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The role of interferon (IFN)-γ in multiple sclerosis (MS) and its animal model, experimental 
autoimmune encephalomyelitis (EAE), has remained as an enigmatic paradox for more 
than 30 years. Several studies attribute this cytokine a prominent proinflammatory and 
pathogenic function in these pathologies. However, accumulating evidence shows that 
IFN-γ also plays a protective role inducing regulatory cell activity and modulating the 
effector T cell response. Several innate and adaptive immune cells also develop opposite 
functions strongly associated with the production of IFN-γ in EAE. Even the suppressive 
activity of different types of regulatory cells is dependent on IFN-γ. Interestingly, recent 
data supports a stage-specific participation of IFN-γ in EAE providing a plausible expla-
nation for previous conflicting results. In this review, we will summarize and discuss 
such literature, emphasizing the protective role of IFN-γ on immune cells. These findings 
are fundamental to understand the complex role of IFN-γ in the pathogenesis of these 
diseases and can provide basis for potential stage-specific therapy for MS targeting 
IFN-γ-signaling or IFN-γ-producing immune cells.

Keywords: interferon-gamma, experimental autoimmune encephalomyelitis, multiple sclerosis, innate immunity, 
adaptive immunity, neuroinflammation

introduction

Interferon (IFN)-γ is the only type II IFN family member. It is secreted by activated immune 
cells, mainly T and natural killer (NK) cells, but also B cells, NKT cells, and professional antigen 
presenting cells (APC). IFN-γ binds to a heterodimeric receptor, IFNGR, expressed ubiquitously 
on almost all cell types. Given its pleiotropic functions, IFN-γ plays a pivotal role in orchestrat-
ing immune system homeostasis (1–4). Historically, IFN-γ production has been considered the 
hallmark of T helper (Th)1 cells driving inflammation and autoimmunity, such as multiple sclerosis 
(MS). MS is an inflammatory and demyelinating disorder of the central nervous system (CNS) 
and is the leading cause of non-traumatic neurological disability in young adults (5). According 
to the clinical course, MS can be classified in different types: relapsing-remitting disease (RRMS), 
consisting of acute recurrent attacks followed by a variable degree of recovery, and progressive 
forms characterized by chronic and irreversible neurological disability (6).

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2015.00492&domain=pdf&date_stamp=2015-09-29
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2015.00492
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:rodrigonaves@med.uchile.cl
http://dx.doi.org/10.3389/fimmu.2015.00492
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00492/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00492/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00492/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00492/abstract
http://loop.frontiersin.org/people/260733/overview
http://loop.frontiersin.org/people/214945/overview
http://loop.frontiersin.org/people/260957/overview
http://loop.frontiersin.org/people/275642/overview
http://loop.frontiersin.org/people/110900/overview


September 2015 | Volume 6 | Article 4922

Arellano et al. Interferon-γ in EAE and MS

Frontiers in Immunology | www.frontiersin.org

To date, experimental autoimmune encephalomyelitis (EAE) 
remains as the animal model most widely used to study the immu-
nopathological mechanisms and therapeutic approaches to MS (7, 
8). EAE is induced by immunization with myelin-derived antigens 
in adjuvant or by the adoptive transfer of activated myelin-specific 
T cells into syngeneic naive hosts. First, an initiation/inductive 
phase occurs, where innate and adaptive immune cells are antigen 
stimulated in the periphery. That is followed by the effector phase 
characterized by an acute immune cell infiltration into the CNS, 
and a later chronic phase of inflammation and axonal damage (9).

Discrepant results have been reported in relation to the role of 
IFN-γ in EAE and MS (3, 4, 10). Factors such as dose, site specific-
ity, and timing of action as well as interaction with other cytokines 
and cells can determine the net effect of IFN-γ  (3, 10, Ottum et al., 
in preparation). Recent evidence supports a, not mutually exclu-
sive, stage-specific role of IFN-γ in EAE providing an explanation 
to these controversial results and a model whereby this cytokine 
can both promote and limit the development of these pathologies. 
In this same Research Topic, we have reviewed the opposing roles 
of IFN-γ on CNS-resident cells in EAE and MS (Ottum et al., in 
preparation). Here, we will review the evidence on IFN-γ’s dual 
role in the cells of the immune system in these same pathologies.

Two-Faced Role of iFn-γ in eAe and MS

Initially, a positive association between increased levels of IFN-γ 
and demyelinating lesions in the CNS in MS and EAE attributed 
this cytokine a pathological role (11–15). In mice, passive immu-
nization of healthy animals with encephalitogenic Th1 lympho-
cytes producing IFN-γ was sufficiently capable of inducing EAE 
(16). Besides, mice deficient in T-bet, a transcription factor that 
drives Th1 differentiation, were protected from developing EAE 
(17, 18). The proinflammatory effects of IFN-γ were confirmed 
in a pilot clinical study showing that seven of eighteen RRMS 
patients treated with IFN-γ exhibited symptom exacerbations 
(19). Consistently, secondary progressive MS patients (SPMS) 
treated with antibodies against IFN-γ exhibited slightly reduced 
clinical symptoms (20).

However, subsequent studies have challenged the notion 
that IFN-γ is pathogenic, and there is accumulating evidence 
proposing a protective role for IFN-γ in EAE and MS. Systemic 
or intraventricular injection of IFN-γ in EAE mice reduced the 
severity of disease symptoms, morbidity, and mortality (21, 22), and 
systemic IFN-γ treatment in chronic-relapsing EAE (CREAE) 
significantly delayed the appearance of relapses (23). Likewise, 
anti-IFN-γ therapy exacerbated EAE symptoms and made a 
mice strain resistant to EAE susceptible to developing disease 
(21–26). These results have been corroborated using animals 
deficient in the IFN-γ gene, which showed increased incidence of 
EAE, earlier disease onset and more severe symptoms compared 
with control mice (27–29). Even more, animals lacking IFNGR 
developed EAE with higher susceptibility, severity, and lethality 
(30–32). Passive transfer of encephalitogenic splenic cells from 
EAE-induced IFNGR-deficient mice into either wild-type (WT) 
or IFNGR-deficient recipient mice led to the development of EAE, 
but only WT mice recovered from illness (33). Interestingly, in 
tumor necrosis factor (TNF)-α receptor-deficient mice, a higher 

frequency of Th1 cells and enhanced mRNA expression of IFN-γ 
in the CNS was associated with a milder EAE (34).

Finally, in the marmoset EAE model, administration of human 
IFN-γ did not aggravate clinical symptoms, and by contrast, 
there was a trend to delay the appearance of the neurological 
episodes associated with less inflammation and demyelination 
during the EAE late phase (35). Regarding MS, induction of 
endogenous IFNs production in progressive MS patients showed 
that some patients with improving symptoms had high levels 
of serum  IFN-γ, while clinical worsening was related with low 
serum  IFN-γ levels (36).

Stage-Specific Role of iFn-γ
The opposing activities that IFN-γ has in MS and the different 
models of EAE remain unresolved. However, collective evidence 
has shown that these paradoxical functions likely reflect a disease 
stage-specific opposing role of IFN-γ in EAE: promoting patho-
genesis during the initiation phase but immunosuppression in 
the effector phase. Delivery of an intrathecal IFN-γ expression 
system during the initiation phase triggered an earlier disease 
onset followed by recovery, while overexpression of IFN-γ in the 
chronic phase resulted in disease amelioration (37). Consistently, 
intraventricular injection of IFN-γ during the initiation phase in 
CREAE mice increased the number of relapses (38). More recently, 
Naves et al. showed that IFNGR-deficient mice exhibited delayed 
disease onset followed by a more severe chronic phase, compared 
to WT mice (31). Similar results have been found analyzing mice 
lacking the IFN-γ gene or injecting an anti-IFN-γ neutralizing 
antibody during EAE progression (39). Furthermore, the admin-
istration of IFN-γ to EAE mice during the inductive period led to 
disease exacerbation, while such treatment was protective during 
the effector phase (31). Interestingly, the immunosuppressive 
activity of IFN-γ required functional type I IFN signaling and 
signal transducer and activator of transcription (STAT)-1 (31). 
In this way, stage-specific functions of IFN-γ can reconcile previ-
ous conflicting results in EAE and might also explain the mixed 
outcome reported in RRMS patients treated with IFN-γ (19).

iFn-γ and immune Cells

Compelling evidence shows that IFN-γ exerts opposing effects 
on immune cells during the development of EAE and MS. In 
addition, several innate and adaptive immune cells play a dual 
role during the progression of these diseases associated with their 
IFN-γ production (Figure 1). Below, we will review and discuss 
this literature, focusing on the less-known protective face of IFN-
γ (Table 1).

innate immune Cells
Macrophages and Neutrophils
IFN-γ controls the infiltration of macrophages and neutrophils 
into the CNS regulating the course of EAE (74). Animals defi-
cient in IFN-γ or IFNGR generate an atypical disease affecting 
mainly the brainstem and cerebellum with increased expression 
of CXCL2, favoring the recruitment of high numbers of CXCR2-
mediated neutrophils; while in conventional EAE, IFN-γ leads to 

FiGURe 1 | Dual role of iFn-γ in innate and adaptive immune cells in eAe. (A) Innate immunity: M1-macrophages (M1-MΦ) and natural killer (NK) cells produce 
interferon (IFN)-γ, which has a pathogenic role exacerbating encephalomyelitis autoimmune experimental (EAE) symptoms. However, some studies have shown that IFN-γ 
produced by NK and invariant NKT (iNKT) cells inhibits effector Th17 cells, decreasing the disease severity. IFN-γ induces the production of nitric oxide (NO) in neutrophils, MΦ, 
myeloid-derived suppressor cells (MDSCs), and IFN-γ-induced dendritic cells (IFN-γ-DC). NO can directly inhibit the proliferation of CD4+ T cells. IFN-γ also induces the 
expression of indoleamine 2,3-dioxygenase (IDO) in IFN-γ-DC and arginase-1 (Arg-1) by MDSC, enzymes that can suppress inflammation. Furthermore, IFN-γ induces IL-27 
production by mature dendritic cells (mDC) which blocks Th9 differentiation and IL-9 production, controlling disease progression. (B) Adaptive immunity: IFN-γ secreted by Th1 
and CD8+ T cells has an inflammatory effect and can drive the onset and progression of EAE. Despite this, IFN-γ is able to block Th9 cells, while Th1-secreted IFN-γ inhibits 
Th2 and Th17 effector cells. Interestingly, IFN-γ can induce CD4+CD25+ regulatory T cells (Tregs) increasing their FOXP3 expression. Upon transfer, these IFN-γ-induced Tregs 
limit the severity of EAE. Moreover, IFN-γ production by CD8+ regulatory T cells (CD8+ Tregs) also reduces EAE symptoms. Finally, IFN-γ produced by γδ T cells worsens EAE, 
but has a regulatory role on the production of IFN-γ by T cells, which is necessary to limit disease.
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frequency of Th1 cells and enhanced mRNA expression of IFN-γ 
in the CNS was associated with a milder EAE (34).

Finally, in the marmoset EAE model, administration of human 
IFN-γ did not aggravate clinical symptoms, and by contrast, 
there was a trend to delay the appearance of the neurological 
episodes associated with less inflammation and demyelination 
during the EAE late phase (35). Regarding MS, induction of 
endogenous IFNs production in progressive MS patients showed 
that some patients with improving symptoms had high levels 
of serum  IFN-γ, while clinical worsening was related with low 
serum  IFN-γ levels (36).

Stage-Specific Role of iFn-γ
The opposing activities that IFN-γ has in MS and the different 
models of EAE remain unresolved. However, collective evidence 
has shown that these paradoxical functions likely reflect a disease 
stage-specific opposing role of IFN-γ in EAE: promoting patho-
genesis during the initiation phase but immunosuppression in 
the effector phase. Delivery of an intrathecal IFN-γ expression 
system during the initiation phase triggered an earlier disease 
onset followed by recovery, while overexpression of IFN-γ in the 
chronic phase resulted in disease amelioration (37). Consistently, 
intraventricular injection of IFN-γ during the initiation phase in 
CREAE mice increased the number of relapses (38). More recently, 
Naves et al. showed that IFNGR-deficient mice exhibited delayed 
disease onset followed by a more severe chronic phase, compared 
to WT mice (31). Similar results have been found analyzing mice 
lacking the IFN-γ gene or injecting an anti-IFN-γ neutralizing 
antibody during EAE progression (39). Furthermore, the admin-
istration of IFN-γ to EAE mice during the inductive period led to 
disease exacerbation, while such treatment was protective during 
the effector phase (31). Interestingly, the immunosuppressive 
activity of IFN-γ required functional type I IFN signaling and 
signal transducer and activator of transcription (STAT)-1 (31). 
In this way, stage-specific functions of IFN-γ can reconcile previ-
ous conflicting results in EAE and might also explain the mixed 
outcome reported in RRMS patients treated with IFN-γ (19).

iFn-γ and immune Cells

Compelling evidence shows that IFN-γ exerts opposing effects 
on immune cells during the development of EAE and MS. In 
addition, several innate and adaptive immune cells play a dual 
role during the progression of these diseases associated with their 
IFN-γ production (Figure 1). Below, we will review and discuss 
this literature, focusing on the less-known protective face of IFN-
γ (Table 1).

innate immune Cells
Macrophages and Neutrophils
IFN-γ controls the infiltration of macrophages and neutrophils 
into the CNS regulating the course of EAE (74). Animals defi-
cient in IFN-γ or IFNGR generate an atypical disease affecting 
mainly the brainstem and cerebellum with increased expression 
of CXCL2, favoring the recruitment of high numbers of CXCR2-
mediated neutrophils; while in conventional EAE, IFN-γ leads to 

FiGURe 1 | Dual role of iFn-γ in innate and adaptive immune cells in eAe. (A) Innate immunity: M1-macrophages (M1-MΦ) and natural killer (NK) cells produce 
interferon (IFN)-γ, which has a pathogenic role exacerbating encephalomyelitis autoimmune experimental (EAE) symptoms. However, some studies have shown that IFN-γ 
produced by NK and invariant NKT (iNKT) cells inhibits effector Th17 cells, decreasing the disease severity. IFN-γ induces the production of nitric oxide (NO) in neutrophils, MΦ, 
myeloid-derived suppressor cells (MDSCs), and IFN-γ-induced dendritic cells (IFN-γ-DC). NO can directly inhibit the proliferation of CD4+ T cells. IFN-γ also induces the 
expression of indoleamine 2,3-dioxygenase (IDO) in IFN-γ-DC and arginase-1 (Arg-1) by MDSC, enzymes that can suppress inflammation. Furthermore, IFN-γ induces IL-27 
production by mature dendritic cells (mDC) which blocks Th9 differentiation and IL-9 production, controlling disease progression. (B) Adaptive immunity: IFN-γ secreted by Th1 
and CD8+ T cells has an inflammatory effect and can drive the onset and progression of EAE. Despite this, IFN-γ is able to block Th9 cells, while Th1-secreted IFN-γ inhibits 
Th2 and Th17 effector cells. Interestingly, IFN-γ can induce CD4+CD25+ regulatory T cells (Tregs) increasing their FOXP3 expression. Upon transfer, these IFN-γ-induced Tregs 
limit the severity of EAE. Moreover, IFN-γ production by CD8+ regulatory T cells (CD8+ Tregs) also reduces EAE symptoms. Finally, IFN-γ produced by γδ T cells worsens EAE, 
but has a regulatory role on the production of IFN-γ by T cells, which is necessary to limit disease.

poorly understood, several studies suggest that IFN-γ-producing 
NK cells might be driving this duality in a location and stage-
dependent manner (39, 46–49, 87). NK cells have been identified 
as the main source of IFN-γ production in the initiation stage of 
EAE, which might be necessary for migration of pathogenic T 
cells into the CNS (39). Interestingly, early but not late depletion 
of NK cells significantly delayed the onset of disease (39). IL-18 
and IL-21 are two key cytokines involved in NK cell functional 
maturation (88, 89). Administration of IL-21 before EAE immu-
nization promoted higher IFN-γ production by NK cells and 
induced a significantly enhanced acute phase with more intense 
CNS cell infiltration compared to untreated mice (90). However, 
IL-21 treatment failed to induce augmentation of IFN-γ produc-
tion and had no effect on disease progression when applied for 
one week starting a few days before disease onset (90). Similarly, 
IL-18 injection in WT mice at the time of immunization enhanced 
disease severity promoting autoreactive Th1 cell development 
through the induction of IFN-γ by NK cells (87). Moreover, IFN-γ 
signaling in NK cells was required to restore EAE susceptibility 
in IL-18 defective mice (87). Taken together, these results suggest 
that early IFN-γ production by NK cells mainly contributes to the 

increased CCL2 levels guiding macrophage infiltration into the 
spinal cord mediated by CCR2 (40–42). Macrophages and neu-
trophils produce high levels of nitric oxide (NO), which has both 
pathogenic and regulatory functions in neuroinflammation (75). 
Interestingly, IFN-γ is a primary inducer of NO and mice deficient 
in inducible nitric oxide synthase (iNOS) develop a severe form of 
EAE (76, 77). Willenborg et al. showed that peritoneal exudate cells 
(PEC), characterized by a high presence of macrophages, are able 
to inhibit the extensive proliferation of splenocytes from IFNGR-
deficient mice with EAE by IFN-γ-dependent NO production (33). 
Neutrophils and myeloid-derived suppressor cells (MDSCs) with 
high expression of Gr-1 also exhibited potent suppressor activity 
in EAE, inhibiting T cell proliferation through a mechanism that 
was absolutely dependent on IFN-γ and NO (43–45). Additionally, 
IFN-γ along with interleukin (IL)-4, secreted by activated invari-
ant NKT (iNKT) cells, stimulated MDSCs to suppress EAE via 
iNOS and arginase (arg)-1 expression (51).

Natural Killer Cells
NK cells play both a regulatory and pathogenic role in EAE and 
MS (39, 46, 78–86). Although the underlying mechanisms are 
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TABLe 1 | The protective effects of iFn-γ and iFn-γ-producing immune cells in eAe and MS.

Cell type experimental design effects of iFn-γ Reference

Macrophages In vitro culture of IFNGR-deficient PEC IFN-γ induces PEC NO-expression inhibiting proliferation  
of splenocytes

(33)

Neutrophils Induced EAE in IFN-γ and IFNGR-deficient mice IFN-γ restricts neutrophils infiltration in the brainstem and 
cerebellum primarily by regulating CXCL2 expression

(40–42)

In vitro analysis of Gr1+ neutrophils sorted from CNS  
of mice with EAE

IFN-γ secreted by T cells induced NO production by Gr1+ 
neutrophils which inhibited T cell proliferation

(43)

Myeloid-derived 
suppressor cells (MDSCs)

Analysis of CD11b+ Gr1+ MDSC from EAE mice IFN-γ secreted by activated T cells induced MDSC inhibiting 
CD4+ T cells proliferation by NO-dependent manner

(44)

EAE mice treated with anti-IFN-γ Anti-IFN-γ reduced MDSCs frequency and increased  
EAE severity

(45)

Natural killer cells (NK) EAE mice treated with anti-IFN-γ Decreased Th17-characteristic transcription factors 
expression due to modulation of microglia activation

(46)

HINT1/Hsp70 protein complex from brains of PLP-sensitized 
SJL/J mice injected into congenic mice before immunization

Upregulated MHC class I peptide H60 expression, increased 
NK cell IFN-γ production, inhibited IL-17 production, and 
prevented EAE

(47–49)

Analysis of NK cell functionality in human PBMC RRMS patients exhibit impaired response to IL-12 and 
severely diminished IFN-γ production in  
CD3−CD56brightCD16− NK cells

(50)

Invariant NKT cells In vivo IFN-γ neutralization in αGalCer-treated mice with 
EAE. In vitro iNKT analysis

Increased production of IFN-γ, IL-4, and IL-10 by iNKT cells 
which mediated the suppression of Th17 cells and increased 
EAE regulation by MDSCs

(51–53)

Dendritic cells (DC) Transfer of IFN-γ treated DC into murine EAE models Induced an incompletely mature DC phenotype and 
decreased disease severity and relapse frequency

(54)

In vitro analysis of splenocytes isolated from WT and  
IFN-γ-deficient EAE mice

Induced DC IL-27 expression which inhibited Th9 cell 
differentiation and IL-9 production by Th9 and Th17 cells

(55)

CD4+ T lymphocytes IFN-γ added to CD3-activated PBMC from chronic-
progressive MS patients

Lymphocyte proliferation inhibition in an IFN-γ dose-
dependent manner

(56)

Analysis of IFN-γ deficient mice with EAE Increased apoptosis and inhibited proliferation in vivo  
and ex vivo of CD4+CD44high T cells in spleen and CNS

(57)

Study of IFN-γ and IFNGR EAE deficient mice Inhibited Th17 differentiation and IL-17 production (31, 58–62)
IFN-γ deficient EAE mice treated with anti-IL-9 Decreased Th9 differentiation and IL-9 production in vitro 

and in vivo in the CNS of mice with EAE
(55)

CD4+ T cells transfected with IFN-γ expressing vector 
transferred into EAE mice

Th1 IFN-γhighCD25−FOXP3− suppresses Th17 effector cells 
and decreased EAE severity

(63)

γδ T cells EAE generated in bone marrow chimera with γδ and  
IFN-γ-deficient mice

γδ T cells promotes the expression of IFN-γ by T cells  
with a reduction of EAE severity

(64)

CD4+ Tregs In vitro addition of IFN-γ to mice and human CD4+CD25−  
T cell cultures. IFN-γ-converted Tregs injected into EAE mice

IFN-γ-converted Tregs inhibited T cell proliferation in mice 
and human cells. Administration of these cells ameliorated 
EAE severity

(65)

CD8+ T lymphocytes Transfer of MOG-induced CD8+ T cells from IFN-γ-deficient 
mice into wild-type mice before EAE induction

Amelioration of EAE severity mediated by CD8+ T cell  
IFN-γ production

(66)

Analysis of CD8+LAP+ T cells from IFN-γ and IFNGR-
deficient mice and transfer into EAE

IFN-γ production by CD8+LAP+ T cells inhibited T cell 
proliferation and reduced severity of EAE.

(67)

Vaccination with a TCR-derived peptide before EAE 
induction in WT and IFN-γ KO mice

Vaccination activates CD8αα+TCRαβ+ T cells and delayed 
EAE onset in an IFN-γ mediated fashion

(68–70)

Isolation of human and mice CD8+CD38high T cells. In vivo 
injection of CD8+CD38high into EAE mice

IFN-γ production by CD8+CD38high T cells inhibit T cell 
proliferation in human and mice. These cells decreased 
disease severity and delayed onset of EAE.

(71)

MS patients and EAE mice treated with Glatiramer  
acetate (GA)

GA increases CD8+ T proliferation and IFN-γ levels in MS 
and IDO and IFN-γ-producing CD8+ T cells in EAE

(72, 73)

B cells IFN-γ treatment in early EAE stage in marmoset Reduced plasma MOG-specific IgG levels (35)

initiation, but not progression, of EAE pathogenesis. By contrast, 
once NK cells infiltrate the CNS, they assume a protective role 
suppressing myelin-reactive Th17 cells via modulation of micro-
glia activation. This effect was CNS compartment-restricted and 
was perforin and IFN-γ-dependent (46). Therefore, signals and/

or components generated in the CNS during the effector phase 
might be inducing protective functions in infiltrating NK cells. 
Indeed, peptides complexed with the chaperone heat shock 
protein (Hsp) 70 derived from inflamed brain of EAE mice have 
been described as promotors of the immunotolerogenic activity 
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of NK cells in EAE. Suppressive effects of Hsp-peptide complex-
activated NK cells correlated with high production of IFN-γ and 
resulted in inhibition of Th17 cells (47–49).

NK cell subtypes and iNKT cells may also have IFN-γ-mediated 
suppressive activity in MS and EAE. Regarding MS, evidence in 
two independent cohorts of RRMS patients demonstrated that 
the classically inhibitory CD3−CD56brightCD16− NK cells from 
RRMS patients have impaired expansion in response to IL-12, 
and severely diminished IFN-γ production compared to healthy 
control NK cells (50). In addition, in vivo activation of iNKT cells 
at the same time as EAE induction significantly ameliorated dis-
ease progression through mechanisms dependent on IFN-γ alone 
(52) or synergistically with IL-4 and IL-10, resulting in inhibition 
of the Th17 response (53).

Dendritic Cells
Dendritic cells (DC) are professional APC important to maintain 
the balance between immunity and tolerance. In EAE, they effi-
ciently present myelin antigens in order to prime and polarize naïve 
T cells. They also help regulate EAE severity as evidenced by disease 
exacerbation in DC deficient mice (91, 92). The regulatory effects 
of DC are partly due to the IFN-γ-induced production of IL-27 that 
suppressed the differentiation and encephalitogenicity of Th9 cells. 
It also inhibited the production of IL-9 by both Th9 and Th17 cells. 
This suppression was partially dependent on STAT-1 and T-bet and 
was necessary to regulate EAE severity (55). Remarkably, splenic 
DC exposed to IFN-γ for 48  hours exhibited an immature and 
tolerogenic phenotype (tol-DC). These tol-DC decreased disease 
severity in Lewis rats and relapse frequency in SJL/J and B6 mouse 
models when transferred during the inductive phase (54). EAE 
amelioration was accompanied by reduced macrophage activa-
tion and CD4+ T cell CNS infiltration, compared to control mice.  
The therapeutic activity was dependent on an antigen-specific 
IFN-γ pathway, involving increased DC expression of indoleamine 
2,3-dioxygenase (IDO), which induced CD4+ T cell apoptosis (54).

Adaptive immune Cells
CD4+ T Lymphocytes
CD4+ T (Th) cells proliferate and differentiate into various 
subtypes in response to antigen stimulation and their micro-
environment in order to exert specific effector or regulatory 
functions (93). Effector CD4+ T (Teff) cell lineages, such as Th1 
cells, Th2 cells, Th17 cells, and Th9 cells, and regulatory T cells 
(Tregs) can be distinguished by the cytokines they produce and 
the transcription factors essential for their differentiation. These  
T cells also exhibit functional and phenotypical plasticity express-
ing cytokines and/or transcription factors of other lineages (94, 95).

Classically, IFN-γ is known for promoting the differentiation 
of Th1 cells and inhibiting the Th2 immune response which may 
contribute to neuroinflammation (5, 10, 96, 97). Despite its inflam-
matory activity, IFN-γ increased apoptosis and inhibited prolif-
eration of CD4+CD44high (activated) T lymphocytes from both 
the spleen and CNS of EAE mice (57). Notably, it also inhibited 
in vitro proliferation of T cell receptor (TCR)-activated peripheral 
blood mononuclear cells (PBMC) from progressive MS patients 
in a dose-dependent manner (56). Mice depleted of IFN-γ or 
IFN-γ signaling developed more severe EAE, atypical neurological 

symptoms, and increased Th17-characteristic inflammation. 
These data underscore an important anti-inflammatory function 
of IFN-γ in EAE: the inhibition of pathogenic Th17 cell differen-
tiation and cytokine production (5, 31, 58–62, 96). Besides, it has 
been shown that IFN-γ has a STAT-1-mediated direct inhibitory 
effect on pathogenic Th9 cells (55). Interestingly, another study 
identified a non-pathogenic Th1 cell subset with high IFN-γ 
expression, capable of restraining EAE development during early 
stages of disease by suppressing Th17 cells in an IFN-γ-dependent 
manner (63). The inhibitory mechanism involved the activation 
of STAT-1 and IL-21 expression via induction of T-bet (60, 62). 
Despite the ability of IFN-γ to directly and indirectly inhibit Th17 
cells, a pathogenic population of Th1 cells has been identified in 
EAE and MS that also expresses IL-17. This capacity to express 
both cytokines (IFN-γ and IL-17) may be due to the plasticity of 
Th17 cells, which can undergo a shift toward the Th1 phenotype 
(95, 98, 99).

γδ T Cells
Several studies have shown that γδ T cells are present in the CNS 
of MS patients and EAE mice (100). Given that activated γδ 
T cells have the capacity to produce high expression of Th1 and 
Th17 cytokines, they might contribute to the induction or main-
tenance of neuroinflammation. However, efforts to determine a 
role for these cells have given contradictory results. While some 
studies have found that depletion of γδ T cells resulted in reduced 
severity of EAE, other reports have described disease aggravation 
(100). Regarding IFN-γ, evidence suggests that during early EAE, 
γδ T cells may act either as a main source of this cytokine (101) 
or regulate IFN-γ expression in other cell types, including CD4+ 
and CD8+ T cells (64). Indeed, SJL/J mice depleted of γδ T cells 
showed a significant reduction of IFN-γ expression in the CNS 
at all stages of EAE (102). Other studies have shown that mice 
deficient in γδ T cells that are reconstituted with γδ T cells lacking 
IFN-γ expression developed a significantly delayed and attenu-
ated EAE. This suggested that IFN-γ production by γδ T cells 
may be central to initial inflammatory events (101). Despite this, 
Ponomarev et al. proposed that γδ T cells are required to promote 
CNS-restricted production of sufficient levels of IFN-γ necessary 
for EAE recovery (64).

CD4+ Regulatory T Lymphocytes
It has been reported that IFN-γ is important to the function of 
Tregs in EAE and MS. Reduced FoxP3 expression and lower 
frequency and function of Tregs was reported in IFN-γ-deficient 
mice with EAE, in comparison to EAE-induced WT mice (65). 
Remarkably, treatment of CD4+CD25− T cells from WT or 
IFN-γ-deficient mice with IFN-γ alone or with additional TCR 
stimulation led to their conversion into Tregs expressing CD25 
and FOXP3 (65). These IFN-γ-induced Tregs effectively inhib-
ited EAE disease progression when adoptively transferred into 
IFN-γ-deficient mice. Human CD4+CD25− T cells from healthy 
volunteers were similarly converted into functionally active Tregs 
ex vivo upon IFN-γ stimulation (65).

A new subpopulation of Tregs expressing T-bet, CXCR3 
and IFN-γ, named Th1-like Tregs has been reported in healthy 
individuals (103) and have regulatory functions focused on 
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Th1-mediated inflammatory diseases (104–108). Interestingly, 
these cells were also described in MS and EAE (109, 110). An 
increased frequency of Th1-like Tregs with reduced suppressive 
function was reported in untreated RRMS patients compared to 
healthy controls (110). In this case, addition of IFN-γ neutral-
izing antibodies recovered their functionality suggesting that 
IFN-γ might contribute to their reduced immunomodulatory 
capacity (110).

CD8+ T Lymphocytes
Several studies have demonstrated that IFN-γ production by 
CD8+ T cells is a major mediator of EAE induced by cytotoxic 
T lymphocytes (CTL) (111–114). One of these investigations 
showed that atypical EAE induced by intrathecal transfer of 
myelin basic protein (MBP)-specific CD8+ T cells in C3H mice 
was ameliorated by co-injection with neutralizing antibodies for 
IFN-γ (112). Other studies have identified subsets of regulatory 
CD8+ T cells (CD8+ Tregs) that suppress EAE development via 
IFN-γ-dependent mechanisms. Both therapeutic and prophylactic 
transfer of myelin oligodendroctye glycoprotein MOG-induced 
CD8+ T cells into mice with EAE ameliorated disease suppressing 
the chronic phase, but not affecting the disease onset or acute 
phase (66, 115). Strikingly, this protective function was lost when 
IFN-γ-deficient MOG-induced-CD8+ T cells were transferred 
before EAE induction in WT mice, but was enhanced when IFN-γ 
production was stimulated in MOG-specific CD8+ T cells before 
cell transfer (66). Furthermore, in those studies reporting a patho-
genic function, myelin-specific CD8+ T cell lines used to passively 
induce EAE were generated from CD8+ T cells isolated during the 
inductive phase (111, 112). In contrast, regulatory myelin-specific 
CD8+ T cells were obtained during the chronic phase of disease 
(66, 115). Taken together, these results reinforce the notion of a 
stage-specific IFN-γ-dependent regulation, mediated in this case 
by CNS-specific regulatory CD8+ T cells.

A naturally occurring CD8+ Tregs subset was identified 
that expressed latency-associated peptide (LAP) on their cell 
surface and produced more IFN-γ than their LAP− counterparts. 
Adoptive transfer of these cells previous to myelin immunization 
improved EAE recovery mediated by their IFN-γ production 
(67). A CD8αα+TCRαβ+ T cell subset capable of preventing EAE 
when stimulated with a TCR-derived peptide before MBP-peptide 
immunization in H-2u mouse strains has also been described (68, 
69, 116). Interestingly, the vaccine failed to prevent EAE develop-
ment in IFN-γ-deficient mice and resulted in delayed disease 
onset but worsened disease severity compared to control mice, 
suggesting an important stage-specific role for IFN-γ signaling in 

CD8αα+TCRαβ+ T cell-mediated protection (70, 116). A CD8+ 
Tregs subtype expressing high levels of CD38 ectonucleotidase 
suppressed Teff cell proliferation in a non-antigen specific, 
cell-to-cell contact, and IFN-γ-dependent fashion, resulting in 
ameliorated EAE (71). Finally, IFN-γ-producing CD8+ T cells 
induced by glatiramer acetate (GA), a therapy for MS, suppressed 
EAE in mice via an IDO-dependent mechanism, suggesting 
that the immunomodulatory action of GA is mediated at least 
in part by IFN-γ production by CD8+ T cells (72). Consistently, 
GA-specific CD8+ T cells from GA-treated RRMS patients tended 
to produce more IFN-γ than CD8+ T cells from untreated patients 
(73). In progressive MS patients, CTL had impaired IL-2 induced 
IFN-γ production and decreased ability to suppress proliferation 
of TCR-stimulated autologous lymphocytes (56).

B Lymphocytes
The effect of IFN-γ on B cells in the neuroinflammatory context 
of MS and EAE is unclear. Bar-Or and colleagues demonstrated 
that CD19+ B cells isolated from RRMS patients had significantly 
increased production of lymphotoxin (TNF-β) and TNF-α in 
response to IFN-γ and insignificant changes in IL-10 production 
(117). In marmoset EAE, exogenous administration of IFN-γ 
caused no significant clinical change in disease; however, there was 
a significant decrease in plasma IgG specific to MOG peptides (35).

Concluding Remarks

Recent studies support the notion that IFN-γ exerts a stage-specific 
role during EAE development. Strikingly, several innate and adap-
tive immune cells develop opposite activities during EAE progres-
sion, which is related to their production of IFN-γ in a stage-specific 
manner. Furthermore, the suppressive activity of different types 
of immune regulatory cells is IFN-γ-dependent. Taken together, 
these data provide a mechanistic basis explaining the previous 
controversial results in relation to the role of IFN-γ in EAE and 
MS. Delineating the varying activities of IFN-γ as well as the role of 
IFN-γ-producing immune cells during the course of EAE and MS 
will not only provide insight into the complex role of IFN-γ in these 
diseases but might also lead to therapies targeting IFN-γ signaling or 
IFN-γ-producing immune cells. These treatments can be helpful to 
a selective group of MS patients or during a specific stage of disease.
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