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In the last decade, the incidence of metabolic disorders has increased drastically worldwide and is
becoming a global health threat. Studies have shown that the pathogenesis and co-morbidities of
diseases such as diabetes, gout, and atherosclerosis involve chronic low-grade inflammation and
metabolic changes (1). As this inflammation is triggered by endogenous substances, instead of
pathogens, it is called “sterile inflammation”. Chronic low-grade inflammation can be triggered by
the accumulation of metabolic products such as uric acid, glucose, cholesterol, and free circulating
fatty acids. These substances can induce inflammation by two distinct mechanisms: (1) engagement
of Toll-Like Receptors (TLR), such as TLR-2 (2), TLR-4 (3), and TLR-9 (4) and (2) activation of
the intracellular receptor complex known as inflammasome that leads to caspase-1 activation, an
enzyme that cleaves pro- interleukin (IL)-1β into its active form (5–7). IL-1β acts on its receptor
IL1R1, a member of the TLR family whose activation is dependent on the presence of the adaptor
molecule Myeloid Differentiation primary response gene 88 (MyD88). Although TLR-2 signaling
is mediated mainly through the MyD88, TLR-4 activates MyD88-dependent and TIR-domain-
containing adapter-inducing interferon β (TRIF)-dependent pathways. The MyD88-dependent
pathway culminates in the activation of the Nuclear Factor kappa B (NFκB)/Activator Protein (AP)
1 and the TRIF-dependent pathway leads to delayed activation of NFκB associated with Interferon
Regulatory Factor (IRF) (8). Thus, NFκB is a transcription factor of several genes involved in
inflammation and also regulates its own transcription (9). In metabolic diseases with chronic low-
grade inflammation, NFκB is continuously activated (10). Since NFκB can be activated through the
adaptor molecule MyD88, modulation of its expression should have important consequences on the
inflammatory response.

Leukotrienes are lipid mediators whose production is increased during inflammation. Acti-
vated phospholipase A2 releases arachidonic acid from membrane phospholipids. Liberated (sol-
uble) arachidonic acid can be metabolized by 5-lipoxygenase (5-LO) to produce leukotrienes
including LTB4 and cysteinyl leukotrienes, LTC4, LTD4, and LTE4. It is well documented that
leukotrienes are mediators of inflammatory events such as edema and leukocyte infiltration
and activation and that they have an essential role in acute and chronic inflammatory diseases.
Leukotrienes were also shown to mediate resistance to infections by several microorganisms (11).
In macrophages, leukotrienes were shown to potentiate phagocytosis and microbicidal activity by
affecting the mechanisms involved in actin polymerization and activation of NADPH oxidase,
respectively (12).

LTB4 binds to two distinct G protein-coupled receptors. The Leukotriene Receptor (BLT)1 is
the high affinity receptor that induces inflammation, enhances cytokine production, phagocyto-
sis, and mediates antimicrobial effector functions. Through BLT1, LTB4 was shown to enhance
MyD88 expression and potentiate MyD88-dependent stimuli responses while no difference on
MyD88-independent stimuli was found (13). BLT2 binds LTB4 with lower affinity and has
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been much less studied, currently no information is available on
BLT2 in the context with metabolic syndrome. It was shown that
LTB4 through both, BLT2 and BLT1 receptors enhances NFκB
activation (14).

It can be concluded that LTB4, by increasingMyD88 expression,
would potentiate a TLR/IL-1R dependent sterile inflammation.
Considering that metabolic diseases involve sterile inflammation
we propose that LTB4 plays a central role in the development of
metabolic diseases and may be considered a target for the devel-
opment of new therapies. Here, we will highlight recent findings
on LTB4 involvement in Type 1 Diabetes (T1D), Type 2 Diabetes
(T2D), and gout.

According to the World Health Organization, diabetes is a
syndrome characterized by hyperglycemia with disturbances in
protein, lipid, and carbohydrate metabolism due to a deficiency
in insulin production (in T1D) or insulin resistance (in T2D). In
T1D, both hyperglycemia and insulin deficiency can be respon-
sible for the sterile inflammation (15, 16). We found that mice
with T1D exhibited higher serum levels of IL-1β, TNF-α, and
LTB4. Macrophages from type 1 diabetic mice, compared to those
from non-diabetics, expressed higher levels of MyD88 mRNA
and produced higher levels of pro-inflammatory cytokines and
nitric oxide, in response toMyD88-dependent stimuli such as LPS
and IL-1β. Inhibition of LT synthesis restored MyD88 expression
and cytokines production to similar levels found in macrophages
from non-diabetic mice (15). Another important finding in this
work was that pharmacologic or genetic inhibition of LTB4/BLT1
protectedmice from succumbing to sepsis and this correlatedwith
decreasedmacrophageMyD88 expression and decreased systemic
inflammatory responses in the septicmice. This was an interesting
finding because increased susceptibility to sepsis is a characteristic
of diabetic patients (17).

In T2D, obesity is one of the largest risk factors for the devel-
opment of insulin resistance (18, 19). It has been proposed that
in obese people and in murine models of obesity, chronic sterile
inflammation is triggered by free fatty acids (FFA), which engage
MyD88-dependent receptors to produce IL-6 (20) and TNF-α
(21). FFA can also activate the inflammasome and induce IL-1β
production (7). Macrophages that infiltrate adipose tissue seem to
play an essential role in insulin resistance. In diet-induced obesity,
adipose tissue macrophages express an activated M1 phenotype
(22–24). These results suggest that pro-inflammatory cytokines
produced by macrophages have a local effect on adipocytes and
a systemic effect on liver and muscle cells impairing insulin
signaling.

In obese mice, increased uptake of omega-3-polyunsaturated
fatty acids (ω-3-PUFA) led to enhanced insulin sensitivity. This
correlated with decreased production of 5-LO products and
increased generation of anti-inflammatory lipidmediators such as
resolvins and protectins in the adipose tissue (25). Resolvins and
protectins are mediators derived from ω-3-PUFA and are associ-
ated with the resolution phase of inflammation (26). Resolvin E1
can bind to BLT1, acting as a partial agonist to attenuate LTB4-
induced NFκB activation in polymorphonuclear leukocytes. The
effect of resolvin E1 was comparable to that of the BLT1 antago-
nist, U-75302 (27). Together these results suggest a dominant role
for LTB4 through BLT1 in insulin resistance.

Recently, it was demonstrated that knockdown of the Ltb4r1
gene (the gene that transcribes BLT1) or inhibition of LTB4 syn-
thesis protectedmice from diet-induced insulin resistance (10, 28,
29). In mice fed a high-fat diet, increased amounts of LTB4 can be
found in the white adipose tissue, liver, and muscle (29, 30). In
obese animals, LTB4 promotes NFκB p65 nuclear translocation
and production of IL-6 and TNF-α in adipose tissue (10). More-
over, when NFκB activation is increased, LTB4 could enhance
pro-IL-1β expression for subsequent cleavage to the mature form
via inflammasome activation.

Another possibility is that in skeletal muscle cells, adipocytes,
and hepatocytes, LTB4 by enhancing MyD88 expression and
action would potentiate the IL-1R response, further impairing
insulin signaling in insulin target organs. LTB4 was also shown to
decrease insulin signaling in hepatocytes through BLT1 by acti-
vating the NFκB pathway and up-regulating inhibitors of insulin
pathways such as Phosphatase and Tensin homolog (PTEN)
and Protein-Tyrosine Phosphatase 1B (PTP1B) (31). Thus, LTB4
could promote insulin resistance by enhancing macrophage pro-
inflammatory cytokine production, potentiating IL-1β action in
insulin target organs and negatively affecting different compo-
nents of insulin action. Therefore, LTB4 is an essential mediator
in the development of insulin resistance in T2D.

Retinal capillary degeneration is a hallmark of diabetic
retinopathy, and there is evidence that LTB4 is involved in this dia-
betes co-morbidity. This is supported by studies in animal models
of diabetic retinopathy. 5-LO-deficient mice exhibited decreased
leukocyte adherence to the vascular wall (the leukocyte subset was
not assessed in this study), superoxide generation, NFκB expres-
sion and did not exhibit signs of capillary degeneration (32, 33).
Both superoxide generation and NFκB expression can be induced
byMyD88-dependent events (34). In humans, leukotriene precur-
sor levels were increased in vitreous samples from patients with
diabetic retinopathy compared with samples from non-diabetics
(35). These results show that the 5-LO pathway is important for
the development of diabetic retinopathy in humans.

In gout, joint deposition ofmonosodiumurate (MU), a byprod-
uct of purine degradation, is the disease etiological agent.MU is to
activate macrophage NLRP3 leading to IL-1β and IL-18 secretion
(caspase-1-dependent), IL-6, CXCL1 and CXCL2 production and
inflammatory cell recruitment (36). It has been shown that LTB4
is produced bymacrophages stimulated withMU and in the knee-
joint of mice injected with MU crystals. Amaral et al. showed
that pharmacologic and genetic inhibition of LTB4 production or
BLT1 antagonism reduced MU-induced IL-1β and CXCL1 pro-
duction and this correlated with neutrophil migration to the joint.
Moreover, the injection of LTB4 into the joint was sufficient to
induce IL-1β production and neutrophil recruitment, suggesting
an essential role for this lipid mediator in the pathogenesis of
gout (37). In patients, LTB4 in gouty effusion was found at a
higher concentration that in synovial fluid from patients with
rheumatoid arthritis or osteoarthritis (38).

In summary, involvement of LTB4 on sterile inflammation in
metabolic diseases is supported by the finding that inhibition of
LTs synthesis or BLT1 antagonism: (a) reduced IL-1β and TNF-
α serum levels in T1D (15) and MCP-1, IL-6, and TNF-α serum
levels in T2D (29); (b) reduced the sterile inflammation in adipose
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tissue in obesemice, more specifically themacrophage infiltration
(28), pro-inflammatory cytokine production (10), andNFκB acti-
vation (10); reduced neutrophil migration and IL-1β production
in a murine model of gout (37); prevented diet-induced insulin
resistance and steatosis (28, 30), and reduced susceptibility to
sepsis in T1D mice (15).

Evidence presented here led us to propose that LTB4 has a
central role in metabolic dysfunctions. By increasing MyD88
expression, LTB4 enhances macrophage response to TLR/IL1
receptor agonists potentiating the sterile inflammation, a central
event in metabolic disease progression. Furthermore, LTB4 can
amplify tissue injury by increasing reactive oxygen and nitrogen
species that are known to mediate β-cell destruction, impairing

insulin production. Although further studies are required, inhi-
bition of the LTB4/BLT1 axis is a promising therapeutic strat-
egy for the treatment of metabolic disorders. There is a 5-LO
inhibitor already approved to treat asthma, and BLT1 antago-
nists are under development. Reduction in LTB4 production or
activity may reduce sterile inflammation and decrease disease
severity.
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