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Adaptive natural killer (NK) cell responses to human cytomegalovirus infection are 
characterized by the expansion of NKG2C+ NK cells expressing self-specific inhibitory 
killer-cell immunoglobulin-like receptors (KIRs). Here, we set out to study the HLA class 
I dependency of such NKG2C+ NK cell expansions. We demonstrate the expansion of 
NKG2C+ NK cells in patients with transporter associated with antigen presentation (TAP) 
deficiency, who express less than 10% of normal HLA class I levels. In contrast to normal 
individuals, expanded NKG2C+ NK cell populations in TAP-deficient patients display a 
polyclonal KIR profile and remain hyporesponsive to HLA class I-negative target cells. 
Nonetheless, agonistic stimulation of NKG2C on NK cells from TAP-deficient patients 
yielded significant responses in terms of degranulation and cytokine production. Thus, 
while interactions with self-HLA class I molecules likely shape the KIR repertoire of 
expanding NKG2C+ NK cells during adaptive NK cell responses in normal individuals, 
they are not a prerequisite for NKG2C+ NK cell expansions to occur. The emergence 
of NKG2C-responsive adaptive NK cells in TAP-deficient patients may contribute to 
antiviral immunity and potentially explain these patients’ low incidence of severe viral 
infections.

Keywords: natural killer cells, transporter associated with antigen processing, adaptive immunity, cytomegalovirus 
infections, killer cell immunoglobulin-like receptor

introduction

Considerable lines of evidence indicate that human and mouse natural killer (NK) cells can undergo 
a phase of selective expansion in response to viral challenges (1, 2). In humans, such “adaptive” NK 
cell responses are typically linked to cytomegalovirus (CMV) infection, in isolation or in the context 
of other viral infections (3–9). Hallmarks of this response include selective expansion of NKG2C+ 
NK cells with expression of self-HLA class I-specific killer-cell immunoglobulin-like receptors 
(KIRs) (3, 4, 10). Such expanded cells are terminally differentiated and functionally reprogrammed 
involving epigenetic mechanisms (11). Although the molecular drivers of the expansion of specific 
NK cell subsets associated with CMV infection/reactivation are largely unknown, self-specific 
KIRs have been shown to provide a survival advantage during the expansion phase (12). Hence, 
it has been suggested that NK cell interaction with HLA class I molecules is important for shaping 
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adaptive NK cell responses (13). However, the role of self-MHC 
class I interactions in driving adaptive NK cell responses to viral 
infections is challenged by findings in β2m-deficient mice that 
display expansion of Ly49H+ adaptive NK cells at levels similar 
to wild-type mice (14) and are fully capable of controlling mouse 
CMV (15, 16).

To specifically address the role of HLA class I molecules in 
context of human NK cell expansions, we applied a recently 
described algorithm for tracing adaptive-like NK cell responses 
based on cellular differentiation states (17) and applied this in 
patients with transporter associated with antigen presenta-
tion (TAP) deficiency. Human TAP deficiency is a rare genetic 
immunodeficiency (18) and results in less than 10% of normal 
HLA class I expression. Conceivably, NK cells from TAP-deficient 
patients are not educated by self HLA class I, resulting in hypo-
functionality of the NK cells in terms of low levels of natural 
cytotoxicity against HLA class I low targets (17, 19–21). A similar 
phenotype was recently reported in two β2m-deficient siblings 
(22). Yet, NK cells from TAP-deficient patients display normal 
levels of activating receptors and an intact cytotoxic machinery 
(20). Similar to the small population of non-educated NK cells in 
normal individuals, NK cells from TAP-deficient patients readily 
perform antibody-dependent cellular cytotoxicity (ADCC) (21). 
In these respects, the functionality of NK cells from TAP-deficient 
individuals resembles that of non-educated NK cells in MHC class 
I-deficient mice lacking either TAP or β2-microglobulin (23–25).

We here report the expansion of differentiated, at least partially 
functional, NKG2C+ NK cells in TAP-deficient patients. Notably, 
in contrast to healthy donors, the expanded NK cell populations 
observed in the patients were polyclonal with respect to KIR 
expression; hence, they were not skewed toward expression of a 
self-specific KIR. Thus, interactions with self-HLA class I skew 
the NK cell repertoire with respect to KIR expression during the 
expansion phase of the NK cells, but this skewing is not, per se, a 
prerequisite for the development of an adaptive NK cell response.

Materials and Methods

Patients
This study was approved by the regional ethics committee 
in Stockholm, Sweden, and by the National Research Ethics 
Committee of Luxembourg (CNER, 201109/05). All indi-
viduals included gave written informed consent according to 
the Declaration of Helsinki. Peripheral blood mononuclear cells 
(PBMCs) were separated from buffy coats by density gravity 
centrifugation (Ficoll-Paque; GE Healthcare) and frozen in FCS 
with 10% DMSO until use.

Flow cytometry
Killer-cell immunoglobulin-like receptor repertoire staining, 
functional assays, and data analysis were performed as described 
in detail elsewhere (3). In brief, freshly thawed PBMCs of patient 
and controls were stained with the following monoclonal anti-
bodies: CD3-PE.Cy5, CD14-PE.Cy5, CD19-PE.Cy5, CD56-ECD, 
ILT2-PE, CD161-PE, CD7-PE-Cy7, and NKG2A-APC.AF750, 
all from Beckman Coulter; NKG2C-PE or biotin from R&D 

Systems; PLZF-PE, NKp30-APC, and NKp46-PE from Becton 
Dickinson; FcϵRγ1-FITC from Millipore; and CD57-PB from 
Biolegend. Dead cells were excluded by using the aqua live/dead 
kit (Invitrogen).

Functional assays
For functional experiments, PBMCs were thawed, rested over-
night, and then mixed with K562 cells or RAJI cells or P815 cells 
at a ratio of 10:1 in U-bottomed 96-well plates and incubated for 
6 h at 37°C and 5% CO2. For redirected ADCC assays, P815 cells 
were incubated with 5 μg/mL of the indicated anti-NKG2C. For 
ADCC experiments, RAJI cells were incubated with 1  μg/mL 
of rituximab (anti-CD20). Preceding the assay, CD107a-FITC 
(H4A3) was added together with brefeldin (Golgi Plug, 1/1000, 
Becton Dickinson) and monensin (Golgi Stop, 1/1500, Becton 
Dickinson). For polyfunctional assays, cells were permeabilized 
(Fixation & Permeabilization Buffers, eBioscience) and then 
stained with intracellular IFNγ-AF700 (Becton Dickinson) and 
TNFα-eF450 (eBioscience) and analyzed by flow cytometry. Pie 
charts were generated using the Spice software (26).

cMV infection and hla-i expression analysis
The three fibroblast cell lines used for this study (STF5-169, 
healthy donor; STF1-169, TAP-2 deficient; BRE-169, TAP-1 
deficient) were immortalized with the vector pl169. The cells were 
synchronized by contact inhibition and plated at a density of 106 
cells/75 cm2 to induce cell cycle progression. At the same time, 
the cells were infected with AD169 CMV strain at a multiplicity 
of infection of 5 plaque-forming units per cell or the equivalent of 
mock media. Forty-eight hours post infection, cells were stained 
for MHC class I expression with a biotinylated anti-pan HLA 
class I mAb (W6/32) or anti-HLA-E mAb (3D12), detected with 
Streptavidin-PE, and fixed. After permeabilization, cells were 
monitored for the expression of the immediate early antigen 1 
(IE-1) using anti-CMV IE-1-AF488 (Millipore).

results

expansion of nKg2c+ nK cells in Patients with 
TaP Deficiency
To study the occurrence of expanded NK cell populations in 
patients lacking expression of normal levels of HLA class I 
molecules, we assessed the expression of NKG2C on NK cells 
from seven previously described TAP-deficient patients for 
which sufficient numbers of PBMCs were available for detailed 
phenotypic and functional characterization (27–31). Two of 
these patients (TAP#01 and TAP#02) displayed increased 
frequencies of NKG2A−NKG2C+ NK cells corresponding to 
those observed in CMV+ healthy donors (Figure 1). One patient 
(TAP#05) displayed an expanded but yet smaller population of 
NKG2A−NKG2C+ NK cells. The remaining four patients had 
frequencies of NKG2A−NKG2C+ NK cells in the range of those 
observed in CMV− healthy donors (3).

The expanded NKG2C+ NK cells in the TAP-deficient patients 
displayed phenotypic characteristics typical of terminal dif-
ferentiation, including low expression of NKp46, and PLZF and 
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increased expression of CD2, CD57, and LIR-1 (Figure 1). The 
expression of these markers appeared somewhat less pronounced 
in the patients compared to those commonly observed in CMV+ 
healthy individuals. For example, the effect on CD7 was marginal 
and no loss of FcϵRγ1 was observed in any of the three patients 
analyzed (Figure 1). Although this could be a coincidental find-
ing in these patients, possibly the mild differentiation phenotype 
represented a less powerful or incomplete differentiation process 
of NKG2C+ NK cells in TAP-deficient patients. In support of the 
latter interpretation, there is evidence suggesting that the steady-
state differentiation is impeded in TAP-deficient patients with 
high expression of NKG2A and low frequencies of CD57+ NK 
cells (30).

nKg2c+ nK cells from TaP-Deficient Patients 
Display Polyclonal Kir repertoires
In healthy individuals, the expansion of NKG2C+ NK cells is more 
or less confined to subsets expressing at least one self-specific KIR 
(3, 4, 10). This biased expansion was recently attributed to an 
increased resistance to starvation-induced apoptosis in educated 
NK cells (12). Thus, it is possible that educated and uneducated 
NK cell subsets respond equally well to NKG2C ligation, but only 
those that express self-specific KIR tolerate the stress of cytokine 

FigUre 1 | Phenotypic characterization of nKg2c+ nK cells in TaP-deficient individuals. (a) Size of the NKG2C+NKG2A− subset in PBMCs from seven 
TAP-deficient donors compared to CMV− and CMV+ healthy controls. (B, c) Gating strategy and phenotype of NKG2C+NKG2A− (red lines) compared to conventional 
CD56dim NK cells (blue lines) after gating on live CD3−CD4−CD14−CD19−CD7+CD56dim/− cells from three TAP-deficient donors compared to one healthy control.

withdrawal after an initial inflammatory response to acute infec-
tion, resulting in accumulation of self-specific KIR-expressing 
NK cells. When examining the KIR-expression profiles in 
TAP-deficient patients, no skewing of KIR expression among 
differentiated NKG2C+ NK cells was observed (Figure 2). These 
results show that the expression of a self-KIR does not provide 
any selective benefit in conditions of low HLA class I expression.

cMV infection Does not interfere with hla-e 
expression in TaP-Deficient cells
In TAP-deficient individuals, as mentioned, total HLA class I 
is reduced to approximately 10%. HLA-E expression is largely 
dependent on TAP-dependent mediated loading of leader-
sequence peptides constituting the main cargo of HLA-E peptide 
content in normal TAP-expressing cells (32). Despite this, HLA-E 
expression appears to be less reduced (expression levels 30–50%) 
compared to total HLA class I in human TAP deficiency (30). 
To examine how the level of total HLA class I and HLA-E in 
TAP-deficient cells is affected by CMV infection, we established 
an in  vitro infection model using fibroblasts derived from two 
TAP-deficient patients. Upon CMV infection, TAP-deficient 
fibroblasts manifested a further reduction of total HLA class I 
expression, whereas HLA-E expression remained intact compared 
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FigUre 2 | adaptive nK cells from TaP-deficient patients display polyclonal Kir repertoires. Frequencies of NK cell subsets expressing seven KIRs 
analyzed, and the 128 possible combinations thereof, in one healthy control and three TAP-deficient individuals. The presence of one KIR in a combination is 
represented by a color code below the graph. The analysis is displayed for NKG2A+NKG2C− (black lines), NKG2A−NKG2C− (red lines), and NKG2A−NKG2C+ (blue 
lines) NK cell subsets. Patients TAP#1 and #5 are KIR haplotype B/X and patient TAP#2 is haplotype A/A.

October 2015 | Volume 6 | Article 5074

Béziat et al. Adaptive NK cells in TAP deficiency

Frontiers in Immunology | www.frontiersin.org

to non-infected fibroblasts (Figure 3). Thus, TAP-deficient fibro-
blasts retained their HLA-E expression levels (i.e., 30–50% of 
normal levels) upon CMV infection. This outcome suggests that 
CMV could still induce NK cell activation via HLA-E-mediated 
triggering of NKG2C receptors.

nKg2c is Functional in TaP-Deficient Patients
It has been well documented that NK cells are hyporesponsive in 
TAP-deficient patients (17, 19–21), potentially due to inadequate 
HLA class I-mediated education. Therefore, we next set out to 
assess whether this hyporesponsiveness extended also to adap-
tive NK cells in these patients. Accordingly, we stimulated NK 
cells with K562 cells, RAJI cells alone, or RAJI cells coated with 
anti-CD20 (rituximab) and monitored polyfunctional responses 
in NKG2A+NKG2C− and NKG2A−NKG2C+ NK cell subsets 
(Figure 4A). Although responses of NK cells from the three TAP 
patients with evidence of polyclonal NK cell expansions differed 
somewhat, the patterns were clearly distinct from those of NK 

cells from normal donors. Both conventional and expanded NK 
cells from TAP-deficient patients were generally hyporesponsive 
to K562 stimulation and produced cytokines, albeit at low levels, 
in response to any stimulation. Notably, TAP-deficient NK cells 
responded to ADCC, in line with the ability of CD16 ligation to 
partly overcome the need for education (33) (Figure 4A).

To more specifically address the functionality of the NKG2C 
pathway, NK cells were stimulated with P815 cells coated with 
an agonistic antibody against NKG2C (Figure 4B). As previously 
reported (34), resting NK cells from healthy donors responded 
strongly to ligation of NKG2C alone, without the need for ligation 
of additional coactivation receptors. Notably, also TAP-deficient 
NK cells responded to NKG2C ligation at levels comparable to 
those seen in response to ADCC stimulation. Again the response 
was largely restricted to degranulation albeit weak levels of IFN-γ 
and TNF were noted (Figure 4B). As expected, no response to 
ligation of NKG2C could be observed in NKG2A+NKG2C− NK 
cells. Thus, although NK cells from TAP-deficient patients are 
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FigUre 3 | interference with hla class i surface expression upon cMV infection does not extend to hla-e in TaP-deficient fibroblast cell lines. (a) 
Expression of total surface HLA class I (upper) and HLA-E (lower) in either TAP-1 (BRE-169, dashed) or TAP-2 (STF1-169, solid gray)-deficient fibroblast cell lines 
versus a TAP-expressing control fibroblast cell line (STF5-169, bold). (B, c) Expression of total HLA class I and HLA-E following infection of TAP-deficient fibroblast 
cell lines as indicated by intracellular expression of the CMV IE-1 antigen (upper scatter plot).
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hypofunctional and fail to respond to HLA class I-negative target 
cells, they still do respond, albeit at lower levels, to antibody-
coated targets and direct ligation of the NKG2C receptor.

Discussion

Human TAP deficiency is associated with severe bacterial lung 
infections and skin ulcers with chronic granulomatous inflam-
mation. However, they rarely present with life-threatening viral 
infections and CMV-associated disease (18). Our results docu-
ment the emergence of functional adaptive NKG2C+ NK cells in 
TAP-deficient patients. These NK cells have retained their ability 
to respond to agonistic signaling through NKG2C and mediate 
ADCC, thereby likely being able to contribute to antiviral immu-
nity in TAP-deficient patients.

A relative weakness of the present study is the inability to 
specifically link the adaptive NK cell phenotypes observed to 
past CMV infection in the patients. Based on presently available 
literature, our presumption is that the TAP-deficient patients 
with expansion of NKG2C+ NK cells are CMV+. The prevalence 
of CMV infection in the human population is high, and the high 
frequencies of NKG2C+ NK cells in patients TAP#01 and TAP#02 
were above the 99th percentile of those found in CMV− healthy 
donors and mimicked those found in CMV+ donors (3). Notably, 
acute or latent infection with other herpes viruses has not been 
associated with expansion of NKG2C+ NK cells (35, 36). Although 
the current cohort includes 7 of the 33 cases with TAP deficiency 
described so far, it is still limited in size. However, expansion 
of NKG2C+ NK cells in three of the seven patients (42%) is in 
line with the frequencies of adaptive NK cell responses observed 
in large cohorts of healthy donors (3, 37). Unfortunately, there 
was no stored serum available to allow serological assessment of 

CMV status, and new sampling of the patients studied was not 
possible. In an alternative attempt to assess past CMV exposure, 
we performed CD8 T-cell assays with overlapping peptides from 
the CMV phosphoprotein pp65. Although we did observe a weak 
positive response in patient TAP#05, all other patients, including 
patient TAP#01 and TAP#02, were negative (data not shown). It is 
highly plausible that defective presentation of immunodominant 
epitopes in human TAP deficiency leads to weak or absent CD8 
T-cell responses (38). Of note, in our previous experiments in a 
cohort of 204 healthy donors, all donors with evidence of adap-
tive NK cells were CMV seropositive and displayed robust T-cell 
responses to pp65 peptide stimulation (Ref. (3) and data not 
shown). We cannot formally exclude that other pathogenic chal-
lenges than CMV, or other inflammatory processes, triggered the 
expansion and differentiation of NKG2C+ NK cells in the studied 
patients. However, regardless of the causative agent, the data 
clearly demonstrate that TAP-deficient individuals are capable of 
expanding a population of NK cells with phenotypic features of 
adaptive NK cells. The present outcome with the emergence of 
adaptive NK cell responses in the absence of T-cell responses to 
viral antigens may reflect a biologically important scenario.

The cellular mechanisms involved in driving adaptive NK cell 
responses in the human are unknown. Phenotypic characteriza-
tion of expanded NK cell populations suggests a major contribu-
tion of DAP-12-coupled activating receptors including NKG2C 
and activating KIRs (3, 9, 39). Coculture of NK cells with HCMV-
infected fibroblasts leads to expansion of NKG2C+ NK cells, sup-
porting a direct involvement of NKG2C in driving the response 
(40, 41). The finding of NKG2C+ adaptive NK cell populations in 
patients with TAP deficiency raised the question whether HLA-E 
expression levels were modulated by HCMV infection in TAP-
deficient cells. We found that HCMV infection lead to a further 
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FigUre 4 | nKg2c is functional in TaP-deficient adaptive nK cells. (a) NK cells from healthy donors (average of four donors) and three TAP-deficient patients 
(TAP#01, TAP#02, and TAP#05) were stimulated with the indicated targets. RAJI cells were coated with anti-CD20 (rituximab, 1 μg/mL). NKG2C+NKG2A− and 
NKG2C−NKG2A+ NK cell subsets were monitored for degranulation (CD107a) and cytokine production (IFN-γ and TNF-α). (B) Redirected ADCC assay using 
agonistic mAb against NKG2C. Degranulation (CD107a, top panel), IFN-γ (middle panel), and TNF-α (bottom panel) responses by the NKG2C+NKG2A− and 
NKG2C−NKG2A+ NK cell subsets are displayed. The mean and standard deviation of four representative healthy controls tested simultaneously with the three 
TAP-deficient patients is shown.
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decrease in overall levels of HLA class I without influencing 
HLA-E that was maintained at approximately 30–50% of that in 
normal individuals. HLA-E expression was previously reported 
to be sensitive to the CMV-encoded protein US6 glycoprotein 
but resistant to US2 and US11 (42). Since US6 exerts its func-
tion through TAP inhibition, it will not down-modulate HLA-E 
expression in TAP-deficient fibroblasts, potentially explaining 
that the levels of HLA-E remained unaltered in IE1+ fibroblasts. 
Alternatively, the relative stability of HLA-E expression levels 
may be due to stabilization by the UL40 leader-sequence peptide, 
which is TAP-independent (43). Although not formally shown, 
these data are compatible with the notion that HCMV-infected 
TAP-deficient cells may trigger NKG2C receptors and drive the 
expansion of adaptive NK cells in these patients. However, it is 
also possible that the expansion of NKG2C+ NK cells in TAP-
deficient individuals is driven by CD16 and antibody-mediated 
recognition of viral antigens (44).

In contrast to adaptive NK cell responses in apparently 
healthy human blood donors, the expanding NKG2C+ NK cells 
in TAP-deficient patients displayed polyclonal KIR profiles. An 
important inference from this finding is that NK cell education, 
and the enhanced functional potential associated with this 
state, is not an absolute prerequisite for human adaptive NK cell 
responses to occur. This is in line with the data in MHC class 
I-deficient mice, which control MCMV infection equally well as 
wild-type mice and mount robust adaptive NK cell responses with 
expansion of Ly49H+ NK cells upon viral infection (14). These 
results support the notion that the skewing of KIR repertoires 
toward cells expressing self-specific inhibitory KIRs, commonly 
associated with CMV infection and CMV reactivation, could be 
a result of preferential survival of such subsets in conditions of 
stress, or in the context of excess stimulation with, e.g., IL-15 
(12). Given the high level of enrichment of NKG2C+ NK cells 
expressing self-KIR in normal TAP-expressing donors, there is 
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also the possibility that NK cells compete during the expansion 
phase, supported by the tendency of relatively lower degrees of 
differentiation of adaptive NK cells in TAP-deficient donors. 
Along the same lines, the skewing of the NK cell repertoire by 
CMV infection may depend on constitutive inhibitory signaling 
through KIR and its potential influence on cellular interactions 
with host cells (45).

Although this study is based on few patients with defined 
deficiency in the TAP-1/2 proteins, the findings clearly illustrate 
the expansion of polyclonal adaptive NK cells in the context of 
low HLA class I expression in the host. The insight that inhibitory 
KIR and education are not essential components of the upstream 
events in the human adaptive NK cell responses is informative 
and may be of relevance for understanding the cellular drivers 
of NK cell differentiation. Notably, in this context, adaptive NK 
cells in TAP-deficient patients respond weakly to stimulation 
of NKG2C and CD16, both suggested to be involved in driv-
ing proliferation of adaptive NK cells (41, 44). It is tempting to 
speculate that NKG2C+ NK cells contribute to the relatively low 
incidence of viral complications seen in TAP-deficient patients 
(18). Conversely, the possibility that these cells contribute to 
immune pathology and necrotizing granulomatous skin lesions 
may be considered.
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