

 109. Kasermann F, Boerema DJ, Ruegsegger M, Hofmann A, Wymann S, Zuercher 
AW, et al. Analysis and functional consequences of increased Fab-sialylation 

of intravenous immunoglobulin (IVIG) after lectin fractionation. PLoS One 
(2012) 7(6):e37243. doi:10.1371/journal.pone.0037243 

 110. Yamazaki S, Dudziak D, Heidkamp GF, Fiorese C, Bonito AJ, Inaba K, 
et  al. CD8+ CD205+ splenic dendritic cells are specialized to induce 
Foxp3+ regulatory T cells. J Immunol (2008) 181(10):6923–33. doi:10.4049/
jimmunol.181.10.6923 

 111. Tha-In T, Metselaar HJ, Bushell AR, Kwekkeboom J, Wood KJ. Intravenous 
immunoglobulins promote skin allograft acceptance by triggering functional 
activation of CD4+Foxp3+ T cells. Transplantation (2010) 89(12):1446–55. 
doi:10.1097/TP.0b013e3181dd6bf1 

 112. Becker C, Kubach J, Wijdenes J, Knop J, Jonuleit H. CD4-mediated functional 
activation of human CD4+CD25+ regulatory T cells. Eur J Immunol (2007) 
37(5):1217–23. doi:10.1002/eji.200636480 

 113. Pashov A, Bellon B, Kaveri SV, Kazatchkine MD. A shift in encephal-
itogenic T cell cytokine pattern is associated with suppression of EAE 
by intravenous immunoglobulins (IVIg). Mult Scler (1997) 3(2):153–6. 
doi:10.1177/135245859700300218 

 114. Pashov A, Dubey C, Kaveri SV, Lectard B, Huang YM, Kazatchkine MD, 
et  al. Normal immunoglobulin G protects against experimental allergic 
encephalomyelitis by inducing transferable T cell unresponsiveness to 
myelin basic protein. Eur J Immunol (1998) 28(6):1823–31. doi:10.1002/
(SICI)1521-4141(199806)28:06<1823::AID-IMMU1823>3.0.CO;2-F 

 115. Andersson U, Bjork L, Skansen-Saphir U, Andersson J. Pooled human IgG 
modulates cytokine production in lymphocytes and monocytes. Immunol 
Rev (1994) 139:21–42. doi:10.1111/j.1600-065X.1994.tb00855.x 

 116. Maddur MS, Vani J, Hegde P, Lacroix-Desmazes S, Kaveri SV, Bayry J. 
Inhibition of differentiation, amplification, and function of human TH17 cells 
by intravenous immunoglobulin. J Allergy Clin Immunol (2011) 127(3):e1–7. 
doi:10.1016/j.jaci.2010.12.1102 

 117. Cooper N, Heddle NM, Haas M, Reid ME, Lesser ML, Fleit HB, et  al. 
Intravenous (IV) anti-D and IV immunoglobulin achieve acute platelet 
increases by different mechanisms: modulation of cytokine and platelet 
responses to IV anti-D by FcgammaRIIa and FcgammaRIIIa polymorphisms. 
Br J Haematol (2004) 124(4):511–8. doi:10.1111/j.1365-2141.2004.04804.x 

 118. Mouzaki A, Theodoropoulou M, Gianakopoulos I, Vlaha V, Kyrtsonis MC, 
Maniatis A. Expression patterns of Th1 and Th2 cytokine genes in childhood 
idiopathic thrombocytopenic purpura (ITP) at presentation and their 
modulation by intravenous immunoglobulin G (IVIg) treatment: their role 
in prognosis. Blood (2002) 100(5):1774–9. 

 119. Wei S, Kryczek I, Zou W. Regulatory T-cell compartmentalization and 
trafficking. Blood (2006) 108(2):426–31. doi:10.1182/blood-2006-01-0177 

 120. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, 
et al. Unique chemotactic response profile and specific expression of chemo-
kine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp 
Med (2001) 194(6):847–53. doi:10.1084/jem.194.6.847 

 121. Matsushima H, Takashima A. Bidirectional homing of Tregs between the skin 
and lymph nodes. J Clin Invest (2010) 120(3):653–6. doi:10.1172/JCI42280 

 122. Tha-In T, Metselaar HJ, Tilanus HW, Groothuismink ZM, Kuipers EJ, de Man 
RA, et al. Intravenous immunoglobulins suppress T-cell priming by modu-
lating the bidirectional interaction between dendritic cells and natural killer 
cells. Blood (2007) 110(9):3253–62. doi:10.1182/blood-2007-03-077057 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2015 Kaufman, Massoud, Dembele, Yona, Piccirillo and Mazer. This 
is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) or licensor are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1126/science.1154315
http://dx.doi.org/10.1002/eji.201142260
http://dx.doi.org/10.1016/j.jaci.2013.09.029
http://dx.doi.org/10.4049/jimmunol.174.9.5279
http://dx.doi.org/10.1038/nri3582
http://dx.doi.org/10.1073/pnas.1505292112
http://dx.doi.org/10.1073/pnas.1505292112
http://dx.doi.org/10.1002/eji.201444440
http://dx.doi.org/10.1371/journal.pone.0021246
http://dx.doi.org/10.1371/journal.pone.0021246
http://dx.doi.org/10.1111/j.1537-2995.2011.03517.x
http://dx.doi.org/10.4049/jimmunol.1301611
http://dx.doi.org/10.1038/nri2569
http://dx.doi.org/10.1038/ni.1778
http://dx.doi.org/10.1016/j.jaci.2005.03.036
http://dx.doi.org/10.1111/j.1749-6632.2011.06305.x
http://dx.doi.org/10.1038/ni.2939
http://dx.doi.org/10.1073/pnas.1310657110
http://dx.doi.org/10.1016/j.jmb.2013.02.006
http://dx.doi.org/10.1371/journal.pone.0037243
http://dx.doi.org/10.4049/jimmunol.181.10.6923
http://dx.doi.org/10.4049/jimmunol.181.10.6923
http://dx.doi.org/10.1097/TP.0b013e3181dd6bf1
http://dx.doi.org/10.1002/eji.200636480
http://dx.doi.org/10.1177/135245859700300218
http://dx.doi.org/10.1002/(SICI)1521-4141(199806)28:06 < 1823::AID-IMMU1823 > 3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1521-4141(199806)28:06 < 1823::AID-IMMU1823 > 3.0.CO;2-F
http://dx.doi.org/10.1111/j.1600-065X.1994.tb00855.x
http://dx.doi.org/10.1016/j.jaci.2010.12.1102
http://dx.doi.org/10.1111/j.1365-2141.2004.04804.x
http://dx.doi.org/10.1182/blood-2006-01-0177
http://dx.doi.org/10.1084/jem.194.6.847
http://dx.doi.org/10.1172/JCI42280
http://dx.doi.org/10.1182/blood-2007-03-077057
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Induction of regulatory T cells by intravenous immunoglobulin: a bridge between adaptive and innate immunity
	Introduction
	Intravenous Immunoglobulin
	Regulatory T Cells

	Evidence for the Action of IVIg in the Promotion of Treg in Human Clinical Trials
	Mechanisms of Action of IVIg in KS

	Modulatory Effects of IVIg in Animal Models of Inflammatory Disorders via Treg Expansion and Induction
	Role of IVIg in Experimental Autoimmune Encephalomyelitis
	Treg Induction in Allergen-Driven and Autoimmune Models

	Mechanisms of Action of IVIg in Induction of Treg
	The Effect of IVIg on DC Activation
	The Anti-Inflammatory Effects of Sialylated IgG and its Relationship to Treg Development
	IVIg Binds C-Type Lectin Receptors on DCs
	Interaction of IVIg with Treg

	Conclusion
	Author Contributions
	Acknowledgments
	References


