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The genome has the ability to respond in a precise and co-ordinated manner to cellular 
signals. It achieves this through the concerted actions of transcription factors and the 
chromatin platform, which are targets of the signaling pathways. Our understanding 
of the molecular mechanisms through which transcription factors and the chromatin 
landscape each control gene activity has expanded dramatically over recent years, 
and attention has now turned to understanding the complex, multifaceted interplay 
between these regulatory layers in normal and disease states. It has become apparent 
that transcription factors as well as the components and modifiers of the epigenetic 
machinery are frequent targets of genomic alterations in cancer cells. Through the 
study of these factors, we can gain unique insight into the dynamic interplay between 
transcription factors and the epigenome, and how their dysregulation leads to aberrant 
gene expression programs in cancer. Here, we will highlight how these factors normally 
co-operate to establish and maintain the transcriptional and epigenetic landscape of 
cells, and how this is reprogramed in cancer, focusing on the RUNX1 transcription factor 
and oncogenic derivative RUNX1–ETO in leukemia as paradigms of transcriptional and 
epigenetic reprograming.
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introduction

The gene expression profile of a cell determines its phenotype and function, and transcription factors 
play a key role in defining these gene expression profiles in response to cellular signals. Typically 
they do so by binding to cis-acting elements within promoters, enhancers, and other gene regulatory 
regions and functioning within regulatory complexes to control gene activity. However, control of 
gene expression is exerted by mechanisms involving the interaction of transcriptional complexes 
with not only the DNA sequence itself but also the chromatin proteins associated with the DNA. 
Access to the DNA by transcription factors is controlled by the packaging of DNA within the nucleus 
as chromatin. The specific composition of chromatin can dictate gene expression patterns in a cell by 
regulating the relative accessibility provided to transcription factors and the transcriptional machin-
ery. Although the tight packaging of nucleosomes into heterochromatin inhibits transcription factor 
access, and transcription, euchromatin, with its associated relaxed chromatin and nucleosome posi-
tioning is more conducive to transcriptional activation due to the relative ease of transcription factor 
access. Chromatin composition is dynamic and is maintained or modified through the concerted 
actions of transcription factors and chromatin modifiers responding to cellular signaling cascades. 
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Not surprisingly then, mutations to transcription factors and the 
molecules that comprise and modify the chromatin landscape 
commonly underlie the altered gene expression profiles that are 
characteristic of cancer cells. Herein, we will focus on the co-
operative actions of these factors to determine the transcriptional 
and epigenetic landscape of cells, and how this is reprogramed by 
modifications to key regulatory factors in cancer.

Mechanisms of epigenetic Control

Within the eukaryotic cell, DNA is assembled into chromatin, 
consisting of repeating units of nucleosomes. Each nucleosome is 
a complex of eight histone proteins (two each of H2A, H2B, H3, 
H4) around which 147 base pairs of DNA are wrapped. This com-
plex forms the basis of the epigenetic landscape of a cell, which 
in its broadest definition encompasses DNA methylation, histone 
modifications, histone variants, and nucleosome positioning (1). 
The epigenetic landscape in a given cell is therefore determined 
by the actions of an array of DNA and chromatin-modifying 
enzymes, chromatin remodeling complexes, recently identified 
chromatin-associated signaling kinases, as well as non-coding 
RNAs (2–6). Together, these are often referred to as epigenetic 
readers, writers and erasers (7). As the name suggests epigenetic 
writers add modifications to the DNA and chromatin, which alter 
gene expression capabilities, while erasers remove these modifi-
cations. Epigenetic readers recognize specific epigenetic modifi-
cations on DNA or histones and include chromatin remodeling 
enzymes, chromatin modifiers, chromatin architectural proteins, 
and adaptor proteins.

Perhaps the most widely investigated mechanism of epigenetic 
control is DNA methylation, the modification of DNA involv-
ing the addition of methyl groups to CpG residues, by DNA 
methyltransferases. CpG dinucleotides are found throughout 
the genome in dense clusters, referred to as CpG islands that 
are associated with a large proportion of gene promoters. CpG 
methylation is generally, although not always, associated with 
gene silencing. CpG methylation facilitates gene repression 
by acting as a recruiting surface for proteins, which possess 
methyl binding domains and initiate chromatin condensation. 
Interestingly, DNA methylation alone has been shown to further 
promote chromatin condensation (8). To a lesser extent, DNA 
methylation can also facilitate gene repression by physically 
blocking the binding of transcriptional regulators. DNA methyla-
tion was previously thought to be a highly stable modification 
that can only be removed following DNA replication, it has 
been recently recognized that intermediate forms exist that are 
thought to be precursors of the demethylated state (9). However, 
DNA methylation does not exist in isolation, with the associated 
histones normally reflecting the modified DNA in terms of active 
or repressive modifications.

Histone tails can be post-translationally modified via the 
addition or removal of numerous chemical groups, with over 
a dozen now reported, including acetyl, methyl, and phosphate 
groups (10). These modifications are reversible and the chro-
matin state that exists at any particular time is a result of the 
competing actions of, for example, histone acetyltransferases 
and histone deacetylases and methyltransferases competing 

with demethylases. Particular modifications can alter the bio-
physical composition of the chromatin or can act as recruitment 
surfaces for the epigenetic readers, thus leading to the idea of 
the histone code (7). However, it is becoming clear that histone 
modifications do not act in isolation, and it is instead the com-
bination of modifications present at a particular region of DNA, 
which defines its functional outcome. The defining example of 
this is the colocation of repressive H3K27me3 and activating 
H3K4me3 modifications marking a “bivalent” chromatin state, 
which maintains certain genes in a primed state in embryonic 
stem cells (11).

Nucleosome structure can also be altered via the inclusion of 
histone variants within the histone octamer. During chromatin 
assembly and disassembly, histone variants can be deposited and 
exchanged by histone chaperones. Histone variants possess unique 
structural and functional properties. For example, the inclusion 
of the histone variant H3.3 is associated with transcriptionally 
active regions but is also deposited in telomeric and pericentric 
heterochromatin (12). The histone chaperones responsible for this 
histone exchange, nucleosome assembly and disassembly play a 
key role in controlling the chromatin nucleoprotein landscape.

Epigenetic plasticity is further regulated by the three-dimen-
sional and higher-order chromatin structure, including nucleo-
some repositioning, DNA looping, and long-range chromatin 
interactions. Chromatin remodeling enzymes use the energy 
released from hydrolysis of ATP to reposition nucleosomes and 
include large multi-subunit complexes, such as SWI/SNF, ISWI, 
Nurd/Mi/CHD, SWR1, and INO80. These complexes must be 
recruited to the appropriate regulatory region to enable remod-
eling, which then facilitates access to the transcription factors 
and transcriptional machinery (13, 14). The spatial organization 
of chromatin plays a role in gene regulation with recent evidence 
demonstrating that certain inactive chromatin domains interact 
with the nuclear lamina, as reviewed in Ref. (15). At a more local-
ized level, chromatin loops can form between regulatory regions 
in actively transcribed genes that are often hundreds of kilobases 
apart, with both cis and trans interactions possible (16, 17).

interplay Between the epigenome and 
Transcription Factors

The dynamic nature of the epigenome can be attributed to 
the interaction of transcription factors with chromatin and 
chromatin-modifying enzymes. Transcription factors must gain 
access to their binding sites within a chromatin context. However, 
once bound to DNA, transcription factors can also modify the 
chromatin landscape. Signaling pathways influence the chroma-
tin landscape by activating transcription factors, which then bind 
to regulatory regions of DNA, recruiting with them chromatin 
modifying and remodeling enzymes. Signaling kinases can, how-
ever, also impact the chromatin landscape directly [reviewed in 
Ref. (18)]. For example, both the signaling kinases, PKC-theta (5) 
and ERK2 (19), have recently been found to have nuclear func-
tions as chromatin-associated proteins. While it has long been 
known that protein kinases operate by communicating signals 
from the cytoplasm to the nucleus, it is also now evident that 
these and other nuclear kinases can also associate with chromatin 
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in the nucleus impacting the chromatin landscape directly by 
phosphorylating histone proteins (2).

Disruption of Transcription Factors and 
the epigenome in Cancer

Dysregulation of the epigenetic landscape is evident in cancer 
with a variety of modifications observed in tumors. Aberrant 
DNA methylation, histone modifications and variant usage, 
non-coding RNA expression, and higher order chromatin 
structure have all been documented across a variety of cancer 
types (20–22). All of these modifications impact the chromatin 
profile and expression of the cancer genome. Not surprisingly 
then, mutations in transcription factors and epigenetic enzymes 
are frequently observed in cancer (23–25) with mutations char-
acterized in numerous cancer types and in chromatin remodeling 
enzymes, histone modifiers, DNA methyltransferases, and non-
coding RNA processing enzymes.

In terms of DNA methylation, cancer cells have a character-
istic signature. Comparison of normal versus tumor tissue has 
demonstrated that cancer is typically characterized by global 
hypomethylation along with promoter specific hypermethyla-
tion (26, 27). Global hypomethylation is considered to promote 
genetic instability, fragile sites, and oncogene activation while 
hypermethylation in cancer is associated with repression of 
tumor suppressor gene transcription. There is also evidence for 
long-range epigenetic silencing (28). These abnormal methyla-
tion profiles can be driven by numerous factors including muta-
tion in the enzymes responsible for distributing this epigenetic 
mark. In acute myeloid leukemia (AML), the DNMT3A enzyme 
is frequently mutated with approximately 20% of patients having 
some form of coding mutation (23).

Histone modifications in cancer have been less frequently 
studied, however, once again certain patterns are characteristic 
of cancer cells, for example profiling H4 revealed a decreased level 
of H4K16 acetylation and H4K20 trimethylation as an almost 
universal hallmark of cancer cells (20). Chromatin remodeling 
and modifying enzymes are also frequently mutated in cancer. 
SWI/SNF mutations have been detected at a frequency of 20% 
(24), with the majority of these being inactivating mutations, 
which points to a likely role as a tumor suppressor. Together, these 
alterations contribute to the epigenetic plasticity and dysregula-
tion of cancer cells, a key property in terms of transformation 
events and the gene expression programs required for epithelial 
to mesenchymal transition.

Thus, in cancer cells signaling pathways, transcription factors 
and the chromatin regulatory networks are altered, resulting 
in transcriptional and epigenetic reprograming that ultimately 
drives increased proliferation and the hallmark features associ-
ated with neoplasia.

RUnX1: A Paradigm of Transcriptional and 
epigenetic Reprograming in Leukemia

A hallmark of leukemia is somatic mutations and genetic rear-
rangements that impact signal transduction and gene expres-
sion programs, with disruption to chromatin modifiers and 

transcription factors prevalent. A unique understanding of the 
dynamic interplay between transcription factors and the epig-
enome can be gained through study of such transcription factors, 
and particularly how alterations to the transcription factors lead 
to reprograming of transcriptional networks and the epigenome. 
The RUNX1 transcription factor and its oncogenic derivative 
RUNX1–ETO are paradigms of transcriptional and epigenetic 
reprograming in leukemia.

The RUNX1 transcription factor is a key regulator of hemat-
opoiesis with its disruption resulting in abnormal hematopoie-
sis (29). RUNX1 is frequently disrupted by genetic alterations in 
leukemia, and was originally identified following characteriza-
tion of the t(8;21) chromosomal translocation found in AML. 
This translocation fuses the N-terminal region of the RUNX1 
gene to the RUNX1T1 gene (also known as Eight-Twenty One 
or ETO), generating a RUNX1–ETO chimeric protein (30). 
While this is the most common chromosomal alteration to the 
RUNX1 gene, up to ten other translocations have been found 
to disrupt this gene in leukemia (31). In addition, RUNX1 loss-
of-function mutations are associated with leukemia, as well as 
with Familial Platelet Disorder with propensity to develop AML 
(FPD/AML) (31).

While early studies characterized RUNX1 as a transcriptional 
activator, and demonstrated co-operation between RUNX1 and a 
range of other transcription factors to drive promoter activity (32, 
33). RUNX1 has also been found to act as a transcriptional repres-
sor in some circumstances (34). The effect of RUNX1 on target 
gene expression is thus highly context dependent, determined 
by the composition of the transcriptional complexes in which 
RUNX1 functions at a particular gene. These complexes contain 
transcriptional cofactors as well as epigenetic modifiers, which are 
recruited to gene promoters as well as other regulatory regions, 
and by doing so, RUNX1 can influence both transcriptional activ-
ity as well as the epigenetic status of target genes (Figure 1).

RUNX1 has been found to complex with an array of epigenetic 
modifiers, with the outcome for both RUNX1 function and target 
gene activity dependent on the balance of activating and repressive 
factors associated with RUNX1 at a particular time (Figure 2A). 
RUNX1 interacts with the histone acetyltransferases, such as 
p300 and CBP, which potentiate RUNX1-dependent transcrip-
tional activation of individual target genes (35, 36). More recently, 
elegant studies have demonstrated the orchestration of genome-
wide changes by RUNX1 during hematopoietic development 
(37), with RUNX1 binding associated with increased histone 
acetylation. These studies illustrate the RUNX1-dependent 
recruitment of acetylating complexes to modify the epigenetic 
state of RUNX1 target genes.

RUNX1 itself is also a target of acetyltransferases as well as 
other modifiers, with modification of RUNX1 activity through 
interaction with epigenetic modifiers emerging as a common 
theme. Acetylation of RUNX1 by p300 was found to enhance 
its DNA-binding activity (38). Methylation of RUNX1 by the 
arginine methyltransferase PRMT1 increases RUNX1 transcrip-
tional activity by disrupting its interactions with the msin3A 
corepressor complex (39). In contrast, methylation of RUNX1 
by another arginine methyltransferase PRMT4 or CARM1 
was found to initiate the formation of a RUNX1-dependent 
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FiGURe 2 | RUnX1 and RUnX1–eTO regulate gene expression by 
recruiting transcriptional cofactors and epigenetic modifiers. (A) 
RUNX1 can act as a transcriptional activator or repressor dependent on the 
balance of coactivators/corepressors associated with it at a particular time. 
RUNX1 can recruit coactivators [for example, p300 histone acetyltransferase 
(p300) and protein arginine methyltransferase (PRMT1)] and epigenetic 
modifiers, which enhance RUNX1 activity through post-translational 
modification (shown as acetylation (ac) and methylation (me) of the RUNX1 
protein) and impart activating modifications to chromatin [for example, 
histone 3 acetylation of lysine 9 and 14 (H3ac)]. RUNX1 can also recruit 
corepressors and epigenetic modifiers [for example, PRMT6 and PRMT4 as 
well as histone deacetylases (HDAC)], which inhibit RUNX1 activity through 
post-translational modification (removal of acetylation marks from RUNX1 
and chromatin) and establish repressive chromatin modifications (for 
example, histone 3 lysine 27 trimethylation, 27me3). Various continuums of 
the two extremes that are shown no doubt exist. (B) RUNX1–ETO binds to 
RUNX1 target genes and primarily acts as a transcriptional repressor through 
the assembly of repressive transcriptional and epigenetic complexes. While 
many of the molecules that associate with RUNX1–ETO are shown [for 
example, DNA methyltranferases (DNMT), nuclear receptor corepressor 
(NCoR), mSin3A corepressor complex (mSin3a), p300, and HDAC], they do 
not necessarily all complex with RUNX1–ETO at a given time. In keeping with 
the primarily repressive function of RUNX1–ETO, its binding is generally 
associated with repressive histone modifications (for example, histone 3 
lysine 27 trimethylation (27me3) and histone 3 lysine 9 trimethylation (9me3).
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repressor complex (40). In addition, the histone methyltrans-
ferase SUV39H1 was found to interact with RUNX1 (41, 42), 
resulting in decreased DNA-binding activity and inhibiting 
RUNX1 activation of target gene promoters. The composition of 
the RUNX1 complexes can also be directly influenced by cellular 
signaling cascades with phosphorylation of RUNX1 by ERK also 
found to potentiate its transactivation activity by disruption its 
interactions with mSin3A (43, 44). Similarly, RUNX1 phospho-
rylation by cylin-dependent kinase (cdk) reduced its interaction 
with HDAC1 and HDAC3 and potentiated its transactivation 
activity (45).

These studies thus build a picture of RUNX1 itself as a target 
of epigenetic modifiers, which post-translationally modify the 
RUNX1 protein, altering its coactivator/corepressor interactions 
and thus influencing its transcriptional activity. In addition, 
RUNX1 recruits these coactivators and corepressors to target 
genes, resulting in modification of the chromatin environment 
and thus affecting gene activity at this second level. An elegant 
example of this multi-layered interaction between RUNX1, 
epigenetic modifiers and the epigenome is demonstrated in 
the recently described interaction of RUNX1 with protein 
arginine methyltransferase 6 (PRMT6). PRMT6 was found to 
be a component of a repressive RUNX1 complex also contain-
ing sin3a and HDAC1 (46). Recruitment of PRMT6 to target 
genes by RUNX1 resulted in asymmetric dimethylation of H3 
(H3R2me2a). These genes were also found to be enriched for 
H3K27me3 and H3K4me2, but not H3K4me3. While these 
modifications were observed in hematopoietic progenitor cells, 
upon megakaryocyte differentiation, PRMT6 dissociated from 
the complex, which instead was found to contain the coactivators 
WRD5/MLL and p300/pCAF, resulting in loss of the H3R2me2a 
mark and enrichment for H3K4me3 and K3K9ac, which was 
associated with increased gene expression. In addition to such 
localized chromatin changes, RUNX1 has also been shown to 
initiate changes in higher order chromatin structure, mediating 
interactions between distal regulatory elements by facilitating 
chromatin looping (47).

FiGURe 1 | RUnX1 regulates gene expression at both the transcriptional and epigenetic level. RUNX1 binding to promoters and enhancers is regulated by the 
chromatin structure encompassing its binding sites (TGTGGNNN, as indicated), with condensed chromatin (nucleosomes, large blue circles) acting as a barrier to RUNX1 
binding. DNA methylation (small black circles) may further inhibit RUNX1 binding. RUNX1 binds in a complex with other transcriptional regulators and coactivators/
corepressors (represented by purple, red and green circles) at regions of open chromatin (nucleosome-depleted regions), which can impact gene expression through 
interactions with the transcription machinery or by modifying chromatin structure and composition. At enhancers, RUNX1 binding is accompanied by active histone 
marks, histone 3 lysine 27 acetylation (27ac), and histone 3 lysine 4 monomethylation (4me1) while at promoters, RUNX1 binding is associated with histone 3 lysine 3 
trimethylation (4me3), histone 3 acetylation (of lysine 9 and 14; H3ac), and histone 3 lysine 27 acetylation (27ac). These active gene regulatory elements may interact 
through DNA loops (purple bidirectional arrow) and are devoid of DNA methylation (small white circles). Arrow, transcriptional start site (TSS).
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Concluding Remarks

Over recent years, we have gained considerable insight into how 
chromatin structure is modified and the impact of this on the 
genome. Attention has now turned to understanding the dynamic 
and multifaceted interactions between transcription factors and 
epigenetic modifiers, and how they co-operate to determine gene 
expression responses to cellular signals. This is providing a better 
understanding of how alterations to these key regulatory molecules 
in cancer, as well as other disease processes, impact gene expression 
profiles. Further, this is offering hope that a better understanding 
of the interaction between aberrant transcription factors and the 
epigenome of cancer cells will provide increased opportunities for 
intervention in the disease. Interest in this field is being stimulated 
by the promising advances that are being made in cancer treatment 
with current epigenetic therapies, as highlighted recently (63). For 
example, the BET proteins, which recognize acetyl lysine modifica-
tions of histones are emerging as exciting therapeutic targets. A 
recent study demonstrated the potential of a specific inhibitor of 
BET proteins (iBET) to inhibit proliferation of myeloproliferative 
neoplasms driven by constitutively active Janus kinase 2 (JAK2) (64).
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