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Agent-based modeling has been used to characterize the nested control loops and 
non-linear dynamics associated with inflammatory and immune responses, particularly 
as a means of visualizing putative mechanistic hypotheses. This process is termed 
dynamic knowledge representation and serves a critical role in facilitating the ability to 
test and potentially falsify hypotheses in the current data- and hypothesis-rich biomedical 
research environment. Importantly, dynamic computational modeling aids in identifying 
useful abstractions, a fundamental scientific principle that pervades the physical sci-
ences. Recognizing the critical scientific role of abstraction provides an intellectual and 
methodological counterweight to the tendency in biology to emphasize comprehensive 
description as the primary manifestation of biological knowledge. Transplant immunology 
represents yet another example of the challenge of identifying sufficient understanding 
of the inflammatory/immune response in order to develop and refine clinically effective 
interventions. Advances in immunosuppressive therapies have greatly improved solid 
organ transplant (SOT) outcomes, most notably by reducing and treating acute rejection. 
The end goal of these transplant immune strategies is to facilitate effective control of the 
balance between regulatory T cells and the effector/cytotoxic T-cell populations in order 
to generate, and ideally maintain, a tolerant phenotype. Characterizing the dynamics of 
immune cell populations and the interactive feedback loops that lead to graft rejection or 
tolerance is extremely challenging, but is necessary if rational modulation to induce trans-
plant tolerance is to be accomplished. Herein is presented the solid organ agent-based 
model (SOTABM) as an initial example of an agent-based model (ABM) that abstractly 
reproduces the cellular and molecular components of the immune response to SOT. 
Despite its abstract nature, the SOTABM is able to qualitatively reproduce acute rejection 
and the suppression of acute rejection by immunosuppression to generate transplant 
tolerance. The SOTABM is intended as an initial example of how ABMs can be used to 
dynamically represent mechanistic knowledge concerning transplant immunology in a 
scalable and expandable form and can thus potentially serve as useful adjuncts to the 
investigation and development of control strategies to induce transplant tolerance.

Keywords: transplant immunology, agent-based modeling, immunosuppressive agents, mathematical 
modeling, discrete models, immune system modeling, immune system models, agent-based models
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INtRodUCtIoN: the RoLe oF dYNAMIC 
KNoWLedGe RePReseNtAtIoN to 
AddRess the tRANsLAtIoNAL 
dILeMMA

The central dilemma for the biomedical research community 
today can be described as a paradoxical challenge of dealing with 
an embarrassment of riches. Technological advances in experi-
mental methodology have led to an unprecedented ability to 
probe deeply into the workings of biological systems and acquire 
information at a level of detail not previously imagined. Advances 
in computational capability, both in terms of storage and process-
ing, have allowed the analysis of data sets at a fundamentally dif-
ferent scale. However, the challenges of interpreting this plethora 
of data are growing as quickly as the ability to acquire it. This 
condition is most evident in the ability to turn this increased basic 
biomedical knowledge into effective therapies to treat the diseases 
that most impact society today. The United States Food and Drug 
Administration report: “Innovation or Stagnation: Challenge and 
Opportunity on the Critical Path to New Medical Products” (1) 
clearly delineates a steadily increasing expenditure on Research 
and Development that is concurrent with a progressive decrease 
in the delivery of medical products to market; while this report 
is over a decade old, this trajectory has not substantively changed 
since the release of that report. This is the Translational Dilemma 
that faces biomedical research: the inability to effectively and 
efficiently translate basic mechanistic knowledge into clinically 
effective therapeutics, most apparent in attempts to understand 
and modulate “systems” processes/disorders, such as sepsis, can-
cer, wound healing, and immunomodulation (including trans-
plantation). The current situation calls for a re-assessment of the 
scientific process as currently executed in biomedical research as 
an initial step toward identifying where and how the process can 
be augmented by technology. We have asserted that the primary 
bottleneck in the current biomedical research workflow is the 
ability to evaluate and falsify the vast sets of putative mechanistic 
hypotheses being generated from the data-rich environment and 
that the use of computational modeling for dynamic knowledge 
representation is the means by which this bottleneck, and the 
Translational Dilemma, can be addressed (2). With the specific 
goal of facilitating the computational representation of the 
mechanistic knowledge generated from basic biological research, 
agent-based modeling is a modeling method that is particularly 
well suited for this purpose.

dYNAMIC KNoWLedGe 
RePReseNtAtIoN WIth AGeNt-BAsed 
ModeLING

Agent-based modeling is a discrete event, object-oriented, rule-
based, and often spatially explicit method for dynamic computer 
modeling that represents systems as a series of interacting com-
ponents (3–7). An agent-based model (ABM) is a computer pro-
gram that generates populations of discrete computational objects 
(or agents) that correspond to the component-level at which the 
reference system is being examined. These computational agents 

are organized into agent classes representing groupings of agents 
of a similar type defined by shared properties and characteris-
tics. Agents are governed by agent rules, which are a series of 
instructions that allow the agent to be treated as an input–output 
object. ABM rules are often expressed as conditional statements 
(“if-then” statements), making ABMs an intuitive way for rep-
resenting mechanisms identified from basic science research. 
Consider the following simple example. There is an agent class 
called cell-type-1 used to represent a particular cell type. That 
cell type is known to have a particular receptor, which is called 
receptor-A, which can bind to a ligand, ligand-A. The binding 
of ligand-A to receptor-A activates a signal transduction enzyme 
that is called ST-enzyme-B. This knowledge would be expressed 
in an ABM in the following manner:

Rule for agent-class cell-type-1:
If ligand-A present, then bind to receptor-A
If receptor-A bound to ligand-A, then activate 
ST-enzyme-B…

The general nature of a “rule” allows other types of mathemati-
cal or computational models (i.e., differential equation, stochastic, 
or network) to be used as rule systems (7–13). Individual agents 
incorporate the properties and rule structures of their parent 
agent class but are able to manifest diverging behavioral paths 
based on the differing local inputs that are possible through the 
ABM’s spatially heterogeneous simulation environment. For 
instance, in the example presented earlier, it can be readily seen 
that the behavior of different individual computational agents 
of type cell-type-1 might now deviate from each other: those in 
the presence of ligand-A will behave differently from those not 
exposed to ligand-A. This is the key property of ABMs that allow 
them to behave “realistically,” generating population/system level 
outputs from the heterogeneous behavioral trajectories of indi-
vidual agent instances that embody lower-level knowledge and 
mechanisms. Thus, ABMs intrinsically cross scales of biological 
organization, utilizing behavioral rules (Scale #1) to determine 
individual agent behavior (Scale #2) and then aggregating 
individuals into population dynamics of the global system (Scale 
#3). The ability to generate distributions of population behavior 
is also enhanced by the common practice of adding stochastic 
components to the agents’ rules: this stochasticity may reflect 
either apparent randomness associated with limitations of meas-
urement, or actual stochastic processes present in the reference 
system (which may amount to the same thing).

Agent-based modeling has been used in multiple domains, 
particularly in those systems that can be viewed as involving the 
interactions between populations of components, such as ecol-
ogy (14, 15), social/political science (16), microeconomics (17), 
and epidemiology (18). Agent-based modeling has also been 
increasingly and more extensively applied to biomedical systems, 
primarily in terms of characterizing multicellular interactions, 
such as in the study of sepsis (19–22), cancer (8, 23–26), cellular 
trafficking (27–31), host–microbe interactions (32, 33), gastroin-
testinal biology (34–36), and wound healing (12, 37, 38).

By virtue of their rule-based nature, ABMs are an intui-
tive means of dynamically representing the mechanisms and 
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hypotheses present in the biomedical literature, allowing them 
to serve as dynamic knowledge representations of mechanistic 
hypotheses (21, 39). The intrinsic multiscale nature of ABMs 
allows researchers to translate putative causal mechanisms to 
system level phenotypes, an essential function in dealing with the 
complexity of biological systems. Additionally, the non-prescribed 
nature of the rules embedded in an ABM, which facilitates the ini-
tial development of abstract models and the progressive addition 
of more detail as it becomes needed, makes agent-based modeling 
well suited as a scalable modular framework that can evolve with 
the state of knowledge about a particular system (7, 8, 13, 22, 40).

Agent-based models are related to and share many features 
of other spatially discrete modeling methods, most notably cel-
lular automata. However, what distinguishes ABM from cellular 
automata and other types of discrete methods is the ease of the 
mapping between the reference system and the construction of 
the ABM. Importantly, ABMs facilitate abstraction. The process 
of abstraction is an essential step in the scientific process; it is 
only through abstraction that generalization is possible: the abil-
ity to extrapolate how one seemingly unique object/system can 
be treated as similar to another seemingly unique object/system. 
The process of generalization is the means by which science 
gains its explanatory power: now one thing learned about one 
object can be applied to another distinct yet related object. It is 
readily apparent that this principle of abstraction is embedded 
in the structure of ABMs through the relationship between the 
descriptions of a particular agent class and the behaviors of the 
individual instances of that class. Recognizing the essential role of 
abstraction in the scientific process leads to the driving concept of 
parsimony in the quest for explanation (i.e., hypothesis construc-
tion). Explanatory power is thus tied to an iterative process of 
evaluating and refining hypotheses that grow from a parsimoni-
ous root. The historical, philosophical, and logical bases for this 
understanding of the scientific process are reviewed and described 
in Ref. (41). This concept of parsimony also applies to the process 
of developing computational/mathematical models. As with all 
mathematical modeling methods, the initial construction of an 
ABM should keep the rules as simple as possible, often at the 
initial expense of mechanistic detail. What initially may seem 
to be a limitation is actually of considerable benefit, as ABMs 
representing incomplete and uncertain mechanisms can provide 
a mean of testing the plausibility of those mechanisms (14, 15). 
As such, the goal of simulation experiments is to provide suf-
ficiently plausible model behavior given a particular ABM such 
that it is possible to state that the ABM has face validity. Face 
validity is the initial standard for validation as described in the 
modeling and simulation community and reflects the ability of a 
particular simulation to behave in a plausible and recognizable 
way (42, 43). Very often, this is reflected in the qualitative nature 
of the mapping between the simulation output and the real-world 
data, with an emphasis on having real-world behaviors targeted at 
multiple scales. This approach has been termed pattern-oriented 
modeling (POM) (14, 15) and has an established role in the bio-
medical application of ABMs (3, 6, 21). While initially developed 
for the use of agent-based modeling in ecology, the principles 
of POM, defined as “…the multi-criteria design, selection and 
calibration of models of complex systems” (14), can serve as a 

useful framework for the development and use of ABMs in the 
biomedical context. POM contains three primary elements: (1) 
patterns used to determine model structure, 2) patterns used for 
model selection, and 3) patterns used for calibration. Each of 
these elements is treated with an iterative process that involves 
identification, instantiating, and refinement. As with all compu-
tational models, the greater fidelity of mapping between the ABM 
and its biological counterparts enhances the correlation between 
simulation results and the real-world behaviors, but it must be 
recognized that such increased fidelity can only be achieved 
through an iterative process of refinement arising from a neces-
sarily parsimonious origin (6, 21).

The advantages of agent-based modeling are most evident 
when trying to integrate multiple populations of subcompo-
nents (such as biological cells) that interact in a highly dynamic 
fashion. The multiple cell types and interactions present in 
transplant immunology represent exactly this type of system. 
Therefore, presented herein is an abstract representation of fun-
damental knowledge concerning the process of acute solid organ 
transplant (SOT) rejection incorporated into the solid organ 
transplant agent-based model (SOTABM). While there have 
been multiple prior ABMs of the immune response (as opposed 
to inflammation) (44–46) to our knowledge, there have been no 
prior published applications of agent-based modeling to SOT. 
The fundamental conceptual basis of the SOTABM is the view 
that effective transplantation centers around a “tipping point” 
between the proinflammatory aspects of the immune response 
aimed at eradicating non-self-cells (evolutionarily reflected in 
infection) versus the anti-inflammatory control mechanisms 
that prevent that immune response to damaging the host. More 
specifically, this tipping point is primarily governed by the cel-
lular components that bridge the transition from the non-specific 
innate inflammatory immune response, which is the primary 
end effector for cellular/tissue/microbe damage, and the adaptive 
immune capability that focuses on partitioning response between 
self and non-self. The SOTABM is intended to provide an initial 
example of how a dynamic knowledge representation framework 
can be used to instantiate and replicate the general properties 
of transplant immunology with respect to acute rejection. As 
such, the SOTABM necessarily represents a simplified version 
of the real-world system, with its form the result of modeling 
choices made by the developer (as is the case with virtually any 
model, computational, or otherwise) governed by the principle 
of parsimony. Thus, there is no supposition that the SOTABM is 
a comprehensive representation of the sum total of knowledge 
concerning the cellular and molecular mechanisms of transplant 
immunology. Rather, the situation is quite the opposite, with 
the SOTABM intended to represent a basic and fundamental 
set of components and actions sufficient to explain core general 
behaviors associated with transplant immunology. Furthermore, 
the SOTABM represents one perspective (the modelers) of what 
these most basic and fundamental components and actions are. 
Given the goal of implementing canonical processes, initial 
models like the SOTABM draw heavily from literature reviews 
that present the best approximation of what is generally accepted 
within a scientific community. Therefore, the SOTABM is based 
on a series of literature reviews of transplant immunology, with 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


November 2015 | Volume 6 | Article 5614

An Solid organ transplant ABM

Frontiers in Immunology | www.frontiersin.org

particular emphasis of the modeler’s interpretation of Ref. (47) as 
the central reference text to provide the overall structure of the 
SOTABM. The exercise of developing the SOTABM as presented 
in this article is intended as an example of how such biomedi-
cal knowledge can be instantiated in an ABM, and in so doing 
demonstrate how such a process could be extended to incorpo-
rate greater mechanistic detail and a wider range of transplant 
pathophysiology.

Throughout the text we will attempt to clarify the distinction 
between the actual biological objects and the  computational 
objects used to represent them by depicting the names of the 
computational objects in courier font.

Methods

General Principles and Purpose of the 
solid organ transplant ABM
As stated earlier, the intent of this presentation of the SOTABM 
is as a demonstration of how knowledge concerning transplant 
immunology could be initially incorporated into an ABM, 
with particular emphasis on the utilization of abstraction and 
qualitative pattern matching to enhance the understanding of 
biological systems. It is critical to emphasize the importance 
of looking at “model” in its verb form: “to model” as opposed 
to “a model.” As such, one should not think of these models as 
end products, but rather at subjects for discourse in the iterative 
process that is science. Admittedly, this viewpoint is not the 
familiar one for biologists/experimentalists when dealing with 
“computation” in biomedicine. The far more common perspec-
tive is one of the computational modeling as an analysis service 
rooted in statistics and the identification of correlations: i.e., 
“Here are my results, tell me what this means using your fancy 
algorithms.” Alternatively, the use of dynamic computational 
modeling as a form of knowledge representation and integration 
(which is how mathematical modeling is most powerfully used 
in the physical sciences) requires much more engagement on the 
part of the biologist, where the dynamic computational model 
is now a “conversation piece,” subject to interactions where its 
explanatory power is assessed, its underpinnings challenged, and 
refinements applied, with the intent of moving toward a greater 
understanding of the system being studied. The SOTABM is 
very much intended to be the initial step in such an engagement. 
In reviewing the development and evaluation of the SOTABM 
presented in this article, the reader is encouraged to note the spe-
cific inclusions and omissions made (inherent in the modeling 
process) and consider how they would potentially address their 
perceived shortcomings/limitations of the SOTABM if they were 
to undertake such an exercise. At a fundamental level, dynamic 
models such as the SOTABM should not be viewed as end 
products, but rather as objects intended to generate discourse 
and simulate an iterative process of testing, falsification, and 
refinement.

A Note on Parameters
As with all computational models, ABMs require the use of 
multiple parameters (constants utilized in the model’s rules). For 

example, in the sample rule previously provided, its implementa-
tion would be:

If [some value of] ligand-A is present, then bind to 
receptor-A [to some degree].
If [some threshold value] of receptor-A is bound with 
ligand-A, the activate ST-enzyme-B [to some degree]

It should be immediately evident that the behavior of any model 
is heavily dependent upon the parameters chosen. As such, the 
issue of parameter selection holds particular importance in the 
development and use of computational models. Ideally, choosing 
parameters that are derived from experimentally available data 
substantially enhances the believability of a computational model 
(assuming it behaves plausibly with those parameters). However, 
the process of experimentally acquiring specific parameters is 
often extremely difficult, if not infeasible or impossible, given 
current experimental and sampling technologies. This latter 
condition, in fact, has substantially limited the adoption of 
dynamic computational models in biomedical research, where 
a very stringent and restrictive criteria for what constitutes a 
“believable model,” dependent upon quantitative parameter and 
model behavior matching, substantially reduces the number of 
“believable models” that can actually be produced. Interestingly, 
it has been argued that such specifically detailed parameters can 
only be obtained in highly constrained and artificial experimen-
tal conditions, with the end result of a model “valid” for those 
experimental conditions, but of limited applicability beyond 
those conditions when more systems-level phenomena are 
being examined (6). This latter understanding is actually more 
in keeping with the traditional scientific goal of discovery and 
establishing generalizing principles, as opposed to the engineer-
ing paradigm of optimization and design that underlies many 
researchers’ experience with modeling and simulation.

The demonstration of agent-based modeling with the 
SOTABM takes the generalizing, parsimonious approach. As 
noted earlier, one of the advantages of agent-based modeling 
is its embracement of abstraction as a means of dealing with 
incomplete knowledge. By utilizing population effects as their 
primary output metrics, ABMs allow the characterization of 
system behavior in a more qualitative fashion, at least in the 
initial stages of development. For this reason, POM (14, 15) and 
the use of face validity as assessment criteria (42, 43) are heavily 
utilized in the development and evaluation of ABMs. This shifts 
the utility of dynamic computational modeling from quantita-
tive prediction or engineering optimization to explorations of 
plausible and recognizable behaviors; this shift in the goal of 
modeling influences the selection and determination of the 
parameters used in the SOTABM. As can be seen in the sample 
rule explained earlier, ABM rules can start off as logical state-
ments; the addition of conditional reified modifiers turns these 
rules into expressions closer to arithmetic. This allows certain 
types of parameters, specifically those associated with processes 
with known time scales, to be derived arithmetically. Even though 
these rates are potentially extractable and knowable, within the 
context of the specific ABM, their actual values are not important. 
In fact, since the SOTABM utilizes an abstract representation 
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of space, an attempt to directly apply experimentally derived 
numerical values for those parameters could potentially foster 
the belief that the model is somehow more “real” than it actually 
is. Rather, the relationship certain parameters have to other con-
nected parameters is what is crucial for determining the behavior 
of the model. The relative dependencies of these connected and 
related parameters can prove very challenging if one required 
quantitative fidelity, but given that the current modeling goal 
is determining and examining sets of overall system behaviors, 
this type of parameter representation is appropriate [and argu-
ably more relevant to translating the findings of a model beyond 
its specific implementation (6)]. As such, the establishment of 
these parameter values often starts with an arbitrary range and is 
generally followed by a heuristic, hand-fitting process involving 
repeated runs of the ABM and adjustment based on plausible 
behavior. If such plausible behavior cannot be generated, then this 
points to a fundamental insufficiency in the model. This process is 
integral to the development and calibration of an ABM. However, 
note that this hand-fitting process of calibration occurs before 
the execution of the presented simulation experiments; there is 
no retrofitting of parameters based on the outcomes of the actual 
experimental simulations.

sotABM overview
SOTABM is an abstract representation of the inflammatory and 
immune components involved in the acute rejection process of a 
SOT. The SOTABM is implemented in the freeware agent-based 
modeling toolkit Netlogo (48). Netlogo is a self-contained toolkit 
for agent-based modeling and is specifically designed to allow 
non-computer programmers/mathematicians to create dynamic 
models of their systems of interest. Interested readers are directed 
to the Netlogo website (https://ccl.northwestern.edu/netlogo/) to 
see examples and download the toolkit for their own use. Cellular 
components are depicted by computational agents (“turtles” in 
Netlogo terminology): some of these cell types are able to move 
while others remain static. The background grid spaces (“patches” 
in Netlogo terminology) represent the extracellular environment 
of the model. Agents hold variables representing determinants of 
their internal state (i.e., molecular components of the cells), which 
in turn govern their state transition rules (i.e., behavior). Patches 
hold variables that represent extracellular mediators, which dif-
fuse between discrete patches using Netlogo’s diffuse function 
[which takes the value of the variable on an individual patch and 
evenly distributes some fraction of that value to the surrounding 
eight patches; see Ref. (48)]. Interactions with the SOTABM take 
place through the standard Netlogo interface, consisting of vari-
ous GUI buttons, switches, and sliders by which certain functions 
are called and parameters set. The stochasticity in the SOTABM 
is produced by the use of Netlogo’s random number generator to 
add probabilistic modifiers to the agents’ state transition rules; 
Netlogo uses the Mersenne Twister pseudorandom generator, 
one of the most commonly used pseudorandom number genera-
tors utilized in software design (48). Consistent with the general 
modeling strategy that it is necessary to represent the baseline 
healthy state with some degree of the system robustness and func-
tion present in the real-world reference system, the SOTABM is 
constructed to be able to utilize its inflammatory and immune 

functions to deal with both sterile injury (i.e., tissue trauma) and 
an infectious insult. The SOTABM is available for download from 
http://bionetgen.org/SCAI-wiki/index.php/Main_Page.

description of the Model World  
for the sotABM
At its current level of abstraction the SOTABM does not explic-
itly represent tissue or organ architecture but instead utilizes an 
abstract representation of various tissue compartments where 
different cellular interactions occur. The SOTABM does not 
include the means to differentiate the various degrees of immu-
nogenicity seen between renal, hepatic, and cardiac transplants. 
The primary interaction space in the host tissue is represented 
by a two-dimentional square grid where the edges “wrap,” mak-
ing it topologically a torus. The size of the grid is 41 × 41 grid 
spaces; this size was arbitrarily chosen to trade off computational 
efficiency versus enough space to allow for distinct groupings 
of agents (see Figure  1). Each grid space is populated by an 
agent representing a generic host tissue cell (self-cell), and 
populations of immune cells move in a semi-Brownian fashion 
over this surface. The specific cell types and produced mediators 
represented in the SOTABM are described later in the respective 
Section “Methods.” The modeling choice was made to divide the 
overall world space of the SOTABM into four quadrants each 
representing a spatially distinct, but still connected, interaction 
space with different functions. Thus, the SOTABM has a distinct 
area in the left upper quadrant of the grid, which is intended 
to represent the intralymph node interaction space in a more 
spatially defined and limited area. Similarly, simulations of 
transplanted tissue, as well as remote tissue infection or injury, 
are localized in different quadrants of the grid (see Figure  1). 
Three different conditions are able to be applied to the system: 
Condition #1 sterile injury, Condition #2 localized infection, and 
Condition #3 solid tissue transplant. Conditions #1 and #2 can 
be varied in their size and are depicted as generally circular areas; 
Condition #3 is of fixed size consisting of 109 transplant 
cells in a roughly rectangular configuration. The size of the 
simulated transplant (109 cells) is semiarbitrary, decided upon 
primarily based on the size of the world grid (itself an arbitrary 
constraint) and the modeling decision to represent different 
body compartments/tissues in different quadrants of the world 
grid. As noted earlier, the current version of the SOTABM uses a 
generic “transplanted tissue,” and therefore does not distinguish 
between the different immunological properties seen between 
renal, hepatic, or cardiac tissues. In addition to depicting generic 
transplanted organ tissue, graft mesenchymal stromal/stem cells 
(graft-MSCs) are also included in the transplanted area. These 
cells were selected for inclusion based on their role in suppress-
ing the generation of cytotoxic immune cells directed against the 
graft (see later). Other graft-associated immune cells, such as 
macrophages, dendritic cells, and T-cell subtypes residing in any 
graft lymphoid tissue, were not included since the intent at this 
stage is not to attempt to represent graft versus host disease. While 
it is potentially possible to have concurrent conditions within the 
SOTABM, such as simulating the tissue trauma of transplant fol-
lowed by the transplanted organ itself, or the development of an 
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infection in a previously transplanted case, for purposes of this 
initial demonstration of the SOTABM it was elected not to add 
this complexity at this time.

Given the abstraction of the functions represented in the 
SOTABM, it is not precisely calibrated to time at a granular 
mechanistic level. Rather, the effects of the cellular-molecular 
events are simulated to take place with one cycle of the SOTABM 
(ticks in Netlogo terminology) approximating 15 min of real-
world time.

Interaction and Control structure of the 
sotABM
As noted earlier, the primary goal of the SOTABM is to serve as 
an initial example of how to depict the general control structure 
of the transplant immune response, particularly pertaining to 

FIGURe 1 | screenshot of the solid organ transplant agent-based model (sotABM). This figure depicts the Netlogo graphical interface of the SOTABM. The 
model world consists of a two-dimensional square grid that is 41 × 41 grid spaces in size. Each grid space is populated by a self-cell (red), and multiple 
inflammatory/immune cells can be seen distributed over its surface. Letter (A) emphasizes the simulated lymph tissue area in the left upper quadrant of the 
SOTABM; naïve-CD8-ts (blue dots) can be seen in this area. Letter (B) emphasizes the region where either infectious insult (here depicted as gray bugs) or  
tissue trauma (not shown) can be applied. Placement of the perturbation in this area constitutes a “remote” insult from the area of potential transplant.  
Letter (C) emphasizes the area where transplant tissue is applied in the right upper quadrant. Transplant cells can be seen as blue squares, with various other 
agents representing graft/donor macrophages and dendritic cells can be seen overlying the transplant tissue. Note that the concurrent presence of infection and 
transplant tissue is provided for depiction purposes only; in the simulation experiments presented for the SOTABM, there were no concurrent types of system 
perturbations performed.

acute rejection, in an ABM. A schematic of this control structure 
can be seen in Figure  2. Note that in order to not generate a 
completely uninterpretable figure, the exact model components 
utilized in the SOTABM (i.e., the names of all the agent classes) 
are not explicitly represented in Figure 2; rather representative 
labels are used to depict the main categories of cells and media-
tors chosen to be included in the SOTABM. Text contextual-
izing the specific model components to Figure  2 is provided 
in the descriptions of those components in the sections later. 
As a general description, the initial components of the innate 
immune response represent the end effector of the system, 
being primarily responsible for interactions influencing tissue 
damage, microbial killing, and abstracted tissue reconstitution. 
The innate immune response incorporates both pro- and anti-
inflammatory components, consistent with a self-contained 
control structure befitting its role as a highly evolutionarily 
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FIGURe 2 | Interaction map of the sotABM: this schematic 
demonstrates the interactions between the various cell types and 
tissue conditions present in the sotABM. The green arrows represent 
positive/additive/stimulatory relationships, whereas the red-diamonds 
represent negative/reducing/inhibitory relationships. Note the blue emphasis 
area in the right lower corner of the figure: these are the primary effector 
components for tolerance. Augmentation of the functions of T-regs and 
tolerogenic dendritic cells is a primary goal of immunosuppressive therapies 
aimed at “tipping” the balance of the control structure depicted here toward 
the tolerance phenotype (47, 58–60). Notes: 1“Ag Source” can come from 
either infection, injury, or transplanted tissue and has two distinct functional 
roles, one as an activator for macrophages “Macro-Ag” and one for dendritic 
cells “DC-Ag.” In the SOTABM, bacteria-Ag represents “Ag source” from 
infection, whereas transplant-Ag represents “Ag source” from the 
transplant graft. Both of these bacteria-Ag and transplant-Ag may 
activate macrophages (as “Macro-Ag”) and dendritic cells (as “DC-Ag”). 2The 
macrophages represented in this figure “Macrophages,” “Pro-Inflam Macros,” 
and “Anti-Inflam Macros” may be in either the host or the grafted tissue, but 
in the current iteration of the SOTABM only host macrophages are 
represented. 3The fact that “IL-10” is listed twice is not meant to represent 
two distinct pools of IL-10 but is rather an attempt to limit the number of 
crossing connectors in an already complex figure.
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from Ref. (47) and from other resources utilized for the develop-
ment of the SOTABM (49–57) that there are multiple subtypes 
of regulatory T cells (T-regs), for simplicity’s sake this initial 
version of the SOTABM abstracts these into the general classes 
of effector/cytotoxic T cells and T-regs. This simplifying process 
utilizes the following general guidelines:

 1. If a cell type or subtype has essentially the same set of input 
and output relationships as another cell type, then these were 
aggregated to a more general cell type description.

 2. If a cell type did not have an output relationship that rendered 
it unique, it was not included.

 3. If a cell type served as an intermediate pathway that was 
otherwise represented in the model using previously selected 
cell types, it was not included.

 4. If a cell type had an output that did not fit into the existing 
level of functional representation of the SOTABM, such as 
ischemia–reperfusion, these cells were not included.

 5. In general, specific secreted mediator/cytokine relationships 
were abstracted out if their action could be represented with 
a cell-to-cell influence/interaction. Note that this does not 
mean the interaction represented is an actual cell-to-cell 
physical event, but rather that the effect of the omitted media-
tor could be represented through a direct relationship.

For instance, comparing Figure 2 with Figures 1 and 2 from 
Ref. (47), Figure 2 in this paper aggregates T-cell subtypes that 
have the same input/output or target into the more abstract 
grouping. This modeling decision is based on the assessment 
that the impact of the subtleties associated with the finer control 
provided by these T-cell subtypes is below the representational 
resolution of the current SOTABM. It is also assumed that there 
is essentially no lymphoid tissue in the transplanted graft; this 
is generally consistent with the most common types of SOTs 
(hepatic, renal, and cardiac) and is consistent with the previously 
noted decision not to model graft versus host disease at this stage. 
It is acknowledged that these abstractions may have an impact 
on the subsequent iterations of the SOTABM as it becomes more 
refined, but these are accepted possibilities intrinsic to the itera-
tive nature of model development. Furthermore, recognition of 
these abstractions/omissions would be natural points for future 
expansion of the SOTABM.

Cell and Agent types
The following sections describe the specific agent classes included 
in the SOTABM. As noted earlier, the overall relationships between 
the cellular components included are depicted in Figure  2, 
albeit with a generalization of the cellular subtypes necessary to 
facilitate depiction in the figure. The relationships and interaction 
rules for the agents are described later, with the recognition that 
the encoding of those rules in the SOTABM follows the process 
described in Section “*A Note on Parameters.” Since the actual 
values used in the SOTABM would have little meaning outside 
the context of the actual code, the entire SOTABM model is 
available for download from http://bionetgen.org/SCAI-wiki/
index.php/Main_Page so that interested readers can view the 
interactions themselves.

conserved, fundamental function of multicellular organisms. 
This component of the SOTABM is very similar to structure to 
our prior work modeling the acute inflammatory response (20, 
22). The SOTABM also includes an additional layer of control 
representing the regulatory role of lymphocytes, primarily 
T-cell subtypes. It is noted again that as with all mathematical/
computational models, the specific components included in the 
SOTABM are the result of choices made by the modeler. Given 
the intent to start from the most well-established and generally 
accepted components and mechanisms present, introductory 
ABMs such as the SOTABM often focus on utilizing the content 
of well-respected review articles for their initial structure. In 
this case, the initial version of the SOTABM takes the informa-
tion reviewed in Ref. (47) as its primary source for its included 
components and mechanisms. While it is clearly evident both 
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Host Tissue (Self-Cells)
These cells represent the general tissue of the host. They do 
not move and occupy each intact grid space of the SOTABM 
at baseline. They contain a life variable, which determines 
their health state. Damage to the self-cells is reflected by a 
decrement of the life variable. When damaged beyond a cer-
tain threshold (arbitrarily set at <70% health, or <life = 70), 
the self-cells will produce damage-associated molecular 
pattern molecules (DAMPS) that will activate various inflam-
matory cells. Self-cells can be damaged by bacteria, or by 
the production of reactive oxygen species (r-oxy-s) from 
immune cells, or directly upon initialization in the sterile tissue 
injury mode. They are healed primarily by anti-inflammatory 
macrophage species (host-anti-inflam-macros), though 
also to a less or degree by proinflammatory macrophage spe-
cies (host-pro-inflam-macros).

Simulated Bacteria (Bacteria-Present)
Ref. (20, 57) was used to develop the rules for bacterial infection 
in the SOTABM. Bacterial infection is simulated abstractly by 
using placeholder agents representing the presence of infec-
tion (bacteria-present), which themselves have a state 
variable representing the amount of bacteria present on a single 
patch (bacteria-count). As noted earlier, bacteria are 
introduced into the simulation at initialization at varying sizes 
of initial insult. The bacteria reduce the life of the self-cell present 
on their own patch, and when the life of that self-cell is reduced 
to 0, the bacterial colonies/clusters spread to an adjacent patch, 
where the subsequent value of  bacteria-count on the target 
patch represents the magnitude of bacteria that have spread. 
The bacteria produce pathogen-associated molecular pattern 
molecules (PAMPS), which act analogously to DAMPS in terms 
of attracting and activating immune cells. Bacteria are killed by 
r-oxy-s, as well as by activated proinflammatory macrophages 
(host-pro-inflam-macros).

Transplanted Tissue (Transplant Cells)
Solid organ transplant is represented by the application of a solid 
section of 109 transplant cells in the right upper quadrant 
of the SOTABM (size arbitrarily set to 109 cells). Transplant 
cells perform all the functions of the self-cells in terms 
of keeping track of their health via the life variable and pro-
ducing DAMPS if damaged. In addition, they also have a state 
variable for non-self antigen (transplant-Ag), which can be 
passed on to any host antigen-presenting cells [host macrophages 
(host-macros) and host-DCs] that come into contact with 
them. Also, in addition to being able to be damaged by bacteria 
or r-oxy-s, they can also be directly damaged by activated 
cytotoxic CD8+ T cells (cyto-CD8-ts).

Polymorphonuclear Neutrophil Cells
These are the most common type of inflammatory cells; the rules 
for polymorphonuclear neutrophil cells (PMNs) are drawn from 
Ref. (20, 52, 53, 57). They move randomly unless in the presence 
of their chemotactic triggers (DAMPS and PAMPS). When trig-
gered, they follow the gradients of these molecules to the areas of 
injury or infection, where they undergo respiratory burst. This 

results in the production of r-oxy-s, which kills bacteria and 
damages normal tissue.

Host Macrophages (Host-Macros)
Their interactions are depicted under boxes “Macrophages,” 
“Pro-Inflam Macros,” and “Anti-Inflam Macros” in Figure 2. The 
rules for host-macros and their subtypes are derived from 
Ref. (20, 47, 52, 53, 57, 61, 62). Similar to PMNs, these immune 
cells move randomly unless in the presence of threshold levels of 
their chemotactic triggers: a combination of DAMPS/PAMPS and 
tumor necrosis factor (TNF). They become activated into either a 
proinflammatory phenotype or an anti-inflammatory phenotype 
depending on their milieu. DAMPS, PAMPS, and TNF all favor the 
proinflammatory state, while interleukin-10 (IL-10) favors the 
anti-inflammatory state. Proinflammatory activated macrophages 
(host-pro-inflam-macros) will produce both TNF and IL-
10 based on their level of stimulation by PAMPS and DAMPS. The 
effect of IL-10 is to decrease the responsiveness of host-DCs 
and host-macros to recognize antigen. They will also abstractly 
perform phagocytosis (by reducing the bacteria-count of 
bacteria-present on patches colocated with the host-
macro), and weakly heal normal tissue. Anti-inflammatory 
activated macrophages (host-anti-inflam-macros) will 
produce IL-10 based on their level of stimulation by PAMPS, 
DAMPS, and TNF; they do not produce TNF. They are the primary 
healing cells in the SOTABM, representing this function abstractly 
by increasing the life of any self-cells present until they return 
to normal. Also, unactivated host-macros are able to recognize 
non-self antigens (transplant-Ag) when they come into 
contact with transplant cells. Once they carry transplant-Ag, 
they are able to convert any naïve CD8 T cells (naïve-CD8-ts) 
in the lymph node area of the SOTABM to cyto-CD8-ts, which 
can then migrate to the area of the transplant and damage it.

Host Dendritic Cells (host-DCs, pro-host-DCs,  
and tol-host-DCs)
These cells function similarly to unactivated host-macros, and 
rules for their behavior were derived from Ref. (47, 63, 64). If they 
come into contact with bacteria or transplant cells, they 
will pick up either bacteria-Ag or transplant-Ag. These 
activated dendritic cells have two distinct paths: either their default 
path as proinflammatory dendritic cells (pro-host-DCs) that 
are able to activate naïve-CD8-ts to their cytotoxic form 
(cyto-CD8-ts) through direct contact, or as tolerogenic den-
dritic cells (tol-host-DCs) that directly inhibit the generation 
of cyto-CD8-ts, as well as activating T-regs and producing 
IL-10. This last function, the production of IL-10, is a negative 
feedback control mechanism that reduces the ability of host-
DCs and host-macros to pick up antigen in the first place. The 
default trajectory of an antigen-activated host-DC is toward the 
pro-host-DC phenotype, but interaction with graft-MSCs 
will switch them to the tol-host-DC phenotype.

CD8+ T Cell Species (naïve-CD8-ts and  
cyto-CD8-ts)
Rules for T cells in this and the following sections were derived 
from Ref. (47, 49–53, 62, 63). These cells are initialized as 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


November 2015 | Volume 6 | Article 5619

An Solid organ transplant ABM

Frontiers in Immunology | www.frontiersin.org

naïve-CD8-ts in the left upper quadrant of the SOTABM, 
simulating their baseline existence in lymph tissue. In their 
naïve form, they do not move, but if they are exposed to/colo-
cated with host-macros or host-DCs that are positive for 
transplant-Ag, then they become activated to cyto-CD8-
ts, which can then move to the area of transplant tissue. If they 
come into contact with transplant cells they will reduce 
their life, leading to the production of DAMPS and eventually 
killing the transplant cell.

Regulatory T Cells
This agent class is used to abstractly aggregate a large set of 
different subtypes of T cells (many of which are CD4+ but also 
includes CD8+ regulatory cells, double negative CD T cells, 
among others) (47, 49–53, 55, 63). While a plethora of these cell 
types exist, in general, they share many common features:

 1. Their production and function are enhanced by IL-10.
 2. Many produce IL-10.
 3. They inhibit the generation of, function of, and promote 

the apoptosis of both effector T cells and non-tolerogenic 
dendritic cells.

 4. They promote the generation and function of tolerogenic 
dendritic cells.

Therefore, the current version of the SOTABM aggregates 
these functions into a single abstract t-regs class. T-regs 
freely move, reflecting their initial peripheral location. They 
become activated through interactions with antigen-presenting 
cells (either host-macros or host-DCs with positive 
transplant-Ag); once activated, they produce IL-10. They 
are also able to induce apoptosis of antigen-presenting cells 
already activated with transplant-Ag.

Mesenchymal Stromal/Stem Cells
These are immature, multipotent cells initially derived from the 
bone marrow but present in virtually all organ tissue (including 
transplanted organs); rules for implementation of mesenchymal 
stromal/stem cells (MSCs) are drawn from Ref. (47, 54, 55, 58, 
65–67). These cells are activated by inflammation, though not 
immediately or acutely, as would be seen in tissue trauma or 
bacterial infection. Rather, their function is more pronounced 
in the face of longer standing inflammation, as would be seen in 
chronic infections or persistent inflammation. MSCs have 
potent anti-inflammatory properties triggered by exposure to 
DAMPS, resulting in the downregulation of effector T cells. 
Their specific role in transplant immunology is not completely 
clear. The SOTABM focuses on the role of MSCs only in the 
graft tissue (graft-MSCs) because: (1) MSCs do not appear 
to be present in meaningful numbers in the circulation, (2) the 
apparent time course of MSC activity lies outside the time period 
where host-derived MSCs might affect acute rejection, and (3) 
MSCs are present in organs commonly transplanted (i.e., liver, 
kidney, and heart). Graft-MSCs become activated by DAMPS, 
deactivate cyto-CD8-ts, and promote the generation of 
tol-host-DCs.

simulated Antirejection 
Immunosuppression
It is generally accepted that in the absence of immunosuppression, 
all non-identical genotype organ transplants will result in acute 
rejection (47). A primary goal of immunosuppressive therapy is to 
tip the balance from T-cell-mediated immunity and cytotoxicity 
toward a tolerogenic phenotype dominated by T-regs (59). The 
end effector targets of immunosuppression can be seen in the 
blue emphasis region in Figure 2. While there are many different 
specific targets for immunosuppressive drugs, this current paper 
is focused on evaluating the effects of reducing effector T-cell 
populations/function while attempting to spare the role of 
T-regs. The SOTABM simulates the following general classes of 
immunosuppression.

T-Cell Eradicative Therapies
These therapies, which are primarily polyclonal or monoclonal 
antibodies directed against T cells, are used as induction modali-
ties (60). They are traditionally thought to function by deplet-
ing the host’s T-cell populations, reducing the initial adaptive 
immune cellular response to the graft, and favoring the generation 
of tolerogenic, T-reg populations, though they are more recently 
recognized as having additional effects related to interference 
with leukocyte–endothelial adhesion as well as reducing dendritic 
cell function (60). For simplicity’s sake, this initial version of the 
SOTABM focuses on simulating only the effect of T-cell depletion 
and represents this effect by allowing for 90% percentage deple-
tion of  T cells from day 2 to day 14 following transplant (68).

Calcineurin Inhibition
Calcineurin is a phosphatase that dephosphorylates the transcrip-
tion factor necessary for T-cell activation (nuclear factor for the 
activation of T cells or NFAT) and allowing its localization in the 
nucleus. Inhibition of calcineurin prevents this localization and 
limits the activation of T cells. The SOTABM uses data regarding 
two of the most commonly used calcineurin inhibitors, cyclo-
sporine A and tacrolimus, as reference points for the simulation of 
calcineurin inhibition (69–72). While both of these compounds 
block T-cell activation arising from interleukin-2 (IL-2) respon-
siveness, in the interest of simplicity the dynamics of IL-2 are not 
explicitly modeled. As such, the SOTABM qualitatively simulates 
the effect of calcineurin inhibition by reducing the probability 
that both naïve-CD8-ts are converted to cyto-CD8-ts, as 
well as the activation of T-regs by tol-host-DCs.

Cell-Based Supplementation Therapies
There is increasing interest in providing organ transplant patients 
with supplementary populations of those cells believed to favor the 
tolerogenic phenotype. T-regs and regulatory macrophages have 
been employed in this fashion, with initially promising results (47). 
However, the scalability of these modalities is hampered by practi-
cal barriers in the collection/generation of sufficient populations 
of appropriately configured cells. Therefore, cell transfer research 
has naturally turned toward those cell types that may be more 
readily available. Specifically, mesenchymal stromal cells have 
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been employed, with varying results (47, 54, 58). The SOTABM 
simulates the effect of MSC transfer therapy by the addition of 100 
MSCs to the simulation following application of the transplant.

sIMULAtIoN eXPeRIMeNts

As noted earlier, current version of the SOTABM is intended as an 
initial example of an ABM that can serve as a scalable framework 
for dynamic knowledge representation of transplant immunol-
ogy. The goal of such initial simulation experiments is to provide 
face validity, i.e., sufficiently plausible model behavior reflected 
in the qualitative mapping between the simulation output and 
the real-world behavior (6, 42, 43). This modeling goal places the 
current version of the SOTABM in the earliest phases of the POM 
process (14, 15). It should be noted that there is not a presumption 
of “uniqueness” of this particular configuration of the SOTABM. 
Rather, achieving face validity with the current iteration of the 
SOTABM just demonstrates that there exists a configuration of 
model parameters such that these behaviors can be reproduced 
(3, 6, 21). As applied to the SOTABM, this approach leads to the 
execution of simulation experiments aimed at replicating the 
conditions listed below.

Simulation experiments utilize the stochastic nature of ABMs 
to generate simulated populations for each experiment performed 
with the SOTABM. The following experiments were performed 
with N = 100 incidences per condition:

• Baseline immune response to injury and infection: these 
simulations were performed to establish plausible behavior of 
the SOTABM in terms of its ability to recover initial perturba-
tions involving just tissue damage (sterile injury) or infection. 
“Death” of the system was arbitrarily defined as when the sim-
ulation run reached a level <20% total system health (reflected 
by the summed life variables of all the self-cells). 
Simulations were performed reflecting 28  days of simulated 
time and consisted of a parameter sweep of the level of the ini-
tial insult. A parameter sweep consists of a series of simulation 
runs (N  =  100) across a range of the selected parameter. In 
this case, the parameter is the initial amount of injury (initial 
injury number) or infection (initial infection number) applied 
to the SOTABM, and the parameter sweeps performed can be 
considered analogous to the dose–response range or generated 
mortality in the design of a particular wet-lab experimental 
model. Plausible behavior would be reflected by bounds on the 
ability of the system to survive based on the magnitude of the 
initial insult, below which where survival = 100% and above 
which survival = 0%. This is similar to the previously utilized 
method for evaluating the response of an ABM of systemic 
inflammation to injury and infection (19, 20).

• Baseline immune response to transplant: as opposed to 
the simulation experiments used to examine SOTABM 
response to injury and infection, which consisted of 
parameter sweeps of the magnitude of initial perturbation, 
the amount of transplanted tissue applied is fixed (109 
contiguous transplant cells in a roughly square 
configuration). Since all transplanted organs undergo some 
degree of damage, a “successful” transplant was viewed 

as the simulation having >20% of the transplanted tissue 
remaining (as reflected by the sum of the life variable of 
all the) after 1 year of simulated time (arbitrary percentage). 
Plausible behavior would consist of loss of all transplant 
tissue by the end of 1 year simulated time in the absence of 
immunosuppression (73).

• Simulation of immunosuppressive therapies: as noted in 
Section “Methods,” the SOTABM has the capability to simulate 
several antirejection therapies.

 ⚬ T-cell eradicative therapy is simulated by the deactivation of 
90% of all T-cell agents on day 2 post-transplant extending 
to day 14 post-transplant, at which time T-cell populations 
were allowed to recover. This rule was adapted from Ref. 
(60, 68), with an exclusive focus on the effect of anti-T-cell 
antibody therapy with respect to decreasing T-cell popula-
tions at doses approximately corresponding to use in human 
organ transplant.

 ⚬ The effect of calcineurin inhibition is simulated by the reduc-
tion of the probability that naïve-CD8-ts are converted 
to cyto-CD8-ts to 10% per encounter, while the effec-
tive preserving activation of T-regs by tol-host-DCs 
consists of having activation occur at a probability of 80% 
per encounter; this effect was persistent during the 1 year of 
simulated time, reflecting the continued use of the therapeu-
tic agent. These effects and values were extrapolated from 
information extracted from Ref. (69–72).

 ⚬ Simulation of cell transfer therapy using MSCs was simu-
lated by the addition of 100 MSCs to the simulation follow-
ing application of the transplant (58). This number of MSCs, 
relative to the number of PMNs (=200 at initialization) in 
the SOTABM, is within the range (lower end) of in  vivo 
studies investigating MSC transfer therapy (58). PMNs were 
chosen as the reference cell population number due to the 
greater availability of their circulating numbers.

Simulation experiments of immunosuppressive strategies 
consisted of each intervention alone (parsed interventions), T-cell 
eradicative therapy plus calcineurin inhibition (approximation 
of current clinical practice), and T-cell eradicative therapy plus 
calcineurin inhibition plus MSC transplant (hypothetical). Parsed 
immunomodulation simulations are considered component 
testing for the SOTABM’s simulation of immunosuppression. 
However, since clinical data do not exist for such interventions in 
isolation, the SOTABM’s output can only be viewed in the most 
qualitative fashion aimed at producing plausible results. The clini-
cal reference outcome focuses on 1-year graft survival in the T-cell 
eradication  +  calcineurin inhibition group, which most closely 
approximates current standard clinical practice. Given the fact 
that the SOTABM utilizes a generic transplanted tissue, reference 
values were drawn from a range of SOTs: specifically kidney, liver, 
and heart. The reference range for renal transplant (cadaveric, due 
to the allogenic nature of the generic transplanted tissue in the 
SOTABM) was a 1-year graft survival range of 89–91% (74). The 
reference range for hepatic transplant was a 1-year graft survival of 
71–80% (the range representing the difference between deceased 
cardiac donors and deceased brain donors, a distinction not 
within the SOTABM’s current representational capacity) (75). The 
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FIGURe 3 | Parameter sweep of the sotABM for infection. this figure 
depicts the transition zone from 100% survival (below initial infection 
number = 50) toward 0% survival (above initial infection 
number = 110). These results demonstrate that the response of the 
SOTABM to infection is appropriately and plausibly bounded, meaning that 
there was an initial infection number below which the system always healed 
and an initial infection number above which the system always died. There 
were 100 replicates (N = 100) for each condition simulated, simulated 
time = 28 days.

FIGURe 4 | Parameter sweep of the sotABM for tissue injury. this 
figure depicts the transition zone from 100% survival (below initial 
injury number = 90) toward 0% survival (above initial injury 
number = 150). These results demonstrate that the response of the 
SOTABM to tissue trauma is appropriately and plausibly bounded. N = 100 
for each condition simulated, simulated time = 28 days. The behaviors 
displayed in Figures 3 and 4 with respect to non-transplant conditions where 
inflammation and immune responses are recognized to occur serve as 
verification points for the SOTABM.
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reference range for cardiac transplant was a 1-year graft survival 
of 83–89% (range reflecting stratification of high to low risk trans-
plants in a study on the effect of case volume on outcome) (76). 
While there are several ongoing clinical trials for MSC transfer, 
explicit data for 1-year graft survival currently do not exist for this 
intervention (47, 54, 58, 59); therefore, the “hypothetical” condi-
tion of MSC transfer + T-cell eradication + calcineurin inhibition 
is considered a prediction pending the reporting from those trials.

ResULts

Baseline Immune Response  
to Injury and Infection
In the absence of any perturbation, the cell levels and tissue 
integrity of the SOTABM were dynamically stable, as would be 
expected. The results of the parameter sweeps of initial perturba-
tion demonstrated plausible behavior for both sterile tissue injury 
and infection. Simulated infection demonstrates an initial inflec-
tion point with respect to the transition from complete survival 
at initial infection  =  50 (survival  =  100%), with progressively 
worsening likelihood of survival at increments of 10 of initial 
infection until reaching a second point, beyond which there is 
always system death (initial infection = 110 with survival = 0%); 
see Figure 3. Similarly, with respect to sterile injury, the earlier 

transition point from complete recovery (100% survival) was at 
initial injury = 90, with an upper transition into complete lethal-
ity (0% survival) at initial injury = 150 (see Figure 4).

Baseline Immune Response to transplant
As expected, there were no simulation runs with transplant tissue 
survival at the end of 1 year simulated time; the average time to 
critical transplant tissue loss was 14.6 days of simulated time, with 
the longest transplant survival ~21 days. This is slightly greater 
that the recognized timeframe of 10–13 days for cell-mediated 
tissue graft rejection, but not vastly so (73).

simulation of Immunosuppressive 
therapies
These results are depicted in Figure 5. There were 100 replicates 
(N = 100) for all conditions, with the total simulated time repre-
sented by a simulation run = 1 year. The results of the simulated 
immunosuppressive therapies are as follows:

• Parsed modalities: T-cell eradicative therapy alone = 37% graft 
survival (note no re-dosing for episodes of acute rejection); 
calcineurin inhibition alone  =  60% graft survival; and MSC 
transfer alone = 40% graft survival (no re-dosing but immor-
tal MSCs). As noted earlier, since corresponding clinical data 
does not exist for each of these therapeutic interventions in 
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FIGURe 5 | effectiveness of different immunosuppression simulations 
in the sotABM. This figure depicts the results of first no 
immunosuppression, then the following simulated immunosuppressive 
therapies alone and in combination: T-cell eradicative therapy alone = 37% 
graft survival (note no re-dosing for episodes of acute rejection); calcineurin 
inhibition = 60% graft survival; combination therapy of T-cell eradication with 
calcineurin inhibition = 72% graft survival; MSC transfer alone = 40% graft 
survival (no re-dosing but immortal MSCs); and T-cell eradication plus 
calcineurin inhibition plus MSC transfer = 76% graft survival. N = 100 for all 
conditions, total simulated time = 1 year. Note: 1Aggreated solid organ 
transplant (SOT) 1-year graft survival range of 71–91% incorporating 
outcomes from renal, hepatic, and cardiac transplants (74–76).
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isolation, the results of the SOTABM can only be evaluated 
in a highly qualitative fashion. Given this limitation, each 
modality plausibly has some beneficial effect on 1-year graft 
survival, but with a plausibly lower efficacy than combination 
therapy approximating current practice.

• Approximated current therapy: combination therapy of T-cell 
eradication with calcineurin inhibition = 72% graft survival; 
compare to a range of 1-year graft survival of 71–91% incorpo-
rating outcomes from renal, hepatic, and cardiac transplants 
(74–76). Simulation 1-year graft survival was lower than 
reported clinical rate. However, this can be explained by the 
fact that the current set of simulated immunosuppressive reg-
imens did not allow for re-dosing of immunosuppression for 
episodes of acute rejection, as would be the case in the clinical 
situation.

• Hypothetical MSC transfer: T-cell eradication plus calcineurin 
inhibition plus MSC transfer = 76% graft survival. As noted 
earlier, there currently does not exist an appropriate data set 
for comparison. The slight increase in 1-year graft survival is 
plausible but must remain only a prediction from the SOTABM 
pending the reporting of the outcomes of the ongoing clinical 
trials.

dIsCUssIoN

The most fundamental goal of biomedical research is to develop 
the ability to effectively and beneficially control the trajectory 

between health and disease; in short, the practice of medicine is a 
control problem. The ability to exercise control requires a putative 
mechanism by which the control can be exercised, and this in 
turn requires an understanding of the overall and aggregate struc-
ture in which the individual mechanisms reside. Furthermore, 
effective control does not necessarily require comprehensive 
knowledge of the system being controlled; what is required is a 
sufficiently detailed representation of the target system such that 
a control strategy can be developed and potentially tested. The use 
of selective abstraction is fundamental to the scientific process: it 
is universally utilized as a means of gaining insight, increasing the 
general applicability of acquired knowledge, and from a practical 
standpoint, identifying what constitutes actionable knowledge. 
Unfortunately, there is a general paucity of abstract thinking in 
biology; a situation with historical and cultural antecedents (41). 
Therefore, the current challenge that faces the biological (and bio-
medical) research communities is gaining the ability to facilitate 
abstract representations of mechanistic knowledge in order to 
best leverage the vast sets of data that are currently being gener-
ated. It has been proposed that dynamic computational models, 
and ABMs in particular, can aid in affecting this translational goal 
(22, 39).

The SOTABM is an initial step at developing an agent-based 
modeling framework to do this for transplant immunology, 
representing a highly abstracted model of the components 
and processes of the immune response, upon which various 
perturbations, including transplant, can be applied. The design 
philosophy of the SOTABM emphasizes its ability to represent a 
greater range of conditions (i.e., response to infection, tissue injury, 
and transplant challenge) rather than striving for “precision” with 
respect to replicating a specific disease process. This, in fact, is 
how biological systems function: they have an underlying set of 
functions that have been acted upon by evolution in a selection 
process that favors the ability to deal with heterogeneous, 
disparate, and potentially novel conditions. Without this ability 
to have conserved core functionality, evolution of biological 
systems could not occur. Therefore, this initial presentation of 
the SOTABM emphasizes the ability of the system to recover from 
a range of perturbations, rather than necessarily trying to create 
a highly detailed representation aimed specifically at simulating 
solid organ transplantation. As such, the SOTABM utilizes the 
minimally sufficient control structure that maps to the biological 
system while being able to produce the desired behavioral 
features. Once this iteration of the model is deemed sufficient, 
the next step is to identify features of the reference system that 
are not adequately represented; at this point, additional detail 
is added to the model. This is the iterative refinement process 
defined by Hunt et  al. (6, 21) and represents a model design 
and development strategy that is consistent with the Popperian 
paradigm that science progresses via sequential falsification.

The current version of the SOTABM generally, plausibly, 
and qualitatively reproduces the inflammatory/immune system 
response to different types of perturbations while incorporating a 
set of minimally detailed components and primary features nec-
essary in characterizing early adaptive immunity. The simulation 
experiments concerning the response of the SOTABM to infec-
tion and injury represent plausibility checks, particularly since the 
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cellular–molecular control structure represented in the SOTABM 
arose through evolution to meet these types of perturbations. Put 
a different way, a model that solely focuses on the response to 
transplant would have limited biological plausibility, since the 
evolutionary forces that led to the development of the control 
structure would not be accounted for. It is only in the context of 
a model that does produce plausible responses to evolutionarily 
relevant conditions that the behavior of the model in response to 
an “artificial” situation (i.e., SOT) can be reasonably assessed. The 
fact that even given its high degree of abstraction and biological 
incompleteness the SOTABM is able to generate qualitatively 
plausible responses to a range of perturbation points to a funda-
mental soundness of the knowledge representation incorporated 
into the model. However, there are clear limitations to the current 
version of the SOTABM, several of which are listed below:

• As a model created in Netlogo, the SOTABM inherits the 
limitations associated with that modeling environment, as 
would be the case with any computational model of virtually 
any form. The benefits of Netlogo are that it has a very low 
initial threshold for use, possessing an excellent tutorial and a 
robust library of example models; it allows a novice modeler to 
fairly rapidly engage in the model-creation process. However, 
this ease-of-use carries with it a set of hidden dangers, most 
prominently related to the fact one can readily fall into the trap 
that with increasing facility in the use of the tool one starts 
to think of their reference system in primarily terms of that 
tool, rather than as a subject in of itself. This is not an issue 
unique to NetLogo, rather it is a pervasive issue that not only 
affects computational modeling but also affects experimental 
research, where the tools for investigation begin taking prece-
dence and coloring the interpretation of the reference system 
itself. The aphorism describing this phenomenon is: “To one 
with a hammer everything looks like a nail.” The solution 
this challenge is the use of cross platform validation, where 
the underlying conceptual model is implemented in a set of 
different, ideally unrelated modeling methods. Full discussion 
of this issue is beyond the scope of this paper, except to say that 
this is an issue that the modeling community struggles with, 
and where recognition of the challenge is currently the best, 
most prudent strategy.

• Moving on to specific limitations of the SOTABM within the 
context of its development environment, the lack of adjustment 
of therapeutic regimen to treat episodic acute rejection. In the 
clinical setting, there is considerable surveillance looking for 
signs of early rejection, and these episodes are addressed with 
temporary augmentation of the immunosuppressive regimen. 
The current cycle of simulation experiments do not reflect this 
practice.

• Lack of sufficient model detail with respect to the mechanisms 
of immunosuppression, While above we have made the argu-
ment concerning the benefits of abstraction, there is a definite 
point at which the failures of a particular abstraction level 
become evident. This may be most pronounced when dealing 
with putative mechanisms of control. In the case of simulated 
immunosuppression in the SOTABM, the abstractions made 
with respect to the life cycle of immune cells, and the various 

stages of activation possibly resulted in a too-coarse grain-
ing of responses the system; in short the abstractions made 
enforced a more binary, and less nuanced, set of possible 
trajectories for the different cellular populations and their 
activation status.

• Solid organ transplant does not occur without tissue trauma 
from the initial surgery. In fact, there can be a huge variation 
in the amount of surgical trauma/resuscitation associated with 
a transplant, which in turn is due to a large amount of variance 
in the presurgical morbid state of the patient. These factors 
clearly influence the success of the overall transplant, but due 
to the inherent interactive complexity of this clinically relevant 
condition, it is essentially impossible to parse out how each 
of those factors might actually come into play for a particular 
individual. A suggestion for that process of parsing is the goal 
of this initial paper: by decomposing the different possible 
functional components of the overall transplant patient, the 
sets of conditions presented here should be thought of as 
semi-idealized, reductionist interpretations of the admit-
tedly complex system dynamics. The process is analogous 
to the rationale for using simpler, reduced biological proxy 
experimental platforms to do research (cell cultures, tightly 
controlled animals, etc.), but with significant and critical dif-
ferences. The first of these differences is the fact that computa-
tional models are transparent with respect to the mechanisms 
being evaluated: there are no “hidden variables” (i.e., biological 
components or functions). This means that ABMs will only do 
what is put into them, and therefore their failure to be made to 
generate a desired behavior is direct evidence of their insuffi-
ciency (thereby achieving the goal of falsification). The second 
difference is that their transparent, modular structure allows 
ABMs to be aggregated (perhaps “reverse parsed”) in a fashion 
that is not currently feasible in experimental biology. While 
there are several steps in this direction (i.e., linked “organs-on-
a-chip”), the current translational step from in vitro to in vivo 
experimental platforms is opaque to a whole host of processes 
and interactions that cannot be identified or characterized.

Recognizing the costs of the abstractions and omissions 
made in the current version of the SOTABM provides a guide 
for the necessary refinements to be made in its next iterations. 
Importantly, the ability to modularly extend the SOTABM to more 
closely match the richness of the cellular subtypes and response 
capabilities in the early adaptive immune response is one of its 
key intended features. It is hoped that this initial implementation 
of the SOTABM will demonstrate its promise as a framework 
that can serve to integrate the continually evolving knowledge 
concerning transplant immunity and help fulfill the promise of 
dynamic knowledge representation as a means of addressing the 
Translational Dilemma.
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