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Plasmacytoid dendritic cells (pDCs), which are prominent type I interferon (IFN-I)-
producing immune cells, have been extensively implicated in systemic lupus erythemato-
sus (SLE). However, whether they participate critically in lupus pathogenesis remains
unknown. Recent studies using various genetic and cell type-specific ablation strategies
have demonstrated that pDCs play a pivotal role in the development of autoantibodies
and the progression of lupus under diverse experimental conditions. The findings of
several investigations highlight a notion that pDCs operate critically at the early stage
of lupus development. In particular, pDCs have a profound effect on B-cell activation
and humoral autoimmunity in vivo. This deeper understanding of the vital role of pDCs
in lupus pathogenesis supports the therapeutic targeting of the pDC-IFN-I pathway
in SLE.

Keywords: plasmacytoid dendritic cells, systemic lupus erythematosus, type I interferon, amyloid, autoantibody,
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INTRODUCTION

Patients with systemic lupus erythematosus (SLE) frequently have aberrant expression of genes that
are stimulated by type 1 interferons (IFN-α, IFN-β, IFN-ω, IFN-τ; IFN-I), a family of pluripotent
cytokines that are important for antiviral immune response, and this expression profile is correlated
with anti-dsDNA antibody levels and disease severity (1, 2). Plasmacytoid dendritic cells (pDCs), a
distinct subset of DCs, are capable of rapidly secreting large amounts of IFN-I in response to viral
infection through endosomal Toll-like receptor (TLR) activation. In SLE patients, pDCs are believed
to be a major cellular source of IFN-I, primarily because they readily produce IFN-I when exposed
to SLE immune complexes or other lupus-related, nucleic acid-containing compounds (3–5). The
implications IFN-I and pDCs have in clinical SLE have been extensively investigated and reviewed
previously (3, 6–8).

In this perspective, we focus on the findings of recent studies that collectively illuminate the
involvement of pDCs in systemic autoimmunity in vivo and their role in promoting SLE through
IFN-I production in particular. Studies using various experimental lupus models have revealed
that pDCs play an indispensable role in stimulating autoantibody response and facilitating lupus
progression, which bolsters the rationale of targeting pDCs to alleviating SLE.
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pDCs ARE INSTRUMENTAL TO
SPONTANEOUS LUPUS DEVELOPMENT

The development of pDCs from bone marrow progenitors is
critically controlled by the transcription factors E2-2 (encoded by
Tcf4) (9) and IRF8 (10, 11). In humans, naive pDCs, a distinct
type of immune cells, abundantly express the cell type-specific
receptor BDCA2, and in mice, they express PDCA1 and Siglec-H
(3). Slc15a4, a peptide/histidine transporter, specifically facilitates
endosomal TLR signaling and the production of IFN and other
cytokines in pDCs (12). On the basis of these insights, researchers
have developed several genetic systems for selectively deleting or
disabling pDCs in vivo (Table 1). Consequently, several groups
have investigated the contribution of pDCs to SLE in experimental
lupus models.

New Zealand Black (NZB) mice spontaneously develop ele-
vated immunoglobulin levels, anti-DNA antibodies, hemolytic
anemia, and circulating immune complexes that cause glomeru-
lonephritis. Baccala et al. reported that Irf8 deficiency effectively
abolished all the key autoimmune phenotypes in NZB mice,
indicating that the IRF8-instructed program is essential to lupus
development (13).

Mice homozygous for the lymphoproliferation spontaneous
mutation (Faslpr) show systemic autoimmunity, which is asso-
ciated with glomerulonephritis and lymphadenopathy. pDC-
defective C57BL/6-Faslpr mice, which were generated by intro-
ducing the Slc15a4 mutation that selectively disrupts the pDC-
mediated TLR response (13), have reduced autoantibodies and
splenomegaly and prolonged survival compared with pDC-intact

mice. Despite these intriguing observations, pDCs’ influence
on lupus pathogenesis remains uncertain because both Irf8 and
Slc15a4 affect the development or function of other immune cell
types (13, 17–20).

Monoallelic loss of Tcf4 is sufficient to impair the innate
immune function of pDCs in mice and humans (9). Sisirak et al.
(14) examined the effects of Tcf4 haplodeficiency in autoim-
munemice overexpressing the endosomal RNA sensorTlr7 (Tlr7-
tg) (21–23). Intriguingly, they found that both global and DC-
specificTcf4 haplodeficiency abolished splenomegaly andmyeloid
cell expansion and diminished anti-RNA autoantibody levels in
the presence of Tlr7 overexpression, which suggests a profound
involvement of pDCs in this lupus model.

B6.Sle1.Sle3 mice contain genomic intervals of two suscepti-
bility loci from the lupus-prone NZM2410 strain on a C57BL/6
background (24). They spontaneously develop glomerulonephri-
tis and high titers of autoantibodies against dsDNA and chro-
matin. Similar to Tlr7-tg, Tcf4 haplodeficiency effectively blocked
the development of lupus, as indicated by the significantly reduced
anti-DNA antibody levels and glomerulonephritis (14). Although
Tcf4 also affects the development of B and T cells as well as a subset
of conventional DCs (cDCs) (25–27), these data nevertheless
suggest that pDCs are critically involved in lupus pathogenesis and
autoantibody production.

In transgenic mice that express the diphtheria toxin (DT)
receptor (DTR) under the control of the BDCA2 promoter, the
administration of DT results in the selective and transient ablation
of pDCs (28). BXSB is a recombinant inbred lupus-prone strain,
in which male mice harbor the Y-linked autoimmune accelerator

TABLE 1 | Effects of pDC depletion in different spontaneous lupus models.

Lupus model Genetic alteration Phenotypes elicited Age of effect ISG affected B cells affected Reference

NZB Irf8−/− Reduced anti-chromatin, anti-red blood cells,
and anti-nuclear antibodies; decreased
kidney disease; diminished splenomegaly

Constitutive Unknown Reduced CD21−CD23−

subset
(13)

B6-Faslpr Slc54a2feeble Prolonged survival; reduced anti-chromatin
and anti-nuclear antibodies; decreased
hypergammaglobulinemia; diminished
splenomegaly and lymphadenopathy

Constitutive Unknown Reduced CD21−CD23−

subset
(13)

Tlr7-tg Tcf4+/−

(global and
CD11c-specific)

Prolonged survival; decreased splenomegaly;
abolished myeloid cell expansion; reduced
anti-RNA antibody; decreased kidney
inflammation and IgG deposition in glomeruli

Constitutive Unknown Unknown (14)

B6.Sle1.Sle3 Tcf4+/− Decreased splenomegaly; reduced
anti-dsDNA, anti-RNA, and anti-nuclear
antibodies; decreased kidney inflammation
and IgG deposition in glomeruli

Constitutive Sca-1 Reduced spontaneous
GCs and GC-related gene
expression

(14)

BXSB male BDCA2-DTR+DT Lessened splenomegaly; reduced kidney
inflammation; decreased anti-histone and
anti-nuclear antibodies; transient decline of
hypergammaglobulinemia and anti-histone,
anti-La, anti-dsRNA, and anti-RNP antibodies

8weeks Yes (blood
and kidney)

Reduced ABC subset,
increased MZ and T1 B
cells

(15)

B6.Nba2 BDCA2-DTR+DT Decreased IgG deposition in glomeruli;
reduced anti-chromatin IgG; decreased
hypergammaglobulinemia and splenomegaly
in young mice

4weeks;
12weeks

Yes Reduced spontaneous
GCs, plasma cells, IL-21,
and increased MZ B cells
in young mice only

(16)

ISG, interferon-stimulated genes; GC, germinal center; ABC, age-related B cell; MZ, marginal zone; T1, transitional 1.
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locus, which has a duplicated chromosome segment containing
Tlr7 (21–23). After successfully backcrossing the BDCA2-DTR
transgene into a BXSB background, Rowland et al. treated pre-
autoimmune male BXSB.DTR mice with continuous DT injec-
tions for 3weeks (15). Depletion of pDCs reduced the activation
and expansion of immune cells, restricted autoantibody produc-
tion, andminimized kidney inflammation. DT treatment also had
a lasting regulatory effect on the serum levels of inflammatory
factors, such as soluble VCAM-1, soluble CD40L, and chemokines
(15). The finding that an early and transient depletion of pDCswas
sufficient to ameliorate lupus further highlighted the predominant
role pDCs have in lupus pathogenesis.

In another study, Davison and Jorgensen assessed the impact
of transient pDC depletion in B6.Nba2 mice, which harbor
IFN+ pDCs and develop spontaneous lupus-like disease (16).
Nba2.BDCA2-DTR mice received continuous DT treatment,
which significantly decreased antichromatin autoantibody levels
and diminished the deposition of IgG immune complexes in
kidney glomeruli.

Collectively, these studies demonstrate that pDCs play a pivotal
role in promoting lupus-like autoimmunity in mice with diverse
genetic backgrounds.

ACTIVATION OF pDCs AND INDUCTION
OF IFN-I INSTIGATE HUMORAL
AUTOIMMUNITY

The identical twin concordance rate for lupus is less than 50% (29,
30), which suggests that factors in addition to genetics also control
SLE. Indeed, infections, drugs, and chemical compounds have
been shown to facilitate the development of systemic autoimmu-
nity (29, 31–33). However, much less is known about the molecu-
lar determinants and cellular pathways critical to this process.

One particular agent implicated in systemic autoimmunity
recently is terminally misfolded amyloid proteins, which con-
tain extensive β-sheet structures (34, 35). More than two dozen
aberrant polypeptides that deposit amyloid have been implicated
in human pathological conditions, including Alzheimer disease,
Parkinson disease, and type 2 diabetes (35–38). In human tis-
sues, amyloid often contains non-proteinaceous cofactors (34,
39) because amyloid precursor proteins have an affinity for
nucleic acids and glycosaminoglycans, and interactions with these
molecules expedite the formation of amyloid (40). Intriguingly,
nucleic acid-containing amyloid fibrils activate endosomal TLRs

to induce the release of IFN-I from pDCs (41). Our group showed
that injections of DNA-containing amyloid induced pDC infil-
tration and IFN-I production in mice. We also found that the
inoculation of non-autoimmunemice withDNA-containing amy-
loid stimulated the development of antinuclear autoantibodies
and led to the deposition of immunoglobulin G in the kidney
glomeruli (41). The findings of recent studies of amyloid-triggered
autoimmunity in mice are summarized in Table 2. Importantly,
the transient antibody-mediated depletion of pDCs prior to
amyloid inoculation abolished IFN-I production and subsequent
autoantibody generation. These findings illustrate that the innate
immune activation of pDCs can break immune tolerance and
initiate autoimmune responses. Given that pDCs actively secrete
IFN-I during the early stages of many viral infections (3, 28),
the pDC-IFN-I pathway may also contribute to the production
of broadly self-reactive antibodies that are aggravated by viral
infections.

Amyloid is not rare or intrinsically harmful. More preva-
lent than previously thought, functional amyloids participate in
diverse cellular processes, including biofilm and spore assem-
bly in bacteria, the storage of peptide hormones within mam-
malian secretory granules, and enhanced HIV infectivity during
sexual transmission (43–48). Gallo et al. reported recently that
curli, an amyloid expressed by Enterobacteriaceae, could irre-
versibly form fibers with bacterial DNA during biofilm forma-
tion. Curli-DNA composites stimulated high IFN-I and cytokine
production in DCs in vitro. Interestingly, a bacterial amy-
loid–DNA complex and curli+ Escherichia coli and Salmonella
triggered the production of autoantibodies in wild-type and
lupus-prone mice (42). Although Gallo et al. did not ana-
lyze pDCs, DNA-containing bacterial amyloid shares key innate
immune properties with mammalian amyloid. Therefore, the
IFN-I induced by certain bacterial infections may also evoke
humoral autoimmunity, an intriguing notion requiring further
investigation.

MECHANISM OF pDC-MEDIATED
AUTOIMMUNE RESPONSES

The functional contribution of pDCs to the pathogenesis of
chronic diseases has been difficult to establish because (1) pDCs
are rare immune cells; (2) IFN-I production by pDCs is rapid
but transient; and (3) activated pDCs, by downregulating spe-
cific surface receptors, are almost indistinguishable from cDCs.

TABLE 2 | Amyloid-triggered autoimmunity in mice.

Mouse
strain

Stimulating agent Phenotype induced IFN pDC
involvement

Reference

Balb/c DNA-amyloid (mammalian) Anti-histone, anti-ssDNA, anti-smRNP, and anti-nuclear
antibodies; proteinuria, and IgG deposition in glomeruli

Yes Yes (41)

C57BL/6 DNA-amyloid (bacterial) Anti-dsDNA and anti-chromatin antibodies Yes Unknown (cDCs produce IFN) (42)

NZB/W F1 DNA-amyloid (bacterial), curli+

E. coli, curli+ Salmonella
Anti-dsDNA, anti-chromatin, and anti-nuclear antibodies Yes Unknown (cDCs produce IFN) (42)

Sle1,2,3 DNA-amyloid (bacterial) IgG2a and IgG2b subtypes of autoantibodies Yes Unknown (cDCs produce IFN) (42)
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Fortunately, new genetic tools are enabling researchers to eluci-
date the mechanism by which pDCs impact lupus development.

First, pDCs play a crucial role in the initiation of lupus. In pre-
autoimmune BXSB mice, pDC depletion rapidly and effectively
diminished hypergammaglobulinemia, reduced the development
of a wide spectrum of autoantibodies, and restrained kidney
inflammation, which coincided with the decreased transcription
of IFN-stimulated genes (15). This finding is consistent with an
earlier report that an anti-IFNα/β receptor-blocking antibody
had a protective effect only in young BXSB mice (49). Simi-
larly, a prophylactic IFN receptor blockade in young MRL-Faslpr
mice prevented the escalation of anti-RNP autoantibody titers
and proteinuria transiently (49). Although the molecular entity
that triggers IFN-I response in polygenic lupus-prone mice is
unknown, the amyloid-induced autoimmunity explicitly illus-
trates that the activation of the pDC-IFN-I pathway can acti-
vate B cells, break immune tolerance, and induce antinuclear
antibodies (41).

However, neither IFN-I nor pDCs are required for the reg-
ular antibody response to foreign antigens (13, 41, 50). Thus,
the way in which the pDC-IFN-I axis promotes the positive
selection, affinity maturation, and expansion of autoimmune
B cells is enigmatic. The germinal center (GC) represents a
unique lymphoid microenvironment where antigen-reactive B
cells are expanded and diversified (51–53). Prevalent in the
spleen of many lupus-prone mice, spontaneous GCs are crucial
for the generation of autoantibodies (54–56). Interestingly, Tcf4-
haplodeficient B6.Sle1.Sle3 mice displayed reduced spontaneous
GC reaction and a decreased GC-associated gene expression sig-
nature (14). Similarly, B6.Nba2 mice with depleted pDCs had
significantly fewer GCs, as well as fewer follicular helper T cells
and plasma cells, a phenomenon only observed in DT-treated
young mice (16).

However, B cells other than GCs also constitute autoreactive
B-cell compartments in a number of lupus models (57, 58). The
overexpression of IFN-α in vivo sustained the proliferation of B
cells and stimulated the expansion of short-lived plasmablasts,
suggesting that the IFN-I-mediated autoimmune B-cell response
had a non-GC origin (59). Age-associated B cells (ABCs), which
lack CD21 and CD23 expression but express myeloid cell-specific
markers, are stimulated by TLR7 activation and have an increased
presence in lupus-prone mice (60–62). The findings from studies
of BXSB, NZB, and B6-Faslpr mice implied that ABCs diminish as
a consequence of pDC ablation (13, 15). In contrast, the spleens
of BXSB mice after DT injection contained increased numbers
of marginal zone and transitional T1 B cells (15). Driven by
Tlr7 overexpression, T1 B cells undergo significant expansion and
proliferation and are reportedly responsible for the production of
autoantibodies in Tlr7-tg mice (57). Therefore, the way in which
pDCs differentially regulate ABC and T1 B subsets and the rela-
tive contribution of specific B-cell subsets in the pathogenesis of
lupus-prone mice remain to be elucidated. Furthermore, whether
Tcf4 haplodeficiency similarly impacts the T1 B-cell subset in the
Tlr7-tg model is unclear.

In addition, pDCs may mediate emergency myelopoiesis,
as indicated by the abated expansion of myeloid cells in

Tcf4+/−Tlr7-tg mice (63). A previous study found that pDCs in
the bonemarrow (BM) ofTlr7-tgmice constitutively express IFN-
I, which was hypothesized to drive the proliferation of Sca-1+
granulocyte/macrophage progenitors and subsequent expansion
of peripheral myeloid cells (64). Whether the curbed myelopro-
liferation is mediated by the compromised IFN-I expression from
BM pDCs remains to be determined. Of note, the normalization
of the myeloid cell compartment was not reported in BXSB mice,
which also harbor duplicated Tlr7, after continuous DT treatment
(15). The reason for this discrepancy is unclear, but transgenic
mouse lines knowingly expressing DTR in cDC lineage reportedly
have depletion of additional cell types and elicit neutrophilia and
monocytosis upon DT injection (65, 66). Nevertheless, IFN-I+
pDCs may functionally affect hematopoietic cells in the BM of
mice with lupus. Indeed, pDCs from adult MRL-Faslpr mouse BM
transcribe IFNα and likely hinder the survival of B-cell progenitor
cells (67).

Altogether, these recent studies are exceedingly significant and
informative. The findings from diverse lupus models converge
on the profound effect of pDCs toward humoral autoimmunity
in general; while at the same time raise additional questions.
Further detailed analysis is needed to determine whether pDCs
differentially promote autoimmune B-cell responses in certain
genetic and cellular contexts.

CLINICAL IMPLICATIONS

Recent findings in lupus models about the pivotal function pDCs
have in lupus pathogenesis support the tactic of therapeutically
targeting pDCs in humans with SLE. TLR activation in pDCs
under systemic autoimmune conditions hampers the effect of
glucocorticoid treatment (68). In lupus-prone mice, pDCs seem
to be more sensitive to Bcl2 antagonism, whose effectiveness
could probably be improved with the addition of glucocorticoid
therapy (69).

In their search for an effective treatment for SLE, researchers
have developed numerous schemes to neutralize IFN-I or interfere
with the function of IFNα/β receptor (8, 70, 71). Strategies to
selectively deplete pDCs or suppress their IFN-I response should
also help alleviate lupus (3). Given the predominant role of the
pDC-IFN-I pathway in the early stages of lupus development,
IFN-I and pDC blockade should be administrated to patients with
relatively low disease scores. More detailed mechanistic studies
will provide insight into disease-specific processes and enable
innovation in SLE treatments.
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