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The interaction between dendritic cells (DCs) and T cells is crucial on immunity or tolerance
induction. In an immature or semi-mature state, DCs induce tolerance through T-cell
deletion, generation of regulatory T cells, and/or induction of T-cell anergy. Anergy is
defined as an unresponsive state that retains T cells in an “off” mode under conditions
in which immune activation is undesirable. This mechanism is crucial for the control of
T-cell responses against self-antigens, thereby preventing autoimmunity. Tolerogenic DCs
(tDCs), generated in vitro from peripheral blood monocytes of healthy donors or patients
with autoimmune pathologies, were shown to modulate immune responses by inducing
T-cell hyporesponsiveness. Animal models of autoimmune diseases confirmed the impact
of T-cell anergy on disease development and progression in vivo. Thus, the induction of
T-cell hyporesponsiveness by tDCs has become a promising immunotherapeutic strategy
for the treatment of T-cell-mediated autoimmune disorders. Here, we review recent
findings in the area and discuss the potential of anergy induction for clinical purposes.

Keywords: tolerogenic dendritic cells, T-cell anergy, regulatory T cells, hyporesponsiveness, immunotherapy,
autoimmune diseases

Introduction

Effective peripheral tolerance mechanisms are required to eliminate circulating autoreactive T cells
and thereby prevent undesired immune responses against self-antigens. The key players in this
process are dendritic cells (DCs) that induce tolerance by different controlmechanisms such as T-cell
deletion, generation of regulatory T cells (Tregs), and/or induction of anergy (1–3). This tolerogenic
role of DCs has aroused the interest for their ex vivo generation and their application as therapeutic
tool to restore tolerance in autoimmune conditions or allergy.

Interaction between DCs and T cells occurs through three independent signals: (i) recognition
of peptide-MHC complexes presented on DCs via specific TCR on T lymphocytes, (ii) binding
of costimulatory molecules expressed on DCs to their respective receptors on T cells, and (iii)
polarizing cytokines secreted by DCs (4). When presentation of antigen peptides by DCs occurs
in the absence of costimulation, T cells become anergic (5). Anergy is a hyporesponsive state that
retains T cells in an “off ” mode under conditions in which immune activation is undesirable, as for
the recognition of self-antigens and the maintenance of steady state. Understanding this process has
become the focus of interest for the design of therapeutic strategies to silence autoreactive T cells in
autoimmune diseases.
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It has been reported that tolerogenic dendritic cells (tDCs)
generated from monocytes of patients with multiple sclerosis (6),
type 1 diabetes (T1D) (7), or rheumatoid arthritis (RA) (8) are
able to induce a stable hyporesponsive state in CD4+ T cells in
an antigen-specific manner. In animal models of experimental
autoimmune encephalomyelitis (EAE) (9) and collagen-induced
arthritis (CIA) (10), inoculated tDCs induced antigen-specific
T-cell anergy and thereby impeded disease progression.
Furthermore, it has been reported that tDCs were capable of
inducing donor-specific hyporesponsiveness and prolonging car-
diac allograft survival inmousemodels of transplantation (11, 12).

The current review takes a closer look at recent findings on T-
cell anergy induced by tDCs and discusses the potential of T-cell
anergy for clinical applications to control undesired immune
responses mediated by CD4+ T cells.

Tolerogenic Dendritic Cells and the
Modulation of T-Cell Responses

Dendritic cells are professional antigen-presenting cells that are
able to initiate and shape T-cell responses (13). Whether DCs
induce T-cell immunity or tolerance is determined by their mat-
uration state. Mature DCs are considered to be immunogenic
as they display high levels of MHC-class II and costimulatory
molecules on their surface (14) as well as a proinflammatory
cytokine secretion profile (15), equipping them with the capacity
to efficiently present antigen and provide activating signals to
CD4+ T cells, thus promoting their polarization toward T helper
(Th) type 1, Th2, or Th17 cells. In contrast, immature DCs express
low levels ofMHC-II and costimulatorymolecules and aremainly
localized in blood and non-lymphoid tissues, where they act as
sentinels specialized in capturing and recognizing antigens. A
small proportion of DCs, termed semi-mature DCs, undergo par-
tial maturation under steady-state conditions, resulting in upreg-
ulation of antigen presenting and lymph node homing capacity
while proinflammatory cytokine secretion remains absent (16).
Both immature and semi-mature DCs are regarded as tolerogenic
because of their ability to favor T-cell differentiation to IL-10-
secreting cells with regulatory properties (17). There are distinct
mechanisms by which tDCs prevent T-cell responses against self-
antigens in vivo, including deletion of autoreactive T cells, devia-
tion of the T-cell cytokine secretion profile, generation of Tregs,
and/or induction of anergy (1–3, 18). During the last decade,
research has focused on the in vitro generation of tDCs with
a stable phenotype. Human DCs are generated from peripheral
blood monocytes cultured in the presence of GM-CSF and IL-
4, and laboratory strategies to induce a tolerogenic phenotype
include the addition of cytokines, such as IL-10 or TGF-β (19);
pharmacological modulation by vitamin D3, rapamycin, or dex-
amethasone (20); or genetic modifications, such as IL-10 gene
transduction; and silencing of CD40, CD80, or CD86 expres-
sion by RNA interference (21). Additional activation of tDCs by
lipopolysaccharide (LPS) or its non-toxic analog monophospho-
ryl lipid A (MPLA) has been shown to improve their antigen-
presenting capacity and to induce the expression of chemokine
receptors that enable migration to secondary lymph nodes (22).
Regardless of the strategy used for their generation, tDCs exhibit
common characteristics such as low expression of costimulatory

molecules, a decreased antigen-presenting capacity, and an anti-
inflammatory cytokine secretion profile (20, 23, 24) and have been
reported to inhibit the proliferation and activation of allogeneic
and antigen-specific CD4+ T cells (22), to promote the differen-
tiation into IL-10-secreting Tregs (20, 25), and to render T cells
anergic (19).

Additionally, generation of murine DCs from bone marrow
(BMDCs) has been described using GM-CSF alone or in com-
bination with IL-4 (26, 27) or Fms-like tyrosine kinase 3 (Flt3)
(26). In a similar fashion of human DCs, a tolerogenic pheno-
type can be induced in murine DCs using different cytokines,
pharmacological agents, or genetic modifications.

Recently, Helft and coworkers (2015) showed that the classical
method to generate BMDCs using GM-CSF (28) produces
heterogeneous CD11c+ MHCII+ populations that comprise
conventional BMDCs, induced by GM-CSF (GM-DCs), and
monocyte-derived macrophages, induced by GM-CSF (GM-
Macs), that display distinct immune functions in vitro and in vivo
(29). In the procedure of GM-DCs generation, many laborato-
ries commonly employ magnetically enriched or FACS-sorted
CD11c+ assuming incorrectly that this DC population is homo-
geneous and that any cell-to-cell variation is the result of different
maturation state (30, 31).

Despite this discovery, the modulatory effects of ex vivo-
generated tolerogenic BMDCs, produced under GM-CSF proto-
col, have been extensively studied on CD4+ T cells in murine
models of autoimmune diseases and transplantation. These tDCs
were shown to inhibit destructive immune responses in models
of bone marrow and organ transplantation (32, 33) and to exert
beneficial effects in mice with CIA (34, 35), diabetes (36), and
EAE (37). Thus, although the classic mouse BMDCs generation
protocol results in a heterogeneous population, their immune
modulatory effects have been successfully demonstrated for a long
time by several authors.

T-Cell Regulation or Anergy ?

T-cell anergy is induced when negative signals outweigh the acti-
vatory signals provided by antigen-presenting cells. Originally,
anergy was defined as unresponsive state induced in T cells that
recognize antigen in the absence of costimulatory signals (38),
usually provided by the binding of CD28 on T cells to its ligands,
namely B7 molecules, expressed on DCs (39). Consequently, pro-
liferation and cytokine production of T cells are impaired upon
reencountering the same antigen (38). It has been observed that
this hyporesponsive state could be reversed in the presence of IL-2
and that signaling through the IL-2 receptor prevented the estab-
lishment of anergy in the absence of costimulation, which is con-
sistent with the in vitro definition of anergy (40). In contrast, the
definition of in vivo anergy has been more difficult and presents
characteristics that differ from in vitro induced anergy such as the
failure of exogenous IL-2 to reverse the anergy state (41).

Anergy can also be induced by coinhibitory signals through
CTLA-4 (cytotoxic T lymphocyte-associated protein 4) or PD-1
(programmed cell death 1) receptors (42–44). CTLA-4 interacts
with B7 molecules, preferentially with CD80, while PD-1 binds
to PD-L1 and PD-L2 ligands on DCs. Moreover, tissue-derived
adenosine, acting via the adenosine A2A receptor (A2AR),
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represents another important negative regulator of T-cell activa-
tion, able to promote long-term anergy even in the presence of
costimulation (45).

Further studies show that anergy induction and maintenance
depend on the presence of “anergy-associated factors” (2) such as
GRAIL (gene related to anergy in lymphocytes), Cbl-b (Casitas
B-cell lymphoma-b), and Itch (itchy homologue E3 ubiquitin
protein ligase) (2), as well as the transcription factors Egr (early
growth response) type 2 and 3 (46). GRAIL, CbI-b, and Itch are
E3 ubiquitin ligases involved in cell signaling and protein ubiqui-
tination and are modulated via the calcium/calcineurin pathway
(47, 48).

Gene expression studies performed after TCR stimulation in
the presence or absence of costimulation revealed upregulation of
GRAIL in anergic CD4+ T cells (49). The role of CbI-b was iden-
tified by comparing the proliferative response of peripheral T cells
from Cbl-b knockout mice and wild-type mice. Peripheral T cells
from Cbl-b knockout mice hyperproliferated (50), suggesting that
loss of Cbl-b impairs the induction of a T-cell hyporesponsive state
associated with tolerance (51). T cells from Itch-deficient mice
were shown to be resistant to anergy induction, sustaining the role
of Itch in the promotion of a hyporesponsive state (47).

Egr2 was demonstrated to be the major transcription factor
for anergy induction both in vitro and in vivo (52), and its over-
expression was shown to inhibit T-cell activation (46, 53). Egr2
and Egr3 direct the expression of anergy-inducing genes either in
cooperation with the transcription factor NFAT (nuclear factor of
activated T cells) (48) or in an independent manner. The proteins
encoded by those Erg-regulated genes (e.g., Grail, Cbl-b, and Itch)
are required to induce a functional unresponsiveness state through
downregulation of TCR signaling by inactivation or degradation
of signaling molecules (54).

It has been observed that some of the anergy-associated factors
and pathways are also involved in the generation of Tregs (55)
(Table 1). For example, GRAIL is up-regulated in CD4+CD25+

Tregs too, and its expression is linked to their regulatory activity
(56). Cbl-b and Itch also regulate the development of Foxp3+

Tregs in the periphery by modulating key components of TCR
and TGF-β signaling pathways (57). Moreover, Egr2 is a cen-
tral transcription factor for IL-10-secreting regulatory T cells

TABLE 1 | Comparison of anergic T cells and regulatory T cells.

Anergic T cells versus regulatory T cells

Characteristic
transcription factor

Egr2 Foxp3

Suppressor activity Controversial Yes

Cytokines None/IL-10 IL-10, TGF-β

Proliferative responses No Yes

Role of costimulation Absence required Is required

Stability Stable in the presence of
the specific antigen

Stable; plasticity under
certain conditions

Shared phenotype
markers

GRAIL
Cbl-b
Itch

CTLA-4
LAG-3

expressing lymphocyte activation gene 3 (LAG-3) (58). Likewise,
it has been reported that NFAT proteins are not only involved
in the induction of T-cell anergy (59) but also mediate the sup-
pressive function of Tregs by forming a cooperative complex with
Foxp3 (60). Finally, A2AR signaling has been shown to induce
T-cell anergy as well as Foxp3+ and LAG-3+ Tregs in vivo (45).

At the same time, it has been reported that anergic T cells can
also acquire functions of Tregs. In an in vivo model of peripheral
tolerance, antigen-specific anergic T cells were shown to secrete
high levels of IL-10, suggesting that these anergic cells could act as
Tregs (61). Steinbrink observed that anergic T cells, induced by IL-
10-treated DCs, were able to suppress the activation and function
of T cells in an antigen-specific manner (62). In this model, sup-
pression was linked to CTLA-4-dependent cell cycle arrest (63).
In another study, Pletinckx and colleagues showed that immature
DCs were capable of converting anergic CD4+ T cells into Foxp3-
IL10+ Tregs through engagement of CD28 and CTLA-4 (64).

T-cell anergy and Tregs induction are crucial mechanisms for
the reestablishment of tolerance (9, 10, 65, 66), and although
presenting different phenotypic and functional characteristics
(Table 1), both mechanisms have in common the expression
regulation of some genes, such as Pd-1 (67, 68), Icos (55), Lag3
(55), Ctla-4 (55, 67), Egr2 (55, 67), Grail (49, 56), Cbl-b (57),
and Itch (57). Regarding the therapeutic potential of strategies
inducing either anergy or Tregs, the question arises whether one
or the other mechanism is more effective. Due to their capacity to
efficiently suppress effector T-cell responses, Tregs were assumed
to be the protagonists in tolerance induction. Deficiency or altered
function of Tregs is associated with increased severity and activity
of autoimmune disease (69). However, there is evidence that
Foxp3+ Tregs may convert into proinflammatory Th17 cells in a
proinflammatory cytokine environment (70, 71). This plasticity or
instability of Tregs is a disadvantage for their therapeutic applica-
tion. On the other hand, the induction of a hyporesponsive state in
T cells has proven to be stable and autoantigen-specific, enabling
silencing of self-reactive T cells in autoimmune diseases (9, 10,
72–74). The possibility that these anergic T cells can acquire sup-
pressive capacities would strengthen their therapeutic potential to
control undesired immune responses.

Therapeutic Potential of T-Cell Anergy

The assumption that rendering autoreactive cells hyporespon-
sive might be a strategy to reestablish tolerance in conditions of
autoimmunity and transplantation has prompted several preclin-
ical studies to evaluate this approach in rodent models of multiple
sclerosis, T1D, RA, and transplantation.

It has been previously reported that tDCs, modulated with
vitamin D3 and loaded with myelin peptides, induce hyporespon-
siveness of autologous myelin-specific T cells from multiple scle-
rosis patients in vitro (6). Mansilla and colleagues demonstrated
the preventive and therapeutic effect of administering vitamin
D3-modulated BMDCs stimulated with LPS and pulsed with
encephalitogenic myelin oligodendrocyte glycoprotein (MOG)
peptide in vivo in the EAE mouse model (9). Splenocytes
from mice that received those tDCs showed reduced MOG-
specific proliferation and increased IL-10 production. Another
study by Zappia and coworkers reported that administration of
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mesenchymal stem cells (MSCs), multipotent stromal cells with
immunomodulatory properties, ameliorated EAE through the
induction of T-cell hyporesponsiveness (72). In this model, MSCs
inhibited the proliferative response of T cells from spleen and
lymph nodes to MOG peptide and polyclonal stimuli, without
increasing the frequency of Tregs. In accordance with previ-
ous reports, T-cell anergy was abrogated upon administration of
IL-2 (31).

Regarding T1D, it has been shown that tDCs modulated with
IL-10 andTGF-β and loadedwith the pancreatic islet autoantigens
insulin or glutamic acid decarboxylase 65 (GAD65) were able
to induce antigen-specific hyporesponsiveness in CD4+ T cells
from patients in vitro (7). In a transfer model of T1D, admin-
istration of vitamin D3-treated DCs, loaded with the disease-
relevant antigen BDC2.5 mimotope, induced antigen-specific
hyporesponsiveness of autoreactive CD4+ T cells in vitro and
in vivo (73). Using a transgenic mouse model of T1D, based on
the concomitant expression of influenza hemagglutinin (HA) in
β cells of the pancreas (under control of the insulin promoter)
and of an HA-specific MHC class II-restricted TCR, it has been
demonstrated that myeloid-derived suppressor cells (MDSCs)
pulsed with HA peptide, effectively suppressed HA-specific T-
cell responses against pancreatic islet cells and thus prevented the
development of diabetes. In this study, Gr-1+CD115+ MDSCs
were obtained from syngeneic colon cancer MCA26 and from
syngeneic lung carcinoma (74). The beneficial effect exerted by
MDSCs involved the induction of T-cell hyporesponsiveness and
the generation of Tregs.

Concerning RA, Harry and coworkers showed that tDCs from
healthy donors and RA patients generated in the presence of dex-
amethasone, vitamin D3, and MPLA, and loaded with tuberculin
purified protein derivative (PPD), induced only poor antigen-
specific proliferation and production of IFN-γ and IL-17 by
autologous T cells, even when T cells were previously primed
by PPD-loaded mature DCs (8). In a mouse model of CIA, the
same investigators showed that semi-mature BMDCs modulated
with dexamethasone, vitamin D3, and LPS, and pulsed with
the arthritogenic antigen collagen type II (CII), migrated to the
inflamed articulation and reduced progression of arthritis (75).
In this model, injection of those tDCs led to diminished CII-
specific proliferation within splenocytes and decreased numbers
of pathogenic Th17 cells while increasing the proportion of IL-10-
producing CD4+ T cells. In another study performed by Popov
and coworkers, the administration of tDCs, modulated with
the NF-κB inhibitor LF 15-0195 and pulsed with CII, delayed the
onset of CIA and reduced the severity of the disease through the
conversion of CII-specific T cells to a hyporesponsive state (10).

In a mouse model of transplantation, Fas ligand (FasL)-
transfected murine BMDCs, displaying a tolerogenic phenotype,
were able to inhibit allogeneic mixed leukocyte reaction
in vitro and induced alloantigen-specific hyporesponsiveness
in vivo dependent on FasL/Fas receptor interaction (11). The
transfer of FasL-transfected tDCs significantly prolonged
the survival of fully MHC-mismatched vascularized cardiac
allografts by favoring the development of alloantigen-specific
hyporesponsiveness (11). Another study demonstrated that
dexamethasone-modulated and LPS-activated tDCs induce

donor-specific T-cell hyporesponsiveness against the allograft
and thereby prolong survival of cardiac allografts (12).

These in vivo studies support the suitability of strategies to
induce antigen-specific T-cell anergy for the reestablishment of
tolerance in patients with autoimmune disorders or transplants.

Currently, a number of clinical trials are being conducted.
Giannoukakis et al. demonstrated safety of tDCs in T1D patients
(76). In the study by Benham et al., tDCs from RA patients gen-
erated with BAY11-7082 and pulsed with citrullinated peptides
showed a significant reduction of IL-6 response to vimentin in
ex vivo antigen-specific T-cell proliferation assays. Effector T cells
decreased after treatment and the underlying mechanism might
include deletion or anergy in response to antigen recognition
(77). Another study by Harry et al. is intended to assess safety,
feasibility, and acceptability of Dex-VitD3-treated tDCs therapy
(8). Additionally, the ability tomodify antigen-specific pathogenic
responses is also being evaluated using vaccines of synthetic pep-
tides representing T-cell epitopes, such as Hsp90 on T1D patients
(78), contributing to preservation of β-cell function and glycemic
control, and dnaJP1 on RA patients (79), showing a reduction in
the percentage of TNF-producing T cells.

Further mechanistic studies are needed in order to determine
the efficacy of antigen-specific therapies for autoimmunity and
the role of T-cell anergy.

Concluding Remarks

Suppression of antigen-specific T-cell responses either through
the expansion of Tregs or the induction of anergy represents an
attractive immunotherapeutic approach to target autoreactive T
cells in autoimmune diseases. Despite the differences, both tol-
erance mechanisms share some fundamental signaling pathways
and regulate the expression of common genes. The generation of
Tregs has hitherto been the focus of interest; however, Tregs can
exert unspecific regulation and may be prone to conversion into
proinflammatory Th17 cells. In contrast, the induction of a stable
hyporesponsive state appears to be a promising strategy to specif-
ically silence self-reactive T cells in autoimmune diseases without
undesired adverse effects. In vitro experiments confirmed that
anergy induction efficiently prevents responses against disease-
associated autoantigens in CD4+ T cells of patients with autoim-
mune pathologies, including multiple sclerosis, T1D, or RA.
In vivo, anergy induction in autoreactive CD4+ T cells has been
proven to control disease onset and progression inmurinemodels
of autoimmune diseases. The possibility that anergic T cells can
also acquire suppressive capacities supports their fundamental
role in the control of immune responses. Thus, T-cell anergy is
an effective mechanism to eradicate aberrant T-cell responses to
“self ” and its induction by tDCs provides a promising therapeutic
strategy for the reestablishment of self-tolerance in patients with
autoimmune diseases.
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