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Mononuclear phagocytes (MP) are a quite unique subset of hematopoietic cells, which 
comprise dendritic cells (DC), monocytes as well as monocyte-derived and tissue-res-
ident macrophages. These cells are extremely diverse with regard to their origin, their 
phenotype as well as their function. Developmentally, DC and monocytes are constantly 
replenished from a bone marrow hematopoietic progenitor. The ontogeny of macrophages 
is more complex and is temporally linked and specified by the organ where they reside, 
occurring early during embryonic or perinatal life. The functional heterogeneity of MPs is 
certainly a consequence of the tissue of residence and also reflects the diverse ontogeny 
of the subsets. In this review, we will highlight the developmental pathways of murine MP, 
with a particular emphasis on the transcriptional factors that regulate their development 
and function. Finally, we will discuss and point out open questions in the field.
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iNTRODUCTiON

The mononuclear-phagocyte system (MPS), which comprises dendritic cells (DCs), macrophages, 
and monocytes, is a heterogeneous group of myeloid cells. The complexity of the MPS is equally 
reflected by the plasticity in function and phenotype that characterizes each subset depending on their 
location and activation state. Specialized subsets of mononuclear phagocytes (MP) reside in defined 
anatomical locations, are critical for the homeostatic maintenance of tissues, and provide the link 
between innate and adaptive immune responses during infections. The ability of MP to maintain or to 
induce the correct tolerogenic or inflammatory milieu also resides in their complex subset specializa-
tion. Such subset heterogeneity is obtained through lineage diversification and specification, which is 
controlled by defined transcriptional networks and programs. Understanding the MP biology means 
to define their transcriptional signature, which is required during lineage commitment, and which 
characterizes each subset’s features. This review will focus on the transcriptional regulation of the 
MPS; in particular, what determines lineage commitment and functional identity; we will emphasize 
recent advances in the field of single-cell analysis and highlight unresolved questions in the field.

THe MONONUCLeAR-PHAGOCYTe SYSTeM NeTwORK

As summarized in Table 1, the MPS is a rather heterogeneous group of myeloid cells, which includes DC, 
monocytes, and macrophages (1). DCs are mostly short lived and characterized by a half-life that varies 
between few days up to few weeks (2). This subset of MPs is equipped with pattern recognition receptors 
(PRR) and is specialized in antigen capture and presentation to T cells (3). At least three different DC 
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subsets have been identified: plasmacytoid DCs (pDCs), and two 
common or conventional DC (cDC) subsets; cDC1, which express 
CD24, and CD8α in lymphoid tissues, or CD103 in peripheral 
organs; and cDC2, which express CD4, CD11b, and CD172 (1). 
This latter subset of cDCs is heterogeneous and seems to comprise 
also monocyte-derived DCs and activated macrophages, which 
have acquired a DC phenotype and most likely function (4).

Steady-state monocytes are short-lived MPs. They are sub-
divided into two major subsets: patrolling and inflammatory 
monocytes, which are characterized by low and high expression 
of Ly-6C, respectively (5). Inflammatory monocytes are recruited 
and extravasate into infected tissues. They play a role in main-
taining the correct inflammatory milieu, are important in the 
resolution of inflammation and in certain tissues monocytes will 
replenish the pool of resident macrophages (5–7). The role of 
patrolling monocytes is less clear but they are certainly involved 
in the homeostasis of the endothelium (8, 9).

The last subset of MP comprises the mostly long-lived tissue-
resident macrophages (10). This subset is present in every devel-
oping as well as mature tissue, which is highly heterogeneous in 
terms of phenotype and function, reflecting the physiological 
needs of the organ of origin (11). Macrophages are thought to be 
required for the correct development and maintenance of tissues. 
This topological-related feature is possibly the reason for their 
extreme heterogeneity and their tissue specialization (12).

Collectively, MPs are highly plastic myeloid cells, which can 
perform very diverse functions. Table 1 summarizes the mostly 
used surface markers in mice and the function attributed to the 
different MP subsets.

TRANSCRiPTiONAL ReGULATiON OF 
DeNDRiTiC CeLLS DeveLOPMeNT

As shown in Figure  1, lineage development of hematopoietic 
progenitor cells along DC lineage occurs through an orchestrated 
expression pattern of transcription factors (TF), yet the precise 
molecular mechanisms of lineage restriction and determination 
remains largely unexplained (2, 13–17). The analysis of gene-
targeted mice has revealed the functional importance of a few 

TABLe 1 | Summarized are the three major murine MPs: dendritic cells, 
monocytes, and macrophages.

MPs Subset Surface MK Functions

Dendritic cells pDCs SiglecH, Bst2 Production of type 1 IFN 
(antiviral response)

cDC1 XCR1, CD103/
CD8, Clec9a

Th1 and CTL immunity, cross-
presentation, IL-12 production

cDC2 CD11b, Sirp-α Th2 and Th17 immunity, 
production of IL-23 and IL-6

Monocytes Ly6C high 
inflammatory

Ly6C hi CCR2 
hi

Differentiate into DCs and 
tissue macrophages during 
inflammation

Ly6C low 
patrolling

Ly6C low CCR2 
low Cx3Cr1

Endothelial integrity

Macrophages Tissue 
specific

F4/80, MerTK, 
CD64 CD11b

Tissue specific

Each MP subset can be further subdivided into different subsets based on surface 
marker expression and function and as indicated.

critical TFs in DC development, with some of them affecting all 
DCs and some affecting specific subsets (18). DC progenitors are 
present within the fms-related tyrosine kinase 3 (Flt3)-expressing 
bone marrow fraction and sustained Flt3 signaling can be con-
sidered as instructive for DC development (19–22). Consistently, 
Flt3-ligand (Flt3L) supports the in vitro differentiation of progeni-
tor cells into both pDCs and cDCs (23, 24). Genetic deletion of 
Flt3L, its receptor, or treatment of mice with Flt3 inhibitors leads 
to a 10-fold reduction of lymphoid-organ pDCs and cDCs (25, 
26). Moreover, Flt3L injection or overexpression of Flt3L results 
in the expansion of both pDCs and cDCs in all lymphoid and 
non-lymphoid organs (27, 28). Engagement of Flt3 by Flt3L 
induces Stat3 phosphorylation and activation, identifying Stat3 
as the critical checkpoint of Flt3-induced DC development and 
proliferation (29, 30). Mirroring Flt3 deficiency, Stat3-deficient 
mice have severely reduced DC progenitors and mature cells 
(29). Similarly, deletion of the transcriptional repressor growth 
factor independent 1 (Gfi1) results in impaired DC development 
(31). Gfi1-deficient mice show reduced Stat3 phosphorylation 
and nuclear translocation, with increased expression levels of the 
Stat3 negative regulators SOCS3 and PIAS3 suggesting that Gfi1 
is downstream of Stat3 signaling in the Flt3-Flt3L-induced DC 
developmental pathway (31). However, the role of Gfi1 is more 
complex since mice deficient for this repressor show multiple 
hematopoietic impairments (32, 33). The defects related to Gfi1 
deficiency can partially be related to dysregulation of Id2 expression 
(34–36). However, further studies using subset-specific deletion 
models will be instrumental to precisely dissect specific transcrip-
tional requirements within the MP lineage. Similarly, despite the 
experimental evidence of DC expansion following sustained Flt3 
signaling, the instructive mechanism promoting DC development 
is still unclear, given the broad expression of Flt3 on all short-term 
uncommitted hematopoietic progenitors (ST-HSC) (37, 38). A 
long non-coding RNA (lncRNA), named lnc-DC, was recently 
suggested to be the missing key element regulating Stat3 activity 
exclusively in DCs (39). lnc-DC RNA is expressed by mature DCs 
and by monocyte-derived DCs and seems to directly interact with 
Stat3 preventing its de-phosphorylation by SHP1. Furthermore, 
knockdown experiments of lnc-DC in vitro showed impaired DC 
development from mouse BM progenitors. The conservation of 
this lnc-DC in terms of function and of its consensus elements 
at the promoter region across species supports the hypothesis of 
a new level of regulation present in DC development. However, 
in mice the transcript seems translated into a highly expressed 
protein in adipose tissue (40). Further studies are therefore needed 
to understand potential species-specificities as well as its require-
ment in vivo under steady-state conditions.

Proceeding along the DC developmental pathway, three major 
branches of mature DCs are identified: pDCs, CD24+ cDC1, 
and CD11b+ cDC2 (3, 16). pDCs and cDC1 both express and 
depend on the transcription factor interferon regulatory factor 
8 (Irf8), while cDC2 express and are partially dependent on Irf4 
(1, 18, 41–44). Despite major advances in our understanding of 
the transcriptional requirement during DC development, we are 
still unable to draw a clear developmental map (Figure 2) (13, 
18). This may reflect subset heterogeneity as well as the plasticity, 
which characterizes DCs. Also, the expression of the different TFs 
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is not unique and can change during differentiation and activa-
tion further complicating the picture.

During early stages of DC development, a progenitor that 
expresses high levels of Irf8 and shows developmental potential 
toward all DCs can be identified (42). It is likely that the first 
branching choice will determine whether pDCs or cDCs commit-
ment occurs. The balance of the E-protein transcription factor 4 
(Tcf4), also known as E2-2, and the E-protein inhibitor of DNA 
binding 2 (Id2) seems to determine lineage development toward 
pDCs or cDCs, respectively (45–50). Constitutive or inducible 
deletion of E2-2 in CD11c-expressing cells blocks the development 
of pDCs but not cDCs, while overexpression of Id2 inhibits pDC 
development (47, 48). E2-2 is required not only during develop-
ment but also for lineage maintenance of pDCs (47, 51). Several 
targets of E2-2 have been identified such as SpiB, Irf8, and Irf7, 
and all contribute to pDCs lineage specification (47, 51). Despite 
the requirement for E2-2 during pDCs commitment, how Id2 and 
E2-2 are conversely induced and regulated is still an open ques-
tion. Recently, the eight-twenty-one (ETO) protein 2 or Mtg16 
(also referred as core-binding factor, runt domain, alpha subunit 2, 
translocated to 3 Cbfa2t3) was suggested to target and repress Id2 
together with E2-2 and inhibit Irf8-expressing cDC1 development, 
while favoring pDC commitment (52). Consistently, Id2 and Mtg16 
double-deficient mice show restored pDC potential (52). However, 
Mtg16 seems to act together with E2-2 leaving the question on how 
lineage determination toward E2-2- or Id2-expressing progenitors 

occurs, still open. On the other side, one other candidate, which 
could be involved in reinforcing lineage fate toward Irf8-expressing 
cDC1 at the expenses of pDCs could be the leucine zipper transcrip-
tion factor E4BP4, also referred as Nfil3 (53). Mice deficient for this 
TF show increased pDC and reduced cDC1 development (53). The 
mechanism of action remains to be elucidated since Id2 expression 
does not appear to be perturbed and only the basic leucine zipper 
transcription factor ATF-like 3 (Batf3) expression was shown to be 
reduced (53). Phenotypically, a bias toward pDC development has 
been observed within the macrophage-colony-stimulating factor 
receptor (M-CSFR) negative progenitors, whereas cDCs precursors 
are enriched within the M-CSFR expressing BM fraction (54, 55). 
These results may suggest that under sustained M-CSF stimulation 
uncommitted progenitors may lose the potential toward pDCs. 
Alternatively, as recently suggested, the absence of GM-CSF signal-
ing, which induces STAT5 phosphorylation, could be the permis-
sive condition to promote pDC development (56). Accumulation 
and/or withdrawal of specific cytokines during proliferation and 
differentiation as well as regulation of TF levels through division of 
progenitor cells could partially explain how BM niches influence 
development and lineage commitment (57, 58).

Proceeding along DC development, a common cDC pro-
genitor able to differentiate in vivo into both CD24+ cDC1 and 
CD11b+ cDC2 was identified (55, 59–61). And recently, lineage-
tracing studies allowed further dissection of cDC commitment 
and resulted fundamental to establish the transcriptional 

FiGURe 1 | Transcriptional development of dendritic cells. Shown are the major transcription factors known to be involved in DC lineage commitment. 
Development occurs from a Flt3-, Irf8-expressing hematopoietic progenitor. Progressive acquisition of one or more TFs will result in differentiation toward a specific 
MP subset. Loss or reduction of one or more TFs can, to some extent, redirect commitment to another lineage.

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


FiGURe 2 | immune modules dendritic cells will sense the environment and start the immune response by producing cytokines, activating innate 
immune cells, and priming T cells. Intracellular pathogens, such as Toxoplasma gondii, or viral infections will activate cDC1 and pDCs. These subsets are 
specialized in the production of IL-12 and type 1 IFNs, respectively. High amounts of IL-12 will activate innate lymphoid cells 1 (ILC1) to produce IFN-g and ultimately 
leading to the priming of Th1 immunity and sustain IFN-g secretion. Following viral infections, pDCs will produce high amounts of type 1 IFNs, while cDC1 will prime 
CTL response through cross-presentation of infected cells. Immunity against fungi and extracellular pathogens is mostly mediated by Irf4/Notch2 cDC2, which 
produce high amounts of IL-23, leading to the activation of ILC3 and IL-22 production as well as priming of Th17 and Th22 T cells. Th2 immunity during allergic 
reactions and following parasitic infections requires KLf4-dependent cDC2. In this case, the mechanism seems to be more complex and may require ILC2, but 
ultimately results in the activation of Th2 cells and the production of IL-4 and IL-5.

October 2015 | Volume 6 | Article 5334

Tussiwand and Gautier Transcriptional development of mononuclear phagocytes 

Frontiers in Immunology | www.frontiersin.org

requirements during development of clonogenic cDC progeni-
tors (62, 63). The expression pattern of the zinc finger and BTB 
domain containing 46 transcription factor Zbtb46 (also called 
Btbd4) can be considered as cDC-lineage specific within hemat-
opoietic cells (64–66). This TF is not present on pDCs and is 
induced on monocyte-derived DCs, supporting on the one hand 
early divergence of pDCs during DC commitment, and on the 
other hand suggesting a developmental convergence between 
cDCs and monocyte-derived DCs (4, 66). Similarly, lineage-
tracing experiments were performed using mice expressing Cre 
recombinase under the control of Clec9a also referred as Dngr-1 
(67). Although labeling is not absolute on all cDCs subsets, it 
seems to be restricted to pre-cDC progeny, without marking 
inflammatory-derived DCs (67). The use of these reporter mouse 
models will help us better characterize the ontogeny of specific 
cDCs subsets also depending on the tissue of origin and whether 
under steady-state or inflammatory conditions.

The CD24+ cDC1 branch of cDCs depends on the transcrip-
tion factors Irf8, Id2, Nfil3, and Batf3 (68). The generation of 
mice deficient for Batf3 has revealed the common origin and 
the lineage identity of Irf8-expressing cDC1 cells, also referred 
as CD8a+ or CD103+ across all lymphoid and peripheral organs 
(69, 70). However, while only Irf8 was shown to be necessary for 
commitment, Id2, Nfil3, and Batf3 are dispensable under certain 
conditions (71, 72). Lineage choice seems influenced by high and 

sustained levels of Irf8 during cDC1 commitment. Binding of 
Batf3 and Irf8 to an AP1-IRF composite element (AICE) within 
the Irf8 super-enhancer in CD24- or Zbtb46-gfp-expressing 
immediate progenitors leads to sustained Irf8 expression and 
cDC1 development (62). In the absence of Batf3, reduced Irf8 lev-
els, redirect commitment of a CD24-expressing cDC1 progenitor 
toward the Irf4-expressing cDC2 lineage (62).

Despite the recent advances, how the branching of cDC1 and 
cDC2 occurs is still an open question. The recent identification of a 
committed cDC2 progenitor might help to identify the key factors 
involved in this process: we still need to understand how expression 
of Irf4 progressively replaces Irf8, and how those two TF determine 
the identity of these subsets. Furthermore, the cDC2 lineage, as 
already mentioned, is highly heterogeneous and possibly contains 
multiple subsets (1, 2, 11, 16, 18). Mature CD11b-expressing cDC2 
express high levels of Irf4, suggesting an important role for this 
TF within this lineage. And indeed, absence of Irf4 impairs the 
development as well as the function of cDC2 (42, 44, 73–77). In 
mice lacking IRF4 in CD11c-expressing cells, cDC2 numbers are 
reduced in lung and small intestinal DCs, while no difference is 
reported for skin (44, 74). However, reduction in lung and lamina 
propria cDCs is only observed upon deletion of Irf4 in early pro-
genitors (44; 74). Despite, normal numbers of skin DCs in Irf4-
deficient animals, migration to draining lymph nodes is impaired as 
a consequence of defective induction of CCR7 (78). Furthermore, 
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reduced up-regulation of MHC-II and co-stimulatory molecules 
is also associated with Irf4 deficiency (75, 77, 78). Collectively, 
Irf4 shows a broad action across different tissues and potentially 
subsets, and further studies are required to be able to understand 
the specific requirement of this TF during development.

Other TFs reported to display a reduction of cDC2 are RelB, 
Notch2, RbpJ, and the Kruppel-like Factor 4 (Klf4) (79–85). Notch2 
is required for terminal differentiation of endothelial cell-selective 
adhesion molecule (ESAM)-expressing splenic cDC (81, 83). 
Similar to Notch2 deficiency, mice compromised in Runx3 (86, 
87) and in the alternative NF-kB pathway show a reduction in 
the development of ESAM+ cDCs (80, 88). However, a survival 
disadvantage in competitive settings appears to be present in mice 
with compromised NF-kB signaling, suggesting caution in propos-
ing the requirement for NF-kB during DCs development (80, 88). 
Klf4 deficiency results in impaired development of the so-called 
“double negative” DCs in skin draining LN and a partial reduction 
of Sirp-α but not splenic ESAM-expressing cDC2 across all the 
organs (84). In these mice, cDC progenitors are impaired in their 
ability to down-regulate Irf8 and up-regulate Irf4. However, the 
in vitro differentiation potential of Irf4-expressing cDCs as well as 
expression of Irf4 on peripheral cDCs is not compromised. This can 
be explained by the existence of at least two cDC2 subsets, where 
only the Klf4/Irf4-dependent one is developmentally impaired. 
Alternatively, a different maturation/activation state, which 
requires Klf4, may exist within the Irf4-expressing cDC2 subset.

Collectively, a partial reduction associated with the lack of one 
or the other TF confirms the developmental, and supports the 
subset-specific heterogeneity observed in single-cell sequencing 
experiments for the Irf4 and CD11b-expressing cDC2 cells (89–
92). The transcriptional diversity, which characterizes these cDC2 
cells, results and reflects a functional heterogeneity (Figure  2). 
Notch2 cDC2 are required for anti bacterial Th17/IL-22 immu-
nity, while Klf4 deficiency results in impaired Th2 immunity (83, 
84, 93). Expression of Irf4 in cDCs is necessary for both Th17 and 
Th2 responses further highlighting the complexity of this TF in 
DC biology (44, 73, 74, 77). Understanding whether the absence 
of a subset or a functional defect caused by a transcriptional defi-
ciency on the remaining subset could account for the observed 
phenotypes will require subset-specific deletion. Furthermore, we 
also need to explore more in detail the influence of tissues on the 
different subsets. Are tissue-specific cues driving the expression of 
a transcriptional signature in a similar way as recently revealed for 
macrophages? (12) Are the differences reflecting a developmental 
or a functional heterogeneity? Is a developmental convergence 
between cDCs and monocyte-derived DCs creating the confusion 
within this branch of cDCs. We need a better characterization 
of the different subsets, which fall under the broad umbrella of 
CD11b or Irf4-expressing cDC2 and some progress has certainly 
been made with the introduction of new reporter mice as previ-
ously discussed as well as the recently identified committed pro-
genitor. Teasing this heterogeneous pool of Irf4-expressing cDC2 
apart is currently an active field of investigation (90, 91, 94). And 
new technologies will be instrumental to improve our comprehen-
sion of the molecular clues, which regulate lineage commitment. 
A recent report analyzed stage and subset-specific expression of 
mi-RNAs during DC development and miR-142 was identified as 

a key regulator of cDC2 differentiation, further adding additional 
complexity to our current understanding of DC development (91).

Better genetic models are needed and will possibly be soon 
developed as a result of the recently published single-cell 
analysis (16, 89). Identifying TFs or surface markers, which 
would compromise or trace the development of one lineage 
independently of the anatomical localization, as previously 
done in Batf3−/− mice for Irf8-dependent cDC1 would be of great 
advantage (69, 70).

TRANSCRiPTiONAL ReGULATiON OF 
MONOCYTe DeveLOPMeNT

The molecular regulation, which defines monocyte differentiation 
and lineage commitment, is poorly understood (95). Most of the 
identified TFs, that result in impaired monocyte development, also 
show an effect on other hematopoietic lineages. The transcription 
factors Irf8, Sfpi1 (PU.1), Egr-1, Stat3, Gfi1, Gata2, Gbx2, Nur77, 
retinoic acid receptors, C/EBPα and C/EBPβ, Klf4, and c-Maf as 
well as members of the NF-κB family members are all involved 
in monocyte differentiation, however their function is often 
redundant, certainly not limited to monocytes and in some cases 
mediating proliferative and/or survival rather than instructive 
cues (96). Most of the TFs involved in monocyte differentiation are 
shared within the myelo-monocytic branch. Some of them were 
already mentioned as important during DC development; others 
are involved in macrophage and or granulocyte commitment; we 
are therefore aware that we can only provide here a simplified 
transcriptional path, which leads to monocyte development and 
that more efforts are required to better understand.

Expression of the ETS family transcription factor Sfpi1 or PU.1 at 
early stages is suggested to antagonize on the one hand key regula-
tors of other developmental pathways, such as GATA-1 for erythroid 
lineage, and on the other hand activate myeloid-specific factors such 
as Irf8, Klf4, and Erg1 (95). A critical step in monocyte differen-
tiation is the induction of Csf1R expression at the cell surface. This 
seems to be regulated by Klf4 and Irf8, however both factors are 
also involved in cDC development, as previously discussed, (85). 
Furthermore, Csf1R is also needed for macrophage development.

The identification of a committed progenitor with monocyte-
restricted potential called cMoP confirmed high expression 
levels of the above-mentioned TF (97). However, none of those 
is unique to monocyte differentiation and potentially complex 
genetic models will be required to unravel the transcriptional 
map required for monocyte lineage specification.

ORiGiN OF TiSSUe-ReSiDeNT 
MACROPHAGeS

As discussed above for DCs, similar questions arise considering 
tissue-resident macrophage origin and development. Lineage-
tracing studies recently revisited their origin and revealed how their 
maintenance in adult tissues is mostly independent from monocytes 
and adult definitive hematopoiesis (10). Indeed, tissue-resident 
macrophages were proposed to develop from a Myb-independent 
but Sfpi1 (PU.1)-dependent fetal progenitor present in the yolk sac 
(YS) (5, 6, 15, 98–100) and capable of seeding the developing embryo 
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and self-renewing during adulthood. This developmental path was 
first described for microglia, the brain-resident macrophages (98, 
99), but still remained elusive for a number of other macrophage 
populations. Using similar tools, the contribution of YS progenitors 
to a number of adult tissue-resident macrophage populations was 
next assessed and only very limited input was found in most tissues 
tested (101). In parallel, other studies conducted in the lung and 
skin found that resident alveolar macrophages and Langerhans cells 
originated from fetal monocytes (99, 102). A recently described 
hypothesis is now trying to bridge these findings by proposing 
the existence of erythro-myeloid progenitors (EMP) distinct from 
hematopoietic stem cells (HSCs), which develop in YS (E8.5) and 
colonize the fetal liver at E16.5 giving rise to fetal erythrocytes, mac-
rophages, granulocytes, and monocyte (103, 104). Such progeni-
tors would generate microglia early during fetal development and 
participate to Kupffer cells and Langerhans cells development, but 
its definitive participation to the generation of other tissue-resident 
populations, as well as its long-term persistence, still remains to be 
firmly established. Indeed, a very recent study is now arguing that 
fetal HSCs, and not YS progenitors or EMPs, give rise to most tis-
sue macrophage populations, except microglia known to originate 
from YS progenitors other than HSCs (105). This study also high-
lighted that while most tissue macrophages subsets maintain by 
self-renewal in the adult, peritoneal, dermal, and colonic residents 
macrophages needed continuous HSCs input to be maintained 
during lifetime. Accordingly, gut macrophages, most likely a spe-
cific population of macrophage residing in the serosa (106), were 
shown to derive from HSC-derived circulating monocytes (107). 
Moreover, blood monocytes can participate to the maintenance 
of heart macrophages in the adult (108). During inflammation, in 
addition to tissue-resident macrophages, some macrophages found 
in tissue differentiate from locally recruited Ly-6Chi monocyte. Such 
monocyte-derived macrophages reside only for a short period of 
time in the tissue until inflammation resolves, and are cleared 
through local cell death (109). Overall, these studies suggest that 
there is probably more than a single developmental pathway to gen-
erate tissue macrophages and to support their self-renewal potential 
and unique long-term maintenance ability (Figure 3).

PATHwAYS ALLOwiNG FOR TiSSUe-
ReSiDeNT MACROPHAGe 
DeveLOPMeNT AND MAiNTeNANCe

Proceeding along development, Runt-related transcription 
factor 1 (RUNX1) is required at early stages of myeloid lineage 
specification and regulates the expression of Sfpi1 (PU.1) which 
has to be expressed at high levels to allow for development and 
maintenance of macrophage differentiation (57). One of the 
most crucial target genes of PU.1 during macrophage develop-
ment is Csf1r, which encodes the receptor for M-CSF and IL-34 
(110). Signaling of M-CSFR through either M-CSF or IL-34 
allows for the maintenance of tissue-resident macrophages (111, 
112). Other TFs required for macrophage development, which 
co-operate with PU.1 in lineage determination, are AML1 and 
CCAAT enhancer-binding proteins (C/EBP) (113, 114). Overall, 
our understanding of the molecular pathways controlling tissue 

macrophage development in general, as well as their mainte-
nance, remains poorly defined and further studies are need to 
better characterize how their development is regulated. While for 
DCs, deletion of a subset might result in minor consequences, 
macrophages are thought to be critical for the organogenesis 
and organ homeostasis, therefore deletion of a subset could be 
deleterious for the life of the individual or only compatible with 
compensation through alternative subsets or pathways.

TiSSUe-ReSiDeNT MACROPHAGeS 
DiveRSiTY AND TiSSUe-SPeCiFiC 
TRANSCRiPTiON FACTORS 
CONTROLLiNG ReSiDeNT MACROPHAGe 
DeveLOPMeNT AND MAiNTeNANCe

Our analysis of the transcriptional landscape of tissue-resident 
macrophages revealed wide heterogeneity across tissues, leading 
to the definition of population-specific signatures. These specific 
signatures were recently shown to rely on distinct enhancer 
landscapes shaped by the tissue microenvironment (115, 116). 
Using the Immunological Genome database, the reconstruction 
of lineage-specific regulation from gene-expression profiles 
across lineages (117) revealed gene modules selectively associated 
with a single tissue macrophage population (12). Additionally, 
TFs were predicted to regulate these modules, and thus could 
potentially influence the development of resident macrophages in 
a tissue-specific manner (12). Among others, predicted regulators 
included Spi-C for red pulp macrophages, which confirmed prec-
edent findings (118) and thus validated the predictive power of the 
algorithm. Indeed, Spi-C is a TF closely related to Sfpi1 and highly 
expressed in spleen red pulp macrophages compared to other 
phagocytes (12, 118). Mice deficient for Spi-C lack splenic red pulp 
macrophages (118), leading to defective red blood cells recycling 
and iron accumulation in the spleen. At which levels Spi-C acts to 
control the differentiation and/or survival of red pulp macrophage 
remains to be determined. LXRα is another TF needed for splenic 
red pulp macrophage development (119), and whether Spi-C and 
LXRα interact together in this process is not known. Interestingly, 
intracellular heme accumulation following erythrocytes uptake 
induced Spi-C expression by stimulating the degradation of its 
transcriptional inhibitor Bach1 (118). Thus, heme-induced Spi-C 
controls the functionality of splenic red pulp macrophages, but 
also their maintenance albeit by an undetermined mechanism.

Similarly, PPARγ was identified as a regulator for lung mac-
rophages (120). It is a ligand-controlled TF of the nuclear receptor 
family known for its role in lipid metabolism (121). Previous work 
has shown that PPARγ expression is important to maintain lung 
macrophages functionality and surfactant catabolism (122). We 
reported that conditional deletion of PPARγ in lung macrophages 
strikingly altered their transcriptome (120). Dysregulated expres-
sion of a number of genes involved in lipid metabolism was 
observed (120), and many of these genes were known targets 
of the sterol-responsive transcription factor LXR. Accordingly, 
increased sterol accumulation was observed in lung macrophages 
lacking PPARγ, as well as decreased expression of genes involved in 
inflammation and immunity (120). Using a different gene deletion 
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approach, it was recently shown that PPARγ could also be key 
in controlling the development of this subset. Such discrepancy 
between models might relate to the different temporal induction 
of the cre expressing strains used in these two studies (123).

Finally, GATA6 was identified as a specific peritoneal mac-
rophage regulator and we observed that its expression was selectively 
found in F4/80+ peritoneal macrophages across many lineages 
tested (12), suggesting that it may represent the master regulator 
of tissue-resident peritoneal macrophages. Interestingly, GATA6 
expression by resident peritoneal macrophages was dependent on 
retinoic acid signaling in  vivo (12) and mice lacking GATA6 in 
macrophages, generated by crossing Gata6fl/fl mice with Lyz2-cre, 
showed a strong reduction in F4/80+ peritoneal macrophages 
(115–117). Additionally, Th2 inflammation following parasitic 
infection failed to increase peritoneal macrophage numbers in 
Lyz2-cre × Gata6fl/fl mice (124), as described for wild-type mice 
(125). Impaired steady-state numbers of peritoneal macrophages in 
the absence of GATA6 was accompanied by impaired self-renewal, 
marked increased in S/G2-M cell cycle phases and accumulation 
of multinucleated macrophages due to impaired cytokinesis (126). 
While reduced survival of peritoneal macrophage already explains 
the strong contraction in their number, impaired cytokinesis 
will likely further exacerbate the phenotype. GATA6 deficiency 

in F4/80+ peritoneal macrophages led to the down-regulation 
of Aspa mRNA, which encodes an aspartoacylase generating 
acetyl-CoA, a central cellular metabolite, from N-acetylaspartate 
(124). Interestingly, mice lacking Aspa showed reduced F4/80+ 
peritoneal macrophages. Overall, a tissue-specific transcriptional 
network driven by GATA6 controls multiple pathways all required 
for the maintenance of F4/80+ peritoneal macrophages.

CONCLUDiNG ReMARKS

In the past few years, major advances have been made in our under-
standing how the development of myeloid cells occurs. DNA, RNA 
protein sequencing and characterization on entire tissues and pop-
ulations is now a more accessible technology. This combined with 
improved multicolor flow cytometry and CyTOF technology has 
allowed us to better understand which TFs identify specific subsets 
and developmental stages during hematopoietic development (89, 
90, 124, 127). However, as it is often the case, the better our analysis 
tools become, the more complex the picture appears. And despite 
these advances, we are now starting to perceive how many more gaps 
need to be filled in order to be able to draw a definitive road map for 
every MP subset. Significant progress has been made in defining, 
which TF are needed during DC and macrophage development 

FiGURe 3 | Macrophage ontogeny and requirement on specific transcription factors. This figure shows the progenitors of the different tissue-resident 
macrophage populations. During embryogenesis, yolk sac progenitors only give rise to microglia. Most tissue-resident macrophages develop before birth and are 
derived from early hematopoietic stem cells (HSC) present in the aorta–gonad–mesonephros region and in fetal liver. After birth and in the adult mouse, alveolar, 
splenic, liver, and kidney macrophages maintain their pool by self-renewal, while gut and heart macrophages need a constant replenishment from bone marrow 
HSC. Additionally, this figure depicts the transcription factors specifically controlling a single resident macrophage population such as Spi-C for splenic red pulp 
macrophages, PPARγ for alveolar macrophages, and Gata6 for peritoneal F4/80hi macrophages.
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in specific tissues. Monocyte development, however, is still elusive 
and most of the factors identified rather compromise their survival, 
making hard to discriminate between developmental and survival 
defects. Moreover, in the past few years, it has become obvious 
how tissues are able to influence not only the phenotype but also 
the function of the different subsets. This observation translates in 
changes in the transcriptional signature, which identifies each sub-
set in a given tissue. Tissue-associated hallmarks have been mostly 
studied in macrophages, however profound consequences appear 
to matter also within DC subsets. It will therefore be important to 
discriminate between tissue- versus subset-specific transcriptional 
identity, to define intrinsic properties, and functional potential for 
every subset across and within the different tissues. On the one 
hand, it is attractive to think that subset specialization similar as 
for T and innate lymphoid cells is also present within the myeloid 
compartment. On the other hand, we are aware that myeloid cells 
are characterized by an elevated intrinsic functional plasticity. 
Anatomical compartments, pathogen and antigen dose as well as 
small micro-environmental cues might drastically influence the 
phenotype, the transcriptional landscape as well as the function 
of the different subsets during immune responses and we are just 
starting to explore in depth the complexity of the different subset in 
response to an immunological insult (90, 127). For DCs, a model has 
been recently suggested which takes into account the development 
of a subset with its immunological function. As shown in Figure 2, 
expression of Irf8 and Batf3 is needed in response to pathogens or 
immunological conditions where IFN-γ is required. On the other 
side, Irf4 is essential to stimulate Th17, Th2, and IL-22 responses. 
Within the Irf4 response, Notch2 and Klf4 are specifically required 
for Th17/IL-22 or Th2 immunity, respectively. The scenario, which 
appears, is consistent with functional modules of transcription 
across different cell types, i.e., Klf4 is also necessary for goblet cell 
development and polarization of M2 macrophages, whereas Notch 
is required for ILC3 development. Similarly, Nfil3 is important not 
only for cDC1 but also for NK and ILC1 cells development.

Several TFs that are required for MP development have been 
characterized; we can draw a map for their temporal requirement 
along development but for most of them the precise mechanism of 

action and their targets still need to be identified. Furthermore, since 
the developmental as well as the functional requirements for a tran-
scriptional pathway are most often shared, caution is necessary to 
ascribe a specific role to a TF. Recently, a Waddington landscape was 
suggested to explain the plasticity in DC development (92). A similar 
concept may reflect and be applied to the entire MP system, where 
lineage commitment, specific functions, as well as subset identity 
could depend on the achievement of a threshold of a pool of TFs, 
rather than a unique master regulator. This concept would explain 
the so-called “graded-commitment” obtained from barcoding 
individual progenitors and performing lineage-tracing experiments 
(128). A second level of complexity is characterized by the fact that 
multiple subsets share the same TF, though the functional require-
ments are different. For example, Irf4 seems to regulate migration 
in skin DCs but not in other peripheral tissues, such as lungs. The 
functional outcome might be shared; such as in both cases antigen 
presentation is impaired, however it is important to understand the 
different requirements depending on the tissue of origin.

The study of MP is characterized by blurry phenotypic 
boundaries, which do not allow for unequivocal identification 
of the different subsets. The absence of specific markers leads to 
the absence of specific genetic tools and sometimes conflicting or 
unclear results are present in the literature. For lineage-specific 
deletion within cDC, we still relay on CD11c–cre mice, despite the 
evident limitations of this model. For monocytes as well as mac-
rophages we lack genetic models, which would allow for selective 
and specific depletion of inflammatory or patrolling monocytes 
as well as tissue macrophages. Efforts to generate better lineage-
deleter mouse models are therefore required and should be 
a priority in the next future to better understand the development 
as well as the contribution of MPs during an immune response.
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