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Inflammation mediated by the inflammasome and the cytokine IL-1β are some of the 
earliest and most important alarms to infection. These pathways are responsive to 
the virulence factors that pathogens use to subvert immune processes, and thus are 
typically activated only by microbes with potential to cause severe disease. Among the 
most serious human infections are those caused by the pathogenic streptococci, in part 
because these species numerous strategies for immune evasion. Since the virulence 
factor armament of each pathogen is unique, the role of IL-1β and the pathways leading 
to its activation varies for each infection. This review summarizes the role of IL-1β during 
infections caused by streptococcal pathogens, with emphasis on emergent mechanisms 
and concepts countering paradigms determined for other organisms.
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iNTRODUCTiON

Humans are frequently colonized by pathogenic species of streptococcal bacteria: the throat and skin 
by Streptococcus pyogenes (group A Streptococcus; GAS), the upper respiratory tract by Streptococcus 
pneumoniae (pneumococcus, SPN), and the lower intestine and genital tract by Streptococcus agalac-
tiae (group B Streptococcus; GBS). This microbial–host association usually occurs in the context of 
asymptomatic colonization or superficial mucosal infection, but each of these pathogens can also be 
associated with severe, invasive, even life-threatening, diseases. GAS causes a wide range of diseases, 
including pharyngitis, cellulitis, puerperal sepsis, necrotizing fasciitis, streptococcal toxic shock 
syndrome, and rheumatic heart disease, making it one of the top 10 causes of infectious mortality 
(1). SPN is a similarly prevalent human pathogen responsible for greater than one million annual 
deaths by pneumonia and meningitis, mostly in young children (2). Lastly, GBS is a common cause of 
neonatal sepsis and meningitis, making it an important cause of infectious morbidity and mortality 
among infants in many countries throughout the world (3).

Inflammation is a key component of the immune response during infections with all of the 
pathogenic streptococci. Inflammation can be protective by preventing bacterial colonization, 
replication, invasion, and dissemination. Insufficient inflammation commonly leads to a greater 
infection susceptibly or more prolonged disease. Conversely, excessive inflammation is a driver of 
several autoimmune diseases and of host tissue injury complicating many severe infectious dis-
eases. Inflammation must therefore be carefully regulated for an optimal immune response, and 
pathogens can exploit the regulatory processes deployed by the host innate immune system. For 
example, inflammation in the upper respiratory tract increases the risk of systemic dissemination of 
SPN, even though it is critical for combating the localized infection at that site. For SPN as well as 
GBS, inflammation helps break down the blood–brain barrier (BBB) to cause meningitis. In these 
deadly infections, the tissue damage resulting from inflammation can lead to acute complications, 
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and even if the pathogen is successfully cleared, can be associated 
with post-infectious sequelae.

The IL-1 and inflammasome pathways in particular exemplify 
the complex role of inflammation during streptococcal infection. 
Indeed, GAS is classically defined as a “pyogenic” pathogen, 
exemplified by pus formation elicited by the robust inflamma-
tory response to its tissue invasion. IL-1β is a highly inflamma-
tory cytokine commonly key in eliciting protective immunity. 
Caspase-1 and its canonical regulator the inflammasome were 
first discovered for their ability to activate IL-1β. The inflam-
masome pathway has since been found to regulate numerous 
other inflammatory and antimicrobial activities, which in several 
instances contribute more to the functional immunity than does 
IL-1β. Activation of IL-1β is also not fully dependent on the 
inflammasome, but instead requires cooperation between several 
pathways, many of which also can be activated along redundant 
routes. When distinctions can be made based on the available 
literature, we attempt to disambiguate the contribution of each of 
these signaling and immune effector pathways.

BiOLOGY OF iL-1𝝱 AND THe 
iNFLAMMASOMe

iL-1
The IL-1 receptor (IL-1R) is widely expressed, which allows IL-1 
signaling to induce a variety of cellular effector mechanisms 
locally as well as systemically. Two cytokines, IL-1α and IL-1β, 
are recognized by IL-1R to similar effects. The major distinction 
between these cytokines is that IL-1β is soluble, while IL-1α is 
typically membrane bound, spatially limiting its function to 
the activation of neighboring cells. By contrast, IL-1β is free to 
also act as a chemokine and mediate systemic signaling events. 
IL-1R1−/− mice, deficient for cell signaling in response to both 
IL-1α and IL-1β, are more susceptible to most infections, includ-
ing those caused by GAS (4), GBS (5), and SPN (6–9).

IL-1α is a key mediator of the sterile inflammatory response 
(10), but is not generally critical for the response to bacterial 
infection (11). Nevertheless, IL-1α is stimulated during infec-
tions by SPN (12, 13), GBS (14), and GAS (15). Genome-wide 
linkage studies in mice identified a correlation between IL-1α 
levels and mortality during GAS sepsis (15), suggestive that IL-1α 
contributes to cytokine storm during sepsis. However, this link 
was not found in human studies focused on skin infections (16), 
perhaps because IL-1α might be more beneficial than detrimental 
in this context. IL-1α probably plays at most a minor role during 
streptococcal infections, as IL-1β−/− mice phenocopy IL-1R−/− 
mice in their resistance to GBS (5, 17). The role of IL-1α during 
experimental GAS and SPN infections is not yet clear.

IL-1β is critical in defense against GAS (4, 18), GBS (19), and 
SPN (6, 9, 20,21). IL-1β is a major chemoattractant of neutrophils 
(10), and neutrophil recruitment is largely mediated by IL-1β 
during GAS (4) and GBS infections (17). This neutrophil influx 
to the site of infection contributes to GAS and GBS killing, since 
neutrophil ablated and IL-1R−/− mice have a similar susceptibility 
to these pathogens (4, 17). SPN is largely resistant to recruited 
neutrophils during pneumonia, but rather succumbs to the wave 

of activated macrophage that follows, which is also largely IL-1β 
dependent (6, 9, 20, 22). IL-1β also induces fibrinogen expression 
and localized coagulation, which help to limit dissemination of 
SPN from the lung (8). It is not clear if this occurs during other 
streptococcal infections, but if so, the effects may not always 
benefit the host, as both GAS and GBS have surface-expressed 
virulence factors that bind fibrinogen and interfere with comple-
ment activation and phagocytosis (1, 3).

By controlling early bacterial infection before it becomes this 
severe, IL-1 can help prevent a pathogen from reaching immune-
privileged or vulnerable sites, such as the central nervous system 
(CNS). Consistent with this notion, IL-1 signaling-deficient mice 
develop meningitis as a complication of respiratory tract infec-
tions at a higher frequency (7). However, once a pathogen reaches 
the BBB, inflammation is often more harmful then beneficial. 
GBS crosses the brain microvascular endothelial cells comprising 
the BBB by direct intracellular invasion (23) without inducing 
IL-1 (24). SPN can similarly invade the cerebral endothelial cells 
to gain access to the CNS without barrier damage or disruption 
(25). Despite these non-inflammatory mechanisms for gaining 
CNS entry, bacterial CNS infections are inherently inflammatory. 
Bacterial growth and damage to the initially infected CNS cells 
greatly induces IL-1 (26), which further breakdowns the BBB to 
allow more bacterial invasion (27). IL-1 also recruits and activates 
neutrophils, which are overtly injurious in murine meningitis 
models (28, 29) and may correlate with poor patient prognosis 
(30). Neutrophils in the CNS are ineffectual against SPN (31), so 
there is unfortunately little obvious benefit to this inflammation. 
Moreover, IL-1 contributes to the pathogenesis of numerous 
neurodegenerative diseases, and likely has direct role in neuro-
logical sequelae common among survivors of streptococcal CNS 
infection (2, 3, 30, 32).

interleukin-18
Interleukin-18 (IL-18) is another inflammasome-regulated 
proinflammatory cytokine. The largest contribution of IL-18 
to immunity lies in stimulation of natural killer (NK) cells and 
induction of interferon-γ (IFN-γ) signaling (33, 34). IL-18 activa-
tion is seen during GAS (18, 35), GBS (19), and SPN infections 
(36). IL-18−/− mice are more susceptible to SPN pneumonia (37). 
However, in a SPN meningitis model, IL-18−/− mice actually 
survived longer than WT controls, suggesting that inflammation 
induced by IL-18 may be more pathological than beneficial in 
CNS infection, as is the case for IL-1 (38). In GBS infection of 
neonatal mice, an IL-18 neutralizing antibody increased GBS 
burden and mortality; conversely, administration of recombinant 
IL-18 reduced GBS counts (39).

Pyroptosis
In addition to cytokine signaling, activation of inflammasomes 
initiates programed cell death by pyroptosis (Figure 1). This form 
of cell death releases numerous endogenous damage-associated 
molecular patterns (DAMPs), including ATP, DNA, HMGB1, 
and histones, which further amply the inflammatory response 
through the recruitment and activation of neutrophils and other 
immune cells (34). Due to the abundance of DAMPs released 
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during pyroptosis, much of the inflammasome-driven inflam-
matory response during infection can progress in an IL-1- and 
IL-18-independent manner (11). In the instance of pneumococ-
cal meningitis, neutralization of IL-1 and IL-18 ameliorate a 
remarkable amount of the inflammation, yet not all of it (29). A 
DAMP released during pyroptosis that strongly induces inflam-
mation is HMGB1, a chromatin protein recognized by TLR4 and 
RAGE receptors. Extracellular HMGB1 is abundant during SPN 
meningitis, with the levels correlating to severity of disease in 
both mice and humans (40).

In addition to inflammation, pyroptotic cell death plays an 
important role in immunity by depriving intracellular pathogens 
of a replicative niche. Intracellular bacteria are protected from 
many innate and cellular immune defenses; lysis releases the 
bacteria where they are exposed to immune cells that are primed 
and better able to combat the pathogen (41). Though they are 
commonly treated as exclusively extracellular pathogens, the 
streptococci can specifically remodel the cellular antimicrobial 
response to allow intracellular replication (42, 43). It is not 
yet clear how protective pyroptosis might be for the host dur-
ing streptococcal infection, but GAS is able to use it to its own 
advantage. Compared to other cell death programs, pyroptosis 
occurs relatively rapidly. GAS induction of cell death can be so 
rapid that IL-1 production is limited, since the cell does not have 
time to synthesize and convert much cytokine (44).

Other Mechanisms
Several emergent inflammasome effector pathways may also play 
a role in combating streptococcal infection. The inflammasome 
can induce secretion of prostaglandin E2, both directly and 
through IL-1β-induced cell signaling (45). Prostaglandin E2 is 
markedly induced during GAS (46), GBS (47), and SPN infection 
(48). This induction has been observed in several infection models 

FiGURe 1 | Major effector mechanisms of the inflammasome. A cell 
containing active inflammasomes releases several inflammatory signals to 
other cells, including prostaglandins/eicosanoids, IL-1β, and IL-18. The other 
major cell process activated is programed cell death by pyroptosis, 
whereupon the released cellular contents can be detected by a number of 
pattern-recognition receptors to further inflammatory signaling. Pyroptotic cell 
death also releases any intracellular pathogens, exposing them to direct 
killing by complement or antimicrobial peptides or phagocytosis by 
neighboring cells.

including sepsis (15), necrotizing fasciitis (49), and puerperal 
infection (50). In vitro, prostaglandin E2 is immunosuppressive 
and impairs killing of GAS (49) due to repression of phagocy-
tosis, reactive oxygen species, and inflammatory cytokines like 
TNF-α (50). Consistent with these observations, COX-2−/− mice, 
deficient in prostaglandin E2, had greater GAS resistance (49). 
However, COX-2-targeting non-steroidal antiinflammatory 
drugs have long been thought to exacerbate GAS infection and 
be a risk factor for developing invasive infections (51); therefore, 
the role of prostaglandin E2 in the anti-GAS immune response is 
not entirely clear.

Inflammasome activation might also act against intracellular 
bacteria by mechanisms that do not require death of the host cell. 
Caspase-1 promotes greater acidification of the phagolysome in 
GBS-infected cells (52). This mechanism appears to be inactive 
during infections with Gram-negative bacteria, but operates in 
response to the Gram-positive bacteria tested, so would likely act 
against GAS and SPN as well. IL-1β signaling provides another 
route for killing of several species of intracellular bacteria, includ-
ing GAS (18). This effect is mediated through autocrine induction 
of IL-1R-regulated pathways, but which antimicrobial effectors 
are ultimately involved is not yet known.

THe iNFLAMMASOMeS

Caspase-1
The inflammasome is a scaffold nucleotide-binding domain and 
leucine-rich repeat containing receptor (NLR) family of proteins 
that serves to activate a component conserved between inflam-
masomes: the cysteine protease Caspase-1. Caspase-1−/− and 
IL-1β−/−IL-18−/− mice often exhibit similar infection response 
phenotypes (11). The immune contributions of pyroptosis and 
other cytokine-independent inflammasome effector mechanisms 
can make the role of Caspase-1 more prominent in certain infec-
tions. Alternatively, inflammasome-independent mechanisms for 
IL-1β secretion can shift this balance in the other direction (34). 
Consistent with inflammasomes playing a protective role during 
streptococcal infection, Capase-1−/− mice are more susceptible to 
GAS (18) and GBS (19). The importance of Caspase-1 in defense 
against SPN varies greatly depending on model, mirroring the 
variable role of IL-1 in these infections. In a SPN pneumonia 
model, Caspase-1 had little effect (18, 53), but in a SPN meningi-
tis model, Capase-1-driven inflammation led to great intracranial 
pressure and disruption of the BBB (26).

NLRP3 Detection of Pore-Forming Toxins
Several different NLRs can form inflammasomes, but NLRP3 has 
the most prominent contribution for detection of streptococci 
(Figure 2). Streptococcal pathogens deploy secreted pore-forming 
toxins, which are well documented to activate the NLRP3 inflam-
masome (13, 19, 21, 29, 30, 54–57). The precise mechanisms by 
which NLRP3 senses diverse toxins from a number of bacterial 
species, as well as numerous other PAMPs-like crystals of uric 
acid, cholesterol, or amyloid proteins, is not entirely clear. Given 
the disparate nature of these molecules, and no known binding 
interactions, NLRP3 does not appear to directly detect these 
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PAMPs and DAMPs. Several models have been put forward 
describing a mechanism for NLRP3 activation in response to 
perturbations in cellular homeostasis. This concept requires a 
secondary molecule commonly altered by these PAMPs and 
DAMPs. While the identity of this molecule is not agreed upon, 
a unifying theme is the disruption of either the outer membrane 
or endosomal membranes and consequent induction of ER stress 
(58). As not all NLRP3 stimuli are membrane acting, upstream 
detection pathways may still be involved in some circumstances. 
Streptococcal pore-forming toxins directly induce membrane 
disruption and ER stress (59), so their detection will likely follow 
whatever paradigm emerges to integrate the different models of 
NLRP3 activation.

Major pore-forming toxins of GAS and SPN are the cholesterol-
dependent cytolysins streptolysin O (SLO) and pneumolysin 
(PLY), which use cholesterol and glycans as cell surface receptors 
(60). Both toxins form very large pores in many cell types. In 
immune cells, pore formation contributes to virulence by killing 
the cell or inactivating its effector mechanisms, but concurrently 
activates IL-1β secretion through the NLRP3 inflammasome (12, 
13, 44, 54, 61, 62). GAS expresses a second membrane-active 
pore-forming toxin, streptolysin S (SLS), which is responsible for 
the classical β-hemolytic phenotype of GAS (63, 64). SLS does 
not contribute strongly to NLRP3 inflammasome activation (44). 
This may be due to a dominant role of SLO or the less potent lytic 
activity of SLS against non-erythrocytes (65), though a toxin’s 
ability to form pores and to activate the inflammasome do not 
always correlate strictly (62).

The major pore-forming toxin of GBS, β-hemolysin, is highly 
dissimilar to PLY, SLO, and SLS. This toxin stays tightly associated 
with the cell surface and plays a key role in the progression from 
colonization to invasive infection (66). β-hemolysin mutant GBS 
induce less pyroptosis and IL-1β secretion through the NLRP3 
inflammasome (19). The mutation involved, cylE, also disrupts 
synthesis of the characteristic pigment of GBS granadaene (67). 
Granadaene itself is sufficient to activate the NLRP3 inflamma-
some (56), and production of granadaene is also linked to the 
hemolytic activity of Propionibacterium jensenii (68). While 

suggestive that granadaene is itself the β-hemolysin, CylE 
expression in Escherichia coli confers hemolytic activity but not 
pigmentation (67), and certain media conditions induce GBS pig-
mentation without a commensurate increase in hemolytic activity 
(69). An additional GBS toxin, CAMP factor, also forms pores 
and delivers bacterial products into the cytosol (70). While this 
activates several immune detection pathways, the inflammasome 
does not appear to be one of them for unknown reasons (19).

Pore-forming toxins also activate cell death processes that have 
features of osmotic lysis, apoptosis, necrosis, and oncosis, which 
can be confused for pyroptosis and complicate analysis of inflam-
masome activation (59, 71–74). Since maintaining cell mem-
brane integrity is essential for viability and continued cytokine 
production, pore-forming toxins can, somewhat paradoxically, 
actually limit IL-1β by inducing these cell death pathways. The 
pore-forming toxins of GAS (44), GBS (75), and pneumococcus 
(74) each can induce the cell to lyse before much IL-1β can be 
synthesized and processed. Detection of pore-forming toxins, 
through both caspase-1-dependent and -independent pathways, 
can also induce membrane-healing mechanisms that limit toxin 
potency and cell death (34, 76). Therefore, the effect of toxins on 
the inflammasome appears to be highly concentration depend-
ent: low doses promote cell activation and repair mechanisms, 
moderate doses activation of the NLRP3 inflammasome, and high 
doses a rapid cell death that limits IL-1β-driven inflammation.

Alternative NLRP3 PAMPs
Some of the earliest results on the detection of pore-forming 
toxins by NLRP3 suggested that SLO is not sufficient for inflam-
masome activation (77). One explanation for this observation is 
that the NLRP3 inflammasome requires co-stimulatory signals 
for activation (78). Another explanation for this finding is that 
low concentrations of pore-forming toxin, themselves insufficient 
for inflammasome activation, can still mediate the delivery of 
inflammasome-activating PAMPs and DAMPs, such as bacterial 
RNA, CpG DNA, Pam3CSK4, zymosan, muramyl dipeptide, and 
lysozyme-digested peptidoglycan (13, 57, 79–81). Even in cir-
cumstances where toxin pore formation is sufficient for inflam-
masome activation, delivery of these additional PAMPs may 
provide for a stronger inflammasome stimulus and may allow 
activation of additional inflammasomes beyond the NLRP3.

Another GAS virulence factor, SpyA, can activate the NLRP3 
inflammasome (18). SpyA is delivered in to host cells where it trans-
fers ADP-ribose from nicotinamide adenine dinucleotide (NAD) 
onto host proteins to modify their activity (82). ADP-ribosylating 
toxins from Pseudomonas aeruginosa and Mycoplasma pneumo-
niae also activate the NLRP3 inflammasome (83), but the precise 
mechanism underlying the detection of these toxins is unclear. 
An ADP-ribosyltransferase toxin from Clostridium botulinum 
instead activates a pyrin inflammasome (84), suggesting the target 
of the toxin dictates which inflammasome is involved. Consistent 
with this hypothesis, other toxins that target Rho-GTPases like 
the Clostridial toxin are also detected via pyrin (84). One target of 
the M. pneumoniae toxin is NLRP3 (83), suggesting this could be 
a target of SpyA and other NLRP3 activating microbial enzymes. 
Alternatively, SpyA targets vimentin (85), which might de-repress 
the NLRP3 inflammasome (86). Additionally, ADP-ribosylating 
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toxin depletion of NAD might activate the NLRP3 inflammasome 
(87); SpyA has very potent NAD-glycohydrolase activity (82). 
This suggests that another NAD-glycohydrolase of GAS, Nga can 
activate the inflammasome. Consistent with this hypothesis, Nga 
does induce cell death, but whether it is morphologically similar 
to pyroptosis and occurs through the inflammasome has not yet 
been determined (88).

Alternative inflammasome and iL-1β 
Pathways
A second inflammasome pathway activated during streptococ-
cal infection proceeds through AIM2 in response to cytosolic 
double-stranded DNA from lysed bacteria (Figure 2). This PAMP 
is introduced into the cytosol upon the disruption of the phago-
somal membrane by pore-forming toxins, such as PLY (89–91). 
The AIM2 inflammasome is important in the resistance to SPN 
(89, 91), but not GAS or GBS (19, 57). Since GAS and GBS are 
readily detected by other intracellular nucleic acid receptors (57, 
70, 92–97), the mechanism underlying AIM2’s unresponsiveness 
is unclear.

The other well-studied inflammasomes, formed via NLRC4, 
NLRP1, or caspase-11, are not known to be involved in strep-
tococcal infection. They have not been rigorously tested in the 
context of streptococcal infection, because streptococci do not 
possess PAMPs similar to those classically known to be detected 
by these receptors. NLRC4 is exclusively responsive to the flagel-
lin and type III secretion rod proteins of Gram-negative bacteria 
(98), so expectedly, is unresponsive toward GAS (54). The best 
established PAMPs for the NLRP1 inflammasome are the Bacillus 
anthracis lethal toxin and an unknown factor of Toxoplasma 
gondii (99). Lastly, caspase-11 can form “non-canonical” inflam-
masome in response to the lipopolysaccharide of Gram-negative 
pathogens, but is felt to be non-responsive toward Gram-positive 
bacteria in general (98).

Group B Streptococcus and SPN similarly stimulate multiple 
pathways for inflammasome activation, and NLRP3−/− mice are 
more susceptible to infection by these pathogens (19, 55, 89). 
However, there are very likely additional mechanisms allowing 
for IL-1β activation during streptococcal infection, either by 
alternative inflammasome or by inflammasome-independent 
mechanisms. The most telling evidence for this is that all the 
known inflammasome-activation PAMPs of GAS are detected 
by NLRP3 (18, 44), but NLRP3 does not contribute to resistance 
against GAS (54). IL-1β is nonetheless important in the immune 
response to GAS (4), but the source of its activation remains 
unclear.

The lack of a phenotype in NLRP3−/− mice could be due to 
redundancy with AIM2, or with another, uncharacterized, 
inflammasome receptor that detects GAS. The NLR family of 
pattern-recognition receptors contains dozens of members with 
unassigned function, so many conventional inflammasomes may 
yet to be discovered. Alternatively, there may be inflammasome-
independent pathways providing for IL-1β signaling. The GAS 
secreted protease SpeB cleaves and inactivates important immune 
factors such as immunoglobulins and antimicrobial peptides, 
making it important in several virulence models (1). In a bio-
chemical assay, SpeB was found to cleave IL-1β (100). However, 

the pro-domain of IL-1β might just be intrinsically protease labile 
since it can also be cleaved by proteases from Candida albicans 
(101), Entamoeba histolytica, (102) Staphylococcus aureus (103), 
and Treponema denticola (104). In vivo activation of pro-IL-1β 
appears nevertheless to be quite specific, as caspase-11 is similar 
to caspase-1 and presumably cleaves some of the same substrates 
in order to activate pyroptosis, yet it does not process IL-1β (105). 
It further remains unclear whether cleavage by proteases other 
than caspase-1 can occur during infection, or whether it would 
promote or inhibit IL-1 signaling.

PRiMiNG OF THe iNFLAMMASOMe 
AND iL-1

induction of iL-1 and the inflammasome
At several points, the inflammasome and IL-1β signaling path-
ways intersect with the NF-κB pathway. First, most cells do not 
constitutively express IL-1β, which is transcriptionally regulated 
by NF-κB (106). Therefore, most TLR pattern-recognition 
receptors, acting through MyD88, as well as the subset of NOD 
receptors that signal through RIP2, can activate NF-κB to induce 
synthesis of pro-IL-1β (79). IL-1β will also positively regulate 
itself, since the IL-1R also activates NF-κB (106). Second, both 
the NLRP3 and AIM2 inflammasome require priming. This 
priming can occur through TLRs, IL-1R, or TNFR (36, 78, 107, 
108). The AIM2 inflammasome is additionally primed by Type I 
IFN signaling (109), which simultaneously represses the NLRP3 
inflammasome (110). GAS, GBS, and SPN can all induce IFN 
(70, 91–93, 111–113), which could therefore lead to switching 
of which inflammasomes can form, and consequently, which 
bacterial factors are detected.

Since the NLRP3 and AIM2 inflammasomes are the only ones 
known to respond to streptococci (Figure 2), stimulatory path-
ways, such as TLRs, are critical not only for the induction of pro-
IL-1β but also its maturation. We will therefore next discuss which 
of these pathways are known to detect streptococci, and how this 
detection promotes inflammasome/IL-1 signaling (Figure  3). 
Due to the large number of streptococcal PAMPs contributing 
to functional redundancies among TLRs, it might be expected 
that there would often be no immune susceptibility phenotype 
for any single TLR knockout (114). Nonetheless, through the use 
of streptococcal and host mutants several specific pathways have 
been identified. Of further note, a receptor may be found to be 
essential in one study and dispensable in another; when possible 
we note how streptococcal genotype, host genotype, and cell or 
infection model may impact these observations.

Pattern-Recognition Receptor Detection 
of Streptococcal Pathogens
TLR2 activates NF-κB upon detection of bacterial lipopeptides, 
lipoteichoic acid, and peptidoglycan (115). These are ubiquitous 
cell surface components of Gram-positive bacteria, so TLR2 read-
ily detects GAS (95, 116), GBS (117–120), and SPN (121–123). 
TLR6 and TLR1 cooperate with TLR2 to dictate which PAMPs 
stimulate signaling. TLR6 contribute to detection of GBS (118, 
124) and SPN (53). For GAS, TLR6 is suggested to be dispensable, 
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but through a dendritic cell model where TLR2 was also dispen-
sable, in contrast to findings with other cell types (114). Even less 
is certain about TLR1, but it appears to have an overall lesser role 
upstream of inflammasome activation (118). GBS mutants unable 
to decorate their cell surface with lipoproteins induce less TLR2 
signaling, but the contribution of any particular lipoprotein is 
unknown (120). The most abundant protein on the GAS surface, 
M protein, is also detected by TLR2 to stimulate production of 
several cytokines including IL-1β (125, 126). Lipoteichoic acids 
may also be detected by TLR2, though GBS lipoteichoic acid is 
not (115, 120). On possible explanation is that the streptococci 
post-translationally modify their lipoteichoic acid structure 
(127); however, since lipoproteins also commonly contaminate 
lipoteichoic acid preparations (115), this scientific question 
remains somewhat controversial.

TLR2 activation is specifically connected to the model of 
inflammasome licensing. Induction of il1a, il1b (9, 122, 128), and 
nlrp3 (21) during SPN infection occurs through TLR2, which was 
required for normal levels of IL-1β signaling (55). TLR2−/− mice 
are not as attenuated to in their cytokine responses to GBS or 
SPN infection as MyD88−/− mice that are broadly deficient in TLR 
signaling (117, 128). This finding illustrates that while TLR2 is 
the canonical receptor for Gram-positive pathogens, additional 
receptors are activating NF-κB in parallel. Several TLRs more 
commonly appreciated for their role Gram-negative bacterial and 
viral infections have also been found to detect streptococci, sug-
gesting their agonist range is broader than commonly appreciated.

TLR4 is the established receptor for lipopolysaccharide, a 
potent PAMP decorating the surface of Gram-negative bacteria, 
analogous to the broad importance of TLR2 for detection of 
Gram-positive bacteria. However, TLR4 is also able to detect 
PLY (129) through direct binding (130) independent of pore-
forming activity (131). Consequently, TLR4 can compensate for 
TLR2 deficiency (122) to provide resistance to SPN pneumonia 

(123, 130, 132). PLY-deficient SPN induce less inflammasome-
dependent cytokines IL-1α, IL-1β, and IL-18, with only a modest 
decrease in other cytokines such as TNF-α, IL-6, and IL-12 (12). 
The transcription of il1b is not greatly impacted by PLY (55), 
suggesting the toxin is more important for inducing NLRP3 than 
TLR4. This likely reflects a greater redundancy in the number of 
activating PAMPs for TLRs relative to NLRs leading to induction 
of their respective pathways (13). Nonetheless, TLR4 significantly 
potentiates caspase-dependent death induced by purified PLY 
(130). TLR4 detection of toxins may be a general mechanism 
since it has also been shown to mediate responses against several 
toxins including SLO from GAS (131). TLR4 is not important for 
detecting GBS (75), possibly due to TLR redundancy or because 
the GBS pore-forming β-hemolysin lacks homology with other 
pore-forming toxins (56, 67).

Several nucleic acid receptors are also known to recognize 
streptococci. ssRNA is recognized by TLR7 and contributes to 
the detection of GBS (92) but not GAS (93). Unmethylated bacte-
rial DNA can be detected by TLR9, which leads to cell activation 
in response to SPN (53), GBS (92), and GAS (97). In one study, 
TLR7 and TLR9 were found to be much more important for the 
detection the detection of GAS and GBS than was TLR4 (92). 
For controlling SPN infection, TLR1, TLR2, TLR4, and TLR6 
were functionally redundant but TLR9 was essential (53). In 
more recent studies, TLR7 and TLR9, as well as TLR2, TLR3, 
and TLR4, had minor roles in the detection of GAS and GBS 
compared to TLR8 (133). Like TLR7, TLR8 recognizes ssRNA, 
but this receptor is only present in humans, possibly leading to 
an overestimation of the relative importance of other TLRs in 
studies utilizing murine models. Mice instead express TLR13, not 
found in humans, which recognizes rRNA from several species 
including GAS (95). While some variation between studies is no 
doubt due to infection model differences, bacterial genetics can 
also be contributing variable. Hypervirulent M1T1 strains of GAS 
secrete a phage-encoded nuclease, Sda1, which degrades their 
own CpG-rich DNA to evade this detection by TLR9 (96). Similar 
mechanisms may allow the other streptococcal pathogens to 
evade TLR9, as well as other nucleic acid-sensing TLRs or NLRs.

NOD1 and NOD2 are related to NLRP3 and NLRC4 but 
activate NF-κB instead of the inflammasome. Both NOD proteins 
recognize muramyl dipeptide, a cleavage product of the pepti-
doglycan that comprises the bacterial cell wall (134) that can be 
introduced into the cytosol by pore-forming toxins (135). SPN is 
recognized by NOD1 (136) and NOD2 (137) through a process 
that requires PLY (136, 138) and bacterial cell wall degradation 
by lysozyme (81). Macrophages are the major cell recognizing 
SPN by NOD2 in a pneumonia model (138) with microglia and 
astrocytes-mediated detection during meningitis (139). NOD2 
also is responsive to the GAS cell wall fragments, a commonly 
used inducer of inflammation in arthritis models (140). It is 
unknown whether NOD2 detects GAS during infection, and only 
a minimal role in GBS infection was detected (70, 75, 141). This 
result could be due to redundancy with other activation pathways 
since, even for SPN, NOD2 is largely redundant with TLR2 (138). 
Alternatively, streptococci might evade NOD detection through 
the same cell wall modifications that prevent detection by other 
PRRs and confer resistance to lysozyme (127).
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integration of Additional Signaling 
Pathways
Several of the endogenous DAMPs released during pyroptosis 
may further amplify the local inflammatory response (10). This 
second phase of the response could provide for stimulation of 
TLRs that do not recognize the pathogen directly, which may be 
particularly important during infection with pathogens adept at 
evading TLR recognition. Given the multitude of TLR receptors 
identified to recognize streptococci and their components, pyrop-
tosis might not be essential for initiating an immune response to 
these pathogens, but would nonetheless amplify inflammation 
during these infections. Pyroptotic release of DAMPs can also 
provide an alternative pathway to NF-κB activation in individuals 
with IRAK-4 deficiencies, who cannot signal via most TLRs with 
the exception of TLR3, and have an increased susceptibility to 
SPN and other pathogens (142).

CONCLUSiON AND PeRSPeCTive

A growing body of evidence suggests that there is more depth 
and complexity to IL-1β signaling than previously appreciated. 
For one, the inflammasome has been found to regulate several 
pathways in addition to IL-1β, including additional inflamma-
tory signaling cascades, programed cell death, and antimicrobial 
effector mechanisms. Conversely, the number of pathways that 
can result in IL-1β activation is also increasing. As the inflam-
masome field grows, these new discoveries will provide greater 
insight on the molecular pathogenesis and host response to strep-
tococcal infections. In a complementary fashion, experimental 
observations made using the streptococci and their unique suite 
of virulence mechanisms for altering the host response can help 
shape our understanding of the IL-1β/inflammasome pathway(s), 
which are so broadly impactful in clinical medicine.

How do alterations in the IL-1β/inflammasome response alter 
the incidence and outcome of streptococcal infections? Many 
streptococcal infections disproportionately affect the very young 
and the very old – and this pattern is mirrored in the quality of 
the inflammasome response. Neonates and newborns have a 
diminished ability to produce inflammatory cytokines, such as 
IL-1β (143). Several mechanisms are at play, including immune 

system immaturity (144) and active suppression of innate immu-
nity (145), and future work is required to better define the role 
of the inflammasome in these processes. A different mechanism 
may be at play in older populations, wherein TLR expression 
deficiency has been reported to mute cytokine activation in aged 
mice (146). Local lymphoid tissue responses are aberrant in aged 
mice, with baseline inflammation and high IL-1β levels already 
present in the lymphoid tissue of the upper respiratory tract in 
naive elderly mice, which then failed to upregulate NLRP3 and 
IL-1β in response to SPN colonization (147). Host genetics also 
plays a role – MyD88 and IRAK-4 are important for the IL–1β/
inflammasome response, and mutations in these genes lead to 
susceptibility to pyogenic infections similar to those caused by the 
streptococci (148, 149). Other underlying conditions associated 
with severe streptococcal infections are inflammatory diseases 
including diabetes and super-infection by other pathogens, either 
of which can alter inflammasome responses.

Can pharmacologic targeting of the inflammasome provide a 
therapeutic benefit during streptococcal infection? Knockout mice 
deficient in inflammasome factors or inflammasome-regulated 
cytokines are generally more susceptible to experimental infec-
tion. Restoration with exogenous IL-1β is protective in models of 
GBS septicemia (5) and SPN nasopharyngeal colonization (9, 20). 
Exogenous IL-18 was also protective in models of GBS sepsis and 
neonatal infection (39). SPN isolates that do not induce hemolysis 
or inflammasome activation induce less IL-1β and cause more 
invasive disease (30, 55, 150). Correspondingly, PLY-mutant SPN 
bacteria that induce less IL-1 and inflammasome activation (81) 
are better able to establish chronic infection (151). This mechanism 
of “flying under the radar” by avoiding inflammasome activation, 
even at the consequence of losing an important virulence factor, is 
becoming a paradigm in the field of bacterial pathogenesis. Future 
therapeutics that take into account the inflammasome pathway 
when targeting bacterial pathogens may hold promise for better 
outcomes in treatment of serious bacterial infections.
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