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Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that have a key role 
in immune responses because they bridge the innate and adaptive arms of the immune 
system. They mature upon recognition of pathogens and upregulate MHC molecules 
and costimulatory receptors to activate antigen-specific CD4+ and CD8+ T cells. It is 
now well established that DCs are not a homogeneous population but are composed of 
different subsets with specialized functions in immune responses to specific pathogens. 
Upon viral infections, plasmacytoid DCs (pDCs) rapidly produce large amounts of IFN-α, 
which has potent antiviral functions and activates several other immune cells. However, 
pDCs are not particularly potent APCs and induce the tolerogenic cytokine IL-10 in CD4+ 
T cells. In contrast, myeloid DCs (mDCs) are very potent APCs and possess the unique 
capacity to prime naive T cells and consequently to initiate a primary adaptive immune 
response. Different subsets of mDCs with specialized functions have been identified. In 
mice, CD8α+ mDCs capture antigenic material from necrotic cells, secrete high levels of 
IL-12, and prime Th1 and cytotoxic T-cell responses to control intracellular pathogens. 
Conversely, CD8α− mDCs preferentially prime CD4+ T cells and promote Th2 or Th17 
differentiation. BDCA-3+ mDC2 are the human homologue of CD8α+ mDCs, since they 
share the expression of several key molecules, the capacity to cross-present antigens 
to CD8+ T-cells and to produce IFN-λ. However, although several features of the DC 
network are conserved between humans and mice, the expression of several toll-like 
receptors as well as the production of cytokines that regulate T-cell differentiation are dif-
ferent. Intriguingly, recent data suggest specific roles for human DC subsets in immune 
responses against individual pathogens. The biology of human DC subsets holds the 
promise to be exploitable in translational medicine, in particular for the development of 
vaccines against persistent infections or cancer.
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iNTRODUCTiON

Human beings are constantly exposed to a myriad of pathogens, 
including bacteria, fungi, and viruses. These foreign invaders or 
cohabitants contain molecular structures that are sensed by the 
innate immune system, which mounts a first-line defense and 
also activates a pathogen-specific, adaptive immune response. 
The adaptive immune system is composed of B cells that produce 
specific antibodies, CD8+ T cells that can kill pathogen-infected 
cells, and CD4+ T cells that produce effector cytokines and coor-
dinate the immune response. T cells express antigen receptors 
(T-cell antigen receptors, TCR) that recognize specific peptides 
presented on MHC molecules. CD8+ T cells recognize peptides 
presented by MHC class-I molecules that are ubiquitously 
expressed, whereas CD4+ T cells are activated by peptide-MHC 
class-II complexes, which are largely restricted to antigen-pre-
senting cells (APCs). Dendritic cells (DCs) can express very high 
levels of MHC and costimulatory molecules, and it is generally 
accepted that they are the relevant cells to induce the activation 
(“priming”) of antigen-specific “naive” T cells (1, 2) and induce 
their differentiation into various types of effector T cells.

The elimination or containment of different types of pathogens 
requires dedicated classes of adaptive immune responses (3). Thus, 
pathogens like viruses or intracellular bacteria require CD4+ and 
CD8+ T cells that produce IFN-γ and kill infected cells (Th1 and 
CTL, respectively). IL-12 is the critical cytokine that induces this 
type of response, but IL-12 production by DC is tightly controlled 
and requires several stimuli derived from pathogens and from 
CD4+ helper T cells (4–9). Conversely, extracellular bacteria and 
fungi require a different type of response that can be mediated by 
Th17 cells (10–12). These effector cells are induced by proinflam-
matory cytokines produced by DC and macrophages (13) and 
attract neutrophils that in turn phagocytose extracellular bacteria 
(14). A third type of effector response is the Th2 response, which 
is required to expel extracellular parasites such as helminths by 
activating eosinophils and basophils and by inducing antibodies 
of the IgE class (15). IL-4 is the critical cytokine that induces this 
response (16), but IL-4 is normally not produced by DC (17, 18). 
Finally, these different effector responses have to be controlled by 
specialized regulatory T cells, in particular by IL-10-producing T 
cells (“Tr1 cells”), which are generated from effector cells and are 
important to avoid excessive tissue damage by adaptive immune 
responses (19–22). Cytokines that promote this type of regulatory 
T-cell response are IFN-α, IL-27, and IL-10 (23–25), and all these 
cytokines can be produced by DCs (26, 27).

DCs HAve THe UNiQUe CAPACiTY TO 
PRiMe T-CeLL ReSPONSeS

Professional APCs have to present pathogen-derived peptides 
on MHC molecules to activate antigen-specific T cells. DCs 
are phagocytic in the immature state, i.e., under steady-state 
conditions and upon initial pathogen encounter, and can take up 
antigenic material by pinocytosis or by surface receptor-mediated 
internalization (28). Proteins from pathogens are then shuttled 
to lysosomes where they are chopped to peptides and loaded on 

MHC class-II molecules (29, 30). These peptide–MHC complexes 
are then transported to the plasma membrane to activate specific 
CD4+ T cells. The presentation of peptides derived from exogenous 
proteins on MHC class-I, a process called cross-presentation (31, 
32), is a largely unique feature of DCs and is particularly important 
to activate CD8+ T cells in viral infections. Virus-infected cells 
express viral proteins in the cytosol where they are degraded to 
peptides by the proteasome, translocated to the endoplasmic retic-
ulum by TAP proteins, and loaded on MHC class-I molecules (31). 
However, since DCs are not necessarily infected by viruses, they 
must be able to process virus-derived proteins also from external 
sources, such as virus-infected cells, to activate CD8+ T cells. The 
mechanism of cross-presentation is still incompletely understood, 
but two distinct pathways via vacuoles and peptide translocation 
from phagolysosomes to the cytosol have been described (32). It 
is believed that cross-presentation is the most important pathway 
leading to the induction of cytotoxic T-cell responses, and excel-
lent reviews have been published on this relevant topic (31–33).

Naive T cells have a very high activation threshold (34), 
and only professional APCs that express high levels of MHC 
and costimulatory molecules such as DCs are able to induce 
proliferation of naive T cells (35). Several receptor–ligand 
interactions contribute to naive T-cell activation (36–38), but 
CD28 costimulation is particularly important to amplify the 
signal transduced by the TCR (39). Monocytes efficiently present 
peptides derived from extracellular proteins on MHC class-II to 
activate antigen-experienced CD4+ T cells (34), and this capacity 
can be exploited to selectively expand antigen-specific memory T 
cells (40). However, monocytes have an approximately 1000-fold 
lower capacity to prime naive CD4+ T cells as compared to DCs 
(Nizzoli et al., under review) and home to non-lymphoid tissues 
in the steady state. However, upon inflammation, they can dif-
ferentiate to inflammatory DCs (41) and home to lymph nodes 
where they can activate T cells (42, 43). In addition, there is some 
evidence that CD16+ subsets of human blood monocytes might 
contain DCs (27, 44, 45). Naive T cells constantly recirculate in 
the blood and migrate through secondary lymphoid organs (46), 
but are largely excluded from non-lymphoid tissues. In second-
ary lymphoid tissues, they migrate to the T-cell zone, where 
they encounter DCs (47). B cells are also present in secondary 
lymphoid organs and can potently present antigen to T cells 
when they internalize and process antigens that have specifically 
bound to their B-cell receptor (48). However, B cells are physically 
separated from naive T cells in lymph nodes and only following 
TCR activation naive T cells migrate to the B-cell zone where they 
interact with antigen-specific B cells to induce antibody produc-
tion (49, 50). Thus, antigen presentation by B cells appears to be 
important for the activation of antigen-experienced T cells rather 
than for naive T-cell priming.

PATHOGeN-ASSOCiATeD MOLeCULAR 
PATTeRNS iNDUCe DC MATURATiON

Dendritic cells are generated from committed precursors in the 
bone marrow that are released into the circulation to seed periph-
eral organs (51–55). Both monocytes and DCs can be derived 
from common myeloid progenitors (CMPs), but committed 
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precursors that selectively give rise to monocytes or DCs (51) 
or even selected DC subsets (53, 54) have been identified in 
humans and mice. DCs are poorly stimulatory in the immature 
state and can induce a partial T-cell activation, leading to dele-
tion of autoreactive CD8+ T cells (56–59). In addition, they 
promote self-tolerance by inducing Foxp3+ regulatory CD4+ T 
cells that suppress autoreactive T cells (60). Pathogens induce 
the maturation of DCs that consequently acquire the capacity 
to produce polarizing cytokines and to prime pathogen-specific 
effector T-cell responses. Pathogen-derived molecular patterns 
[PAMPs (61, 62)] are recognized by DCs and lead to the efficient 
presentation of antigens to T cells (63). There are different classes 
of pathogen-sensing receptors, including Toll-like receptors 
(62, 64), nucleotide-binding oligomerization domain (NOD)-
like receptors (65), retinoic acid-inducible gene 1 (RIG-I)-like 
receptors (66), and C-type lectins (67). TLRs recognize different 
PAMPs, including nucleic acids or cell wall components such as 
proteins and lipoproteins (68, 69). In the case of viruses, nucleic 
acids are sensed not only by different TLRs in endosomes but 
also by cytosolic receptors like RIG-I (66, 70) and induce a 
potent activation of DCs. Importantly, subsets of DCs express 
different patterns of pathogen-sensing receptors and might thus 
preferentially respond to individual pathogens (71, 72). DNA 
viruses such as cytomegalovirus (CMV) and herpes simplex 
virus (HSV) and also bacteria can activate DCs via unmethyl-
ated CpG-containing DNA (69), which is sensed by TLR9. 
Double- and single-stranded RNAs, which are generated by 
both DNA and RNA viruses, are sensed by DCs via TLR3 (73) 
and TLR7/8 (74, 75), respectively. Of note, TLR3 is restricted 
to mDCs (71) and induces cross-presentation capacities (76). 
Viruses such as respiratory syncytial virus (RSV) and hepatitis C 
virus (HCV) can also activate DCs via TLR2 or TLR4, which are 
expressed on the plasma membrane and recognize viral proteins 
(77). TLR2 is also involved in immune responses to fungi (78) 
and Gram-positive bacteria (79, 80) while TLR4 recognizes 
lipopolysaccharide (LPS) (81), a cell membrane compound of 
Gram-negative bacteria. Many pathogens like viruses activate 
DCs via multiple TLRs (77). Moreover, other immune cells, 
including T cells themselves, feed-back on DCs to regulate the 
ongoing response. In particular, CD40 stimulation by CD4+ 
helper T cells is crucial for CD8+ T-cell stimulation and IL-12 
production (4, 5). Moreover, IFN-γ (6) and paradoxically also 
IL-4 (7, 8) that can be provided by T cells further enhance IL-12 
production (9).

Surface TLRs such as TLR2 and TLR4 signal via the 
adaptor protein Myd88 (82) to induce the activation of Map 
kinases and the nuclear translocation of the transcription 
factor NF-κB, which in turn induces the transcription of 
proinflammatory cytokines (62). Endosomal TLRs 7, 8, and 
9 also signal via Myd88 but activate IRF7, which in turn 
induces type-1 interferon production (83, 84). TLR3 is an 
exception since it does not signal via Myd88 but utilizes 
TRIF (85) to activate IRF3 (86, 87) or IRF7 (88). How all 
these complex signaling pathways are integrated by DCs to 
induce the appropriate T-cell response is still incompletely 
understood (88–90).

SPeCiALiZeD DC SUBSeTS iNDUCe 
DiFFeReNT CLASSeS OF T-CeLL 
ReSPONSeS iN MiCe

Dendritic cells in mice can be subdivided into distinct subsets 
with specific functions. Some DCs are stably resident in lymph 
nodes while others are positioned in non-lymphoid tissues 
to sense tissue-invading pathogens, but are migratory and 
are recruited via the lymph following pathogen encounter in 
a CCR7-dependent manner (91, 92). In secondary lymphoid 
tissues, two major DC subsets are myeloid DCs (mDCs) and 
plasmacytoid DCs (pDCs; Table  1) (72, 93, 94). Both pDCs 
and mDCs upregulate MHC and costimulatory molecules like 
CD80 and CD86 upon maturation (72) that bind to CD28 and 
are required to induce full T-cell stimulation (39). However, 
pDCs are poorly phagocytic and have a different regulation of 
MHC class-II turnover upon maturation as compared to mDCs 
(95). Thus, mDCs stop phagocytosis and peptide loading on 
MHC upon pathogen recognition and stably present peptides 
from antigenic material they had acquired upon pathogen 
encounter (30, 96, 97). This maturation-induced stabilization of 
peptide–MHC complexes enhances the priming of pathogen-
specific T cells by mDCs. In contrast, pDCs continue to present 
new peptides on MHC complexes even in the mature stage 
(95). On the one hand, this limits their capacity to stimulate 
pathogen-specific T cells; on the other hand, this enables 
them to present also late-expressed viral antigens when they 
are actively infected. This diverse regulation of MHC–peptide 
stability in mDCs and pDCs suggests that they present different 
antigens to T cells.

TABLe 1 | Surface markers expressed on human and mouse DC subsets.

Subsets Mouse (spleen) Human (blood)

CD8α− CD8α+ pDC mDC1 mDC2 pDC

CD11c + + Low ++ + −
CD11b + +/− − + − −
BDCA-1/CD1c n/a n/a n/a + − −
BDCA-2/CD303 − − + − − +
BDCA-3/CD141 − − − − + −
BDCA-4/CD304 − − − − − +

This table summarizes the expression of widely used surface markers to identify DC subsets in humans and mice.
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Plasmacytoid DCs are present in lymph nodes and are largely 
absent from non-lymphoid organs, but they can be recruited 
upon inflammation (98). The role of pDC in T-cell priming is still 
debated (99). There is consensus that they are poorly stimulatory 
in their resting state (100, 101), but while some groups proposed 
that they become potent APCs following TLR stimulation and 
prime CD4+ and cross-prime CD8+ T-cell responses (102–105), 
others concluded that also mature pDCs have only low priming 
and cross-priming capacities and might rather be tolerogenic 
(101). The rapid and abundant production of type-1 interferon 
by pDC suggests a pivotal role in viral infections, even if their 
capacity to prime virus-specific T cells directly appears to be 
limited. IFN-α can also be produced by other immune cells and 
by virus-infected cells, but the early and systemic IFN-α response 
is believed to depend on pDCs (101). Consistently, in the case 
of HSV infections, it was shown that pDCs were important for 
systemic but not local protection (106). However, in several 
other viral infections in mice, including vesicular stomatitis virus 
(VSV), lymphocytic choriomeningitis virus (LCMV), RSV, and 
mouse cytomegalovirus (MCMV), pDCs do not seem to play a 
major role (100). In marked contrast, in mouse hepatitis virus 
(MHV) infection, the antiviral response against this coronavirus 
was largely pDC dependent (107) (Figure 1). Finally, pDCs have 
been found by several groups to induce the production of the 
anti-inflammatory cytokine IL-10 by CD4+ T cells, suggesting 
that they might be important to inhibit excessive T-cell responses. 
Several proteins expressed by pDCs were found to promote 
IL-10 induction in T cells, including the Notch ligand Delta-like 
4 (108), ICOSL (109, 110), as well as IFN-α (23, Nizzoli et al., 
under review).

Myeloid DCs are a heterogeneous population, and different 
mDC subsets can be identified that preferentially initiate different 
types of adaptive immune responses (Figure 1). In the spleen of 
mice, mDCs can be subdivided into CD8α+ and CD8α− sub-
sets (Table  1). CD8α+ mDCs produce high levels of bioactive 
IL-12p70 and efficiently cross-prime CD8+ T-cell responses 
(111). They express CLEC9A, a C-type lectin, that enables them 
to take up antigenic material from dying cells, and their genera-
tion was shown to rely on the transcription factors BATF3 and 
IRF8 (112, 113). Moreover, they express the chemokine receptor 
XCR1 that favors their colocalization with CD8+ T cells (114). 
Altogether the present evidence indicates that CD8α+ DCs are 
specialized to induce Th1 and CTL responses in response to 
intracellular pathogens (115, 116). Notably, DCs in the gut that 
express CD103 have similar characteristics and are closely related 
to CD8α+ DC (117, 118). CD8α− DCs express CD11b and can 
be further subdivided into CD4+ and CD4−CD8− subsets. They 
preferentially prime CD4+ T-cell responses (119) and promote 
Th17 responses, but they can also induce Th2 cells (113, 120). 
Interestingly, CD11b+ DCs produce IL-23 in the gut and are 
required for protection against Citrobacter rodentium (121). Their 
generation depends on the transcription factor IRF4, while KLF4 
expression is required for Th2, but not for Th17 induction (122). 
Notably, however, CD8α− DCs and also pDCs can cross-prime 
CD8+ T-cell responses under certain conditions (102–104, 123). 
Moreover, it was shown that upon appropriate microbial stimula-
tion all mDC subsets have the potential to promote either Th1 

or Th2 responses (124). Thus, although the proposed functional 
specialization of DC subsets is an intriguing and helpful concept, 
it might also be an oversimplification, since DC subsets have 
considerable plasticity and the induction of a specific type of 
immune response critically depends on the stimuli they receive 
from pathogens as well as from other immune cells (125).

DiFFeReNT PATHOGeN SeNSiNG BY DC 
SUBSeTS iN HUMANS AND MiCe

High numbers of human DCs can be generated in  vitro by 
culturing monocytes with cytokines (41), and the large majority 
of studies on human DCs have been done with these monocyte-
derived DCs. They are primary cells and show many behaviors 
of in vivo occurring DCs, including cytokine production as well 
as stable and potent antigen presentation upon maturation with 
TLR ligands (125). However, monocyte-derived DCs are not the 
appropriate model to study the role of specialized DC subsets in 
human immune responses.

Dendritic cells circulating at low frequency in human periph-
eral blood share several features with murine splenic DC subsets 
(126) (Table 1). Human pDCs have been identified more than 
15 years ago as the natural IFN-α-producing cells (127, 128). They 
express TLR7 and TLR9 and produce large amounts of IFN-α 
in response to CpG DNA or influenza virus. Similar to their 
murine counterparts, they are poorly stimulatory (94), express 
the C-type lectin BDCA-2 (93), and induce IL-10 production 
in CD4+ T cells (129). In addition, subsets of mDCs can also be 
found in human blood and in tissues (130–133). As their murine 
homologues, they express CD11c and potently prime CD4+ and 
CD8+ T-cell responses. The expression of CD1c/BDCA-1 and 
CD141/BDCA-3 identifies two subsets among human mDCs in 
peripheral blood (93) and also in secondary lymphoid organs 
(105, 132, 134, 135). BDCA-3+ “mDC2” (Table  1) are rare, 
but it could recently be demonstrated that they represent the 
human counterpart of murine CD8α+ DCs (136–140). Thus, as 
CD8α+ DCs, they selectively express CLEC9A and XCR1 and are 
dependent on the transcription factor BATF3 (112, 136, 138, 140, 
141). Importantly, they can cross-present exogenous antigens 
on MHC class-I to CD8+ T cells and produce IL-12 (134–136). 
CD1c+ “mDC1” (Table  1) are more frequent and share some 
features with CD8α− DC, including CD11b expression and IL-23 
production (121, 142, Nizzoli et al., under review). Also TLR3 
expression in DC subsets appears to be similar in humans and 
mice, since it is expressed at high levels on CD8α+ DCs and 
mDC2, at lower levels on CD8α− DCs and mDC1, and absent 
on pDC. Surprisingly, TLR3 in mice is not required for immune 
responses against several viruses, including LCMV, VSV, MCMV, 
and Reovirus, suggesting that TLR3 has not a pivotal role in 
antiviral immune defense (143). Consistently, TLR3 deficiency 
in humans selectively leads to uncontrolled HSV1 infections in 
the central nervous system (CNS) (144).

Different subsets of DC have also been identified in human 
non-lymphoid tissues where they are strategically positioned to 
recognize invading pathogens, in particular at barrier surfaces. 
These migratory DC subsets play a crucial role to transport anti-
genic material of pathogens that invade specific tissues to draining 
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lymph nodes and thus to initiate a tissue-specific T-cell response 
(130, 145, 146). Human Langerhans cells were first described 
more than a century ago and reside in the epidermis and are 
thus the first DCs that encounter skin-invading pathogens. Upon 
activation, they mature and migrate to draining lymph nodes to 

FiGURe 1 | Properties and functions of human and mouse DC subsets. Human and mouse mDC and pDC subsets express partially different patterns of 
pathogen-sensing receptors and cytokines and might thus have unique functions in inducing appropriate types of T-cell responses against individual pathogens.  
IV, influenza virus; HCV, hepatitis C virus; RSV, respiratory syncytial virus; HIV, human immunodeficiency virus; HSV, herpes simplex virus; BCG,  
Bacillus Calmette–Guérin.

activate CD4+ and CD8+ T cells. In the dermis, different subsets 
of interstitial DCs are present and can be classified according to 
CD14, CD1a, and CD141 expression. Dermal CD14+ cells might 
represent monocyte-derived macrophages rather then DCs 
(147), but CD1a+ and CD141+ DCs, respectively, resemble the 
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CD1c+ and CD141+ DC subsets in peripheral blood (148). Also 
in the lung and the liver, DC subsets that are related to CD1c+ 
and CD141+ DCs could be identified (133). Finally, in the human 
intestine, DC subsets that express CD11b and CD103 are similar 
to CD1c+ and CD141+ DCs, respectively, and these intestinal DC 
subsets are also largely conserved between humans and mice 
(149).

Although the similarities between human and mouse DC 
subsets are often emphasized, there are also some important 
differences in pathogen sensing by DCs in humans and mice 
(150). Importantly, the expression of several relevant TLRs is 
not conserved (Figure 1), presumably because humans and mice 
have evolved under the selective pressure of different pathogens. 
Thus, in mice, TLR7 and TLR9 are expressed by both pDC and 
mDC subsets (71), whereas in humans, they are restricted to 
pDCs (72). Also TLR4 expression is more restricted in human 
DCs, since it is expressed by mDC1 but not by mDC2 (136). 
Moreover, TLR8 is not expressed by human pDCs (72), and 
some agonists of human TLR8 such as the resiquimod R848 do 
not activate murine TLR8 (75, 151). Another relevant difference 
seems to be the role of the adaptor protein Myd88, which trans-
duces signals from all TLRs with the notable exception of TLR3. 
Thus, mice deficient for Myd88 are highly susceptible to several 
infections by bacteria, viruses, parasites, and fungi. Conversely, 
Myd88-deficient patients are selectively affected by infections 
with pyogenic bacteria in childhood (152). Finally, human CD1c+ 
DCs and also Langerhans cells seem to have superior capacities to 
cross-present antigens and to induce CTL responses as compared 
to their murine homologues (105, 134, 153, 154). Overall, these 
differences in pathogen sensing and T-cell activation between 
human and murine DCs are likely to have an important impact 
on their role in immune responses against specific pathogens.

SUBSeT-SPeCiFiC CYTOKiNe 
PRODUCTiON BY HUMAN DCs

Dendritic cell subsets in humans and mice express not only 
different patterns of toll-like receptors, but they have also par-
tially distinct cytokine profiles (Figure 1). In particular, human 
mDC1 have a complex and quite unique regulation of cytokine 
production. Thus, while LPS triggers only low levels of cytokine 
production by mDC1, dual TLR stimulation with LPS or Poly-
I:C (TLR3 ligand) in combination with R848 induces very high 
levels of a broad panel of cytokines, including TNF, IL-6, IL-10, 
IL-12, and IL-23 (Nizzoli et al., under review). The very potent 
cytokine-producing capacity of mDC1 has been missed in several 
studies where mDC1 were activated with single TLR ligands 
(45, 155, 156). Of note, single TLR stimulation is sufficient to 
induce antiviral cytokines by mDC2 and pDCs (see below) and 
proinflammatory cytokines by monocytes. Although mDC1 can 
secrete several proinflammatory cytokines that promote Th17 
cell generation including IL-23 (142), it is unclear if they are 
the physiological inducers of Th17 cells or if monocyte-derived, 
inflammatory DCs do the job (12, 157). Also the identity of the 
DC subset that induces human Th2 responses is still enigmatic. It 

was originally proposed that mDCs induce Th1 polarization and 
pDCs Th2, but later it was shown that also pDCs can drive Th1 
responses (158, 159). More recently, mDC2 but not mDC1 were 
found to induce Th2 cells in an aberrant response to influenza 
virus (160).

In apparent contrast to CD8α− DCs, mDC1 can produce high 
levels of IL-12 (134, 135), suggesting a relevant role in immune 
responses against intracellular pathogens. Moreover, the pro-
duction of the anti-inflammatory cytokine IL-10, which can be 
produced by all mDCs in mice, is largely restricted to mDC1 
in humans (Nizzoli et al., under review). Stimulation of mDC1 
with the intestinal bacterium Escherichia coli or with LPS alone 
induces IL-10 and was proposed to induce a tolerogenic state in 
mDC1 (155). Although IL-10 is indeed a tolerogenic cytokine 
and a well-established negative regulator of DC maturation 
and cytokine production (161), it can paradoxically also have 
positive effects, in particular on CD8+ T-cell responses (162, 163). 
Consistently, we found that IL-10 produced by mDC1 completely 
blocked the cross-priming of low-affinity CTL and enhanced 
the responsiveness of CD8+ memory T cells to the homeostatic 
cytokine IL-15. Thus, mDC1-derived IL-10 appears to play an 
important positive role in CTL responses, since it selects high 
affinity cells upon priming and inhibits CTL memory attrition at 
the same time (Nizzoli et al., under review).

While mDC1 can secrete a broad panel of pro- and anti-
inflammatory cytokines, mDC2 and pDC are largely dedicated 
to secrete high levels of antiviral cytokines. The subset-specific 
production of IFN-α by pDC (128) and of IFN-λ by CD8α+ 
and mDC2 (134, 137) appears to be largely conserved between 
humans and mice. The very potent IFN-λ-producing capacities 
of BDCA-3+ DC (134, 137) suggest that analogous to pDCs they 
might be the relevant source of early and systemic IFN-λ in viral 
infections. Notably, IFN-λ has antiproliferative and antiviral 
activities similar to type-I interferon, but the expression of the 
IFN-λ receptor is much more restricted and found mainly on 
epithelial cells at barrier surfaces and in the liver (164). MDC2 
can also secrete selected isoforms of IFN-α (165) and some IL-12 
(134–136, 138), consistent with the view that they play an impor-
tant role in antiviral immune responses. As previously mentioned 
for murine pDCs, IFN-α is not only a powerful antiviral cytokine 
that activates several different types of immune cells, but it also 
induces IL-10 production in CD4+ T cells, suggesting that pDCs 
induce Tr1-like regulatory T cells also in humans (21, 23, 108, 
Nizzoli et al., under review).

SPeCiFiC ROLeS OF HUMAN DC 
SUBSeTS iN ReSPONSeS TO iNDiviDUAL 
PATHOGeNS

The more restricted expression of TLRs and the specific cytokine-
producing capacities of human DC subset suggest that they play 
unique roles in immune responses against individual pathogens. 
The roles of human DC subsets in pathogen-specific immune 
response are however difficult to address directly because 
patients that selectively lack a DC subset of interest have not 
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been identified so far. Nevertheless, some interesting findings 
were reported. In particular, mDC2 appear to be highly relevant 
in HCV infection. Single-nucleotide polymorphisms in the IFN-
λ3 gene locus are strongly associated with spontaneous clearance 
and response to therapy in HCV patients (166). All DC subsets 
can secrete some IFN-λ1 (134, 167), but mDC2 produce much 
higher amounts. Moreover, IFN-λ2/3 are largely restricted to 
mDC2, and importantly HCV induces IFN-λ3 production by 
mDC2 (168, Nizzoli et al., under review). Thus, mDC2 appear 
to be a highly relevant source for protective IFN-λ3 in HCV 
infection (169). Interestingly, an important role for mDC1 rather 
than for mDC2 was recently proposed in tuberculosis (170, 171). 
Thus, mDC1 were more efficiently infected with the Bacillus 
Calmette–Guérin (BCG) vaccine than other DCs and induced 
the activation of pDCs and CD8+ T cells. Notably, mDC1 could 
not be replaced by mDC2 in this system, suggesting that mDC1 
could play a non-redundant role in the defense against selected 
intracellular pathogens. MDC1 and mDC2 have also been sug-
gested to play different roles in RSV infection (172, 173). Thus, 
mDC subsets produced different cytokines in response to RSV, 
consistent with their different cytokine profiles upon stimulation 
with purified TLR ligands (134, Nizzoli et al., under review). 
Moreover, they induced different classes of T-cell responses, with 
mDC1 inducing preferentially Th1 cells and mDC2 inducing 
predominantly Th2 and T-regulatory cells. Similarly, mDC2, 
but not mDC1, were found to induce Th2 response to influenza 
virus (160). Also the capacity of pDCs to induce IL-10-producing 
regulatory T cells has been documented with a relevant pathogen, 
since pDCs were shown to induce IFN-γ and IL-10 production 
in antigen-experienced CD4+ T cells specific for mumps virus 
(129). Conversely, CD11c+ mDCs, which contain both mDC1 
and mDC2, induced IFN-γ and, surprisingly, IL-5.

It is largely accepted that pDC-derived IFN-α is important to 
contain human viral infections. Thus, stabilized pegylated IFN-α 
is a widely used therapy for HCV patients. IFN-λ appears to be 
similar effective, but is less toxic presumably because of the more 
restricted expression of its receptor (164). Interestingly, the HCV 
glycoprotein E2 is a ligand for BDCA-2, which is specifically 
expressed on pDCs (Table  1) and inhibits IFN-α production 
(174, 175). In this way, HCV might inhibit IFN-α production 
to establish chronic infection. Finally, pDCs are also targeted by 
human immunodeficiency virus (HIV), but whether they play a 
protective or detrimental role is still unclear (176).

eXPLOiTiNG DC BiOLOGY: vACCiNeS 
THAT iNDUCe HUMORAL AND CeLLULAR 
iMMUNe ReSPONSeS

Vaccines have been a major breakthrough for human health. 
Attenuated or killed pathogens are highly efficient to induce 
protective cellular and humoral immune responses, and the 
induced protective memory can last for a lifetime (177, 178). 
However, since these pathogen-based vaccines also have consid-
erable side effects, proteins in combination with adjuvants that 
activate APCs are more often used. Protein vaccines induce CD4+ 

T-cell responses and neutralizing antibodies, but they are poorly 
efficient in inducing cytotoxic T-cell responses and are also rather 
inefficient in inducing Th1 cells (179, 180). Frequently used 
adjuvants are alum, oil-in-water emulsions like MF59, and more 
recently also monophosphoryl lipid A (MPL), a detoxified form 
of LPS. In mice, different adjuvants were shown to induce differ-
ent proinflammatory cytokines. Thus, alum acts via uric acid on 
inflammatory DCs (181), which leads to NOD-like receptor pro-
tein-3 (NALP3)-dependent IL-1β production (182). Conversely, 
MPL does not induce IL-1β (183) but induces specific antibodies 
through an IL-6-dependent mechanism (184), while MF-59 and 
alum act independently of IL-6 (185). However, the different 
TLR expression and cytokine production by human APC subsets 
should be considered when translating this knowledge from ani-
mal models to patients. A recent interesting report analyzed the 
response of APC subsets to 13 different vaccines and concluded 
that different vaccines activate indeed different APC populations 
(186). More direct information on the effect of DCs was obtained 
by vaccinations with peptide-pulsed monocyte-derived DCs in 
cancer patients, which can induce tumor-specific CD8+ T cells 
(187), but the clinical responses were so far largely insufficient. 
MDCs might be more potent and are currently tested in clinical 
trials.

Nucleic acid-sensing TLRs are particularly potent to induce 
CD8+ T-cell responses in mice (188) and have recently been 
employed as adjuvants in vaccines. Examples are CpG-DNA that 
stimulates TLR9 (189), and the TLR7 ligand imiquimod, which 
is used as a cream to stimulate DC locally in the skin, and was 
shown to induce CD8+ T-cell responses in  situ (190). Vaccines 
consisting of plasmid DNA coding for relevant protein antigens 
are a novel approach that efficiently induces humoral and cel-
lular immune responses in animals. However, in humans, these 
DNA vaccines are often poorly immunogenic (191), presumably 
because they have only low adjuvant activity and stimulate mainly 
cytosolic DNA sensors rather than TLR9 (192), which in addition 
is restricted to pDCs and B cells in humans. An alternative prom-
ising approach is the vaccination with mRNA (193, 194), which 
delivers not only the antigenic protein directly to the cytosol, 
thereby bypassing the requirements for cross-presentation (195), 
but also induces mDC and pDC maturation and cytokine pro-
duction via TLR7/8 at the same time (196). Indeed, intradermal 
injection of naked mRNA results in local uptake and translation 
of the nucleic acid (197) followed by the development of an adap-
tive immunity in mice (198) and in humans (199, 200). Since also 
lymph node-resident DCs are expected to be appropriate APCs 
to process antigens encoded by mRNA, direct injection of nucleic 
acid into lymph nodes has also been evaluated. In animal models, 
intra-lymph node injections of mRNA result in expression of the 
protein encoded by the mRNA in DCs. Furthermore, the injected 
mRNA activated lymph node-resident APCs and induced potent 
CD4+ and CD8+ T-cell responses as well as prophylactic and 
therapeutic antitumor immunity (201). The approach is currently 
being evaluated through two clinical studies exploring the efficacy 
of intra-lymph node mRNA vaccination in advanced melanoma 
patients. As a further development, systemic administration of a 
liposomal formulation of mRNA that delivers the nucleic acids 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


October 2015 | Volume 6 | Article 5278

Geginat et al. Human DC subsets

Frontiers in Immunology | www.frontiersin.org

to APCs present in secondary lymphoid organs is also being 
evaluated. Using the functional diversity of DCs in vivo, and their 
specific capabilities in generating appropriate adaptive immune 
responses, those systemic synthetic vaccines might recapitulate 
the natural mechanisms of immunity developed during patho-
gen infection and guarantee the development of therapeutically 
efficacious immune responses.

CONCLUSiON AND PeRSPeCTive

Dendritic cells continue to attract much interest of immunologists 
because they are the most potent APCs in the immune system and 
are the principal inducers of naive T-cell differentiation. Intensive 
research in the last years has established that different subsets of 
DC exist in mice that have specialized functions and preferen-
tially induce different types of immune responses. In humans, 

much has been learned from in  vitro differentiated monocyte-
derived DCs, and more recently, also different subsets of DC 
populating human tissues have been analyzed at the molecular 
and functional levels. It is fundamental to further define the biol-
ogy of these in vivo occurring human DC subsets to understand 
and cure pathogenic immune-mediated processes in so different 
settings as autoimmunity, infections, and cancer. In particular, 
appropriate targeting of DC subsets by vaccines holds the prom-
ise to induce cytotoxic T-cell responses to eradicate persistent 
intracellular pathogens or tumors.
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