
November 2015 | Volume 6 | Article 5731

Mini Review
published: 09 November 2015

doi: 10.3389/fimmu.2015.00573

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Debbie Van Baarle,  

Dutch Institute for Public Health and 
the Environment, Netherlands

Reviewed by: 
Mirko Trilling,  

University Duisburg-Essen, Germany  
Lewis L. Lanier,  

University of California San Francisco, 
USA

*Correspondence:
Lorenzo Moretta  

lorenzo.moretta@opbg.net

†Mariella Della Chiesa, Simona Sivori 
and Simona Carlomagno have 

contributed equally to this work.

Specialty section: 
This article was submitted to 

Microbial Immunology,  
a section of the  

journal Frontiers in Immunology

Received: 22 July 2015
Accepted: 26 October 2015

Published: 09 November 2015

Citation: 
Della Chiesa M, Sivori S, 

Carlomagno S, Moretta L and 
Moretta A (2015) Activating KIRs and 
NKG2C in Viral Infections: Toward NK 

Cell Memory?  
Front. Immunol. 6:573.  

doi: 10.3389/fimmu.2015.00573

Activating KiRs and nKG2C in viral 
infections: Toward nK Cell Memory?
Mariella Della Chiesa1† , Simona Sivori1† , Simona Carlomagno1† , Lorenzo Moretta2* and 
Alessandro Moretta1

1 Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genoa, 
Italy, 2 Dipartimento di Immunologia, IRCCS Ospedale Bambin Gesù, Roma, Italy

Natural killer (NK) cells are important players in the immune defense against viral 
infections. The contribution of activating killer immunoglobulin-like receptors (KIRs) and 
CD94/NKG2C in regulating anti-viral responses has recently emerged. Thus, in the 
hematopoietic stem cell transplantation setting, the presence of donor activating KIRs 
(aKIRs) may protect against viral infections, while in HIV-infected individuals, KIR3DS1, in 
combination with HLA-Bw4-I80, results in reduction of viral progression. Since, studies 
have been performed mainly at the genetic or transcriptional level, the effective size, 
the function, and the “licensing” status of NK cells expressing aKIRs, as well as the 
nature of their viral ligands, require further investigation. Certain viral infections, mainly 
due to Human cytomegalovirus (HCMV), can deeply influence the NK cell development 
and function by inducing a marked expansion of mature NKG2C+ NK cells expressing 
self-activating KIRs. This suggests that NKG2C and/or aKIRs are involved in the selective 
proliferation of this subset. The persistent, HCMV-induced, imprinting suggests that NK 
cells may display unexpected adaptive immune traits. The role of aKIRs and NKG2C in 
regulating NK cell responses and promoting a memory-like response to certain viruses 
is discussed.
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inTRODUCTiOn

Natural killer (NK) cells are components of the innate immune system that function as key play-
ers in anti-viral and anti-tumor immune responses. They are able to kill transformed cells with 
compromised HLA class I expression (“missing self hypothesis”) (1), but they can also modulate 
innate and adaptive immune responses by secreting chemokines/cytokines and by selecting efficient 
antigen-presenting cells (APCs) (2, 3). This plurality of NK cell functions is controlled by an array 
of inhibitory and activating receptors expressed at the cell surface. In general, in normal conditions 
when both types of receptors are simultaneously engaged, the inhibitory signals predominate and 
NK cells are prevented from killing and cytokine production (4).

The lectin-like heterodimers, CD94/NKG2A and CD94/NKG2C, and killer immunoglobulin-like 
receptors (KIRs) take part in the control of NK cell function.

Both CD94/NKG2A and CD94/NKG2C recognize the non-classical HLA-E molecules but their 
engagement results in opposite effects: NKG2A, containing an ITIM motif in its cytoplasmatic 
domain, transduces inhibitory signals, while NKG2C, thanks to its association with the ITAM-
bearing molecule DAP-12, transduces activating signals (5).
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Killer immunoglobulin-like receptors represent a family of 
inhibitory and activating receptors characterized by either two 
or three (KIR2D, KIR3D) Ig-like extracellular domains (6). 
Inhibitory KIRs (KIR2DL, KIR3DL) are characterized by a long 
cytoplasmayic tail containing ITIM motifs and bind allotypic 
determinants of specifically HLA class I (groups of HLA-A, -B, 
and -C alleles) (7). Importantly, during NK cell development, the 
engagement of inhibitory receptors by their self-HLA-I ligands 
confers intrinsic responsiveness to these cells, a property that has 
been referred to as “licensing” process (8–11). Activating KIRs 
(aKIRs) (KIR2DS, KIR3DS) are highly homologous to their 
inhibitory counterparts in the extracellular domain but are char-
acterized by a short cytoplasmic tail lacking ITIMs and interact 
with DAP-12, a signaling polypeptide that can induce NK cell 
activation (12).

Activating KIR-ligands are still a matter of study. The HLA  
class I specificity of aKIRs has been unequivocally demonstrated 
only for KIR2DS1 and KIR2DS4. In particular, KIR2DS1 rec-
ognizes the C2-epitope (12–14), whereas KIR2DS4 groups C1 
and C2 HLA-C alleles and HLA-A11 (15, 16). Since NK cells 
expressing aKIRs specific for self-HLA class I molecules could 
be autoreactive, tolerance has to be secured by a complementary 
“education” via aKIRs. In this context, NK cells expressing 
KIR2DS1 result hyporesponsive in HLA-C2+ individuals (17, 18). 
More recently, it has also been reported that a KIR2DS2 recom-
binant protein binds HLA-A11 molecule in complex with a vac-
cinia viral peptide (19) and that KIR2DS2+ NK cell clones show 
efficient degranulation against HLA-C1+ B-EBV transfected cell 
lines (20). aKIRs could also recognize non-HLA class I ligands. In 
this regard, KIR2DS4 has been shown to interact with a protein 
expressed on MHC class I-negative melanoma cells (21).

Because of the high homology in the ectodomain, most of the 
available anti-KIR antibodies are cross-reactive with inhibitory 
and activating isoforms, thus hampering a precise phenotypic 
analysis of the KIR repertoire. In recent years, however, the avail-
ability of new KIR-specific mAbs allowed to distinguish between 
the two isoforms (22–24).

Both the genetic polymorphisms of KIRs and their clonal 
expression mode contributed to generate variegated NK cell 
repertoires. Indeed, the human KIR gene family displays a high 
degree of diversity, which arises from the variability in the KIR 
gene content and from the allelic polymorphisms (25–27). 
Moreover, two main haplotypes can be identified: in addition to 
the complete set of inhibitory KIRs, “A” haplotypes contain a single 
aKIR (KIR2DS4), while “B” haplotypes have up to five aKIRs (28).

The impact of self-HLA class I molecules on the KIR repertoire 
is still debated and needs to be elucidated. Some investigators 
reported an effect of HLA-C on the KIR repertoire (29–31), sug-
gesting an instructive model of KIR acquisition by KIR-ligands, 
while others described a stochastic acquisition of KIR, suggesting 
a random and sequential model of the repertoire (32).

ROLe OF ACTivATinG KiRs in  
viRAL inFeCTiOnS

A growing number of studies display a significant association 
between the presence of aKIRs and the clinical outcome of some 

human diseases, including viral infections, certain tumors, and 
autoimmune diseases, thus suggesting that aKIRs may play a 
relevant role in regulating NK cell function (6, 33–36).

In particular, during the past few years, various studies have 
confirmed a role of KIR3DS1 in HIV-1 infections (6, 37). Thus, 
the combined presence of KIR3DS1 gene and HLA-Bw4-I80 
alleles has been reported to exert a protective effect in patients 
with chronic HIV-1 infection. The reduction of viral load results 
in slow decline of CD4+ T cell counts and delayed progression 
to AIDS (37, 38). In addition, during acute HIV-1 infection, 
expansion of KIR3DS1+ NK cells (39), killing of HIV-1 infected 
cells, and inhibition of viral replication have been reported 
(40). Remarkably, this occurred only in individuals carrying 
HLA-Bw4-I80 alleles. Along this line, increased KIR3DS1 count 
due to copy number variants (CNVs) in KIR3DS1/L1 locus has 
been associated with a lower viral set point in HLA-Bw4-I80+ 
individuals (41). Functional studies performed by Pelak et  al. 
have also shown that NK cells from HLA-Bw4-I80+ individu-
als, expressing one KIR3DS1 and two KIR3DL1, display large 
proportions of KIR3DS1+ NK cells in the peripheral blood and 
an increased resistance against HIV-1. This KIR3DS1+ NK 
cell expansion might represent an HIV-induced, memory-like 
response (Figure  1). Moreover, NK cells derived from HLA-
Bw4-I80+ individuals with multiple copies of KIR3DS1, in the 
absence of KIR3DL1, were unable to mediate a robust anti-viral 
activity (41).

In addition to KIR3DS1, other KIRs have been associated with 
HIV disease progression. For example, Gaudieri et al. reported 
that KIR2DS2 is associated with a more rapid CD4+ T cell 
decline and progression to AIDS (42) and Soria et al. found that 
the functional compound genotype HLA-C1(+)/KIR2DL3(+) 
is associated with reduced risk of becoming an immunological 
non-responder to combination ART (43).

KIR3DS1 has been also associated with a better control of 
H1N1 influenza A (44) but not of HTLV-1 infections (45). In 
addition, protective effects of aKIRs have recently been described 
in BK virus infection in renal transplant patients with polyoma 
virus-associated nephropathy (PVAN). Indeed, a significantly 
higher percentage of patients with BKV-associated nephropathy 
(BKVAN) carrying low numbers of aKIRs have been described. 
These findings support a role of aKIRs in the control of BKV 
infection after kidney transplantation (46). Moreover, KIR2DS1, 
KIR3DS1, and KIR2DL5 would exert a protective role in the clear-
ance of HBV. In contrast, KIR2DS2 and KIR2DS3 would favor a 
persistent, weak inflammatory reaction and, as a consequence, a 
continuous injury of liver tissues and chronic hepatitis (47).

In transplantation, various studies suggested that group B 
KIR haplotype is protective from viral infections. Since Human 
cytomegalovirus (HCMV) infection/reactivation is a common 
complication occurring after transplant in immunosuppressed 
subjects, many studies have focused on the possible association 
between aKIRs and HCMV infection. A reduced risk of HCMV 
reactivation has been reported in solid organ transplantation 
(SOT) recipients carrying more than one aKIR (haplotype 
B) (48). Similar results have been obtained in patients given 
hematopoietic stem cell transplantation (HSCT) from haplotype 
B donors (49). Notably, the highest protective effect has been 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


November 2015 | Volume 6 | Article 5733

Della Chiesa et al. NK Cells in Anti-Viral Responses

Frontiers in Immunology | www.frontiersin.org

detected in patients whose donors had a KIR genotype with 
more than five aKIRs or containing simultaneously KIR2DS2 and 
KIR2DS4 (50, 51). Other studies have suggested the importance 
of the position of aKIR genes in the telomeric region to gain a 
favorable effect against HCMV infection (52–54). However, all 
these studies analyzed KIR genotypes and/or KIR transcripts in 
HSCT donor/recipient pairs, but not the actual size of the NK 
cell subsets expressing aKIRs nor investigated whether such KIRs 
were functional.

Regarding the role of aKIRs in the control of certain tumors 
caused or at least promoted by viral infections, a protective 
effect of KIR3DS1 in combination with HLA-Bw4-I80 alleles was 
observed against hepatocellular carcinomas developed in chroni-
cally HCV-infected patients (55). Moreover, the presence of NK 
cells expressing KIR3DS1 and KIR2DS1 seems to be critical in 
removing human papilloma virus (HPV)-infected keratinocytes. 
On the other hand, the absence of KIR3DS1 and KIR2DS1 appears 
to be associated with a more frequent occurrence of respiratory 
papillomatosis, a rare disease caused by HPV-6/11 (56). Finally, 
a growing number of studies suggest a role for NK cells in the 
pathogenesis of autoimmune diseases. In particular, KIR3DS1 
has been associated with the development and progression of 
ankylosing spondylitis (57, 58).

FiGURe 1 | Can human nK cells keep memory of viral infections? (A) Although the physical interaction between KIR3DS1 and HLA-Bw4-I80 has yet to be 
demonstrated, it has been shown that the combined presence of KIR3DS1 gene and HLA-Bw4-I80 strongly predicts a favorable outcome for HIV-1-infected 
patients. Following acute HIV-1 infection, KIR3DS1+ NK cells might expand and efficiently control HIV infection by the killing of CD4+ infected blasts. (B) NKG2C+  
NK cells can efficiently proliferate in response to HMCV-infected cells. The NKG2C receptor could play a crucial role in the NK cell expansion and/or maturation 
driven by HCMV infection by the recognition of HLA-E molecules loaded with viral peptides, or of unknown ligands expressed by HCMV-infected cells. 
Once exposed to a second viral challenge, the expanded “memory” long-lived NKG2C+ CD57+ NK cell subset could provide a more efficient anti-viral response 
(e.g., by the release of IFN-γ).

HCMv inFeCTiOn DRiveS THe 
eXPAnSiOn OF nKG2C+ AnD/OR 
ACTivATinG KiRs+ nK CeLLS AnD  
MAY inDUCe ADAPTive FeATUReS  
in nK CeLLS

In recent years, it has been shown that certain viral infections, 
mainly due to HCMV, can deeply influence NK cell development 
and function. HCMV infection is particularly common in human 
beings and usually asymptomatic in immunocompetent hosts. 
However, similarly to other herpes viruses, HCMV remains 
latent for life, undergoing occasional reactivation (59). The 
continuous host–HCMV interaction is probably responsible for 
the large degree of adaptation of NK cells to the virus. Indeed, 
HCMV infection promotes a persistent redistribution of the NK 
cell receptors repertoire, favoring a large oligoclonal expansion 
of NK cells with high surface expression of CD94/NKG2C and 
a mature self-KIR+NKG2A− phenotypic signature (60). The 
imprinting induced by HCMV infection is variable among 
individuals and is influenced by the NKG2C gene copy number 
(61). It is particularly evident in case of impaired T cell immu-
nity as in immunodeficient (62–65) or transplanted patients  
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TABLe 1 | Comparison between memory nK and T cell features.

Memory  
nK cells

Memory  
T cells

General features
RAG-rearrangements during cell 
differentiation

No Yes

Lymphoid progenitor Yes Yes

Requirement of γ-chain cytokines for 
survival/proliferation

Yes Yes

Killing via perforin/granzymes Yes Yes (CD8+ T)

Education process to avoid autoreactivity Yes Yes

ADAPTive FeATUReS

Clonal expansion upon viral infection Yes Yes

DNA methylation at specific sites Yes Yes

Longevity Yes?a Yes

Ag specificity Yes?a Yes

Enhanced response to secondary 
challenge

Yes?a Yes

MHC I/peptide recognition Yes (through 
NKG2C/aKIR?)

Yes  
(through TCR)

aThese characteristics have been clearly demonstrated only for murine NK cells  
[Ref. (75–77)].
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(HSCT or SOT) (66–68). Indeed, during the first year after 
transplantation, HCMV reactivation induces a rapid NK cell 
differentiation toward mature, fully competent CD56dim NK cells 
expressing the NKG2C+ NKG2A− KIR+ Siglec-7− CD57+ signa-
ture. These observations, together with a previous finding that 
NKG2C+ NK cells, isolated from healthy seropositive donors, can 
efficiently proliferate in response to HCMV-infected fibroblasts 
(69), suggesting that the NKG2C receptor could play a crucial role 
in the NK cell expansion and/or maturation driven by HCMV 
infection. Along this line, Rolle et al. recently demonstrated that 
HLA-E expression on HCMV-infected cells is mandatory for the 
expansion of NKG2C+ NK cells (70). Since the HCMV-encoded 
UL40 protein stabilizes HLA-E surface expression on certain 
HCMV-infected targets (e.g., fibroblasts, endothelial cells), while 
other HCMV-derived polypeptides inhibit the surface expression 
of classical HLA class I molecules (71), it is possible that NKG2C+ 
NK cells receive proliferative signals from HLA-E+ infected cells 
in the absence of inhibitory KIR/HLA interactions. However, the 
actual role of UL40 in driving NKG2C+ NK cells expansion is 
not clear (69, 70) and it cannot be excluded that other signals 
provided directly or indirectly by HCMV may be involved in this 
process. In this context, it is worth mentioning that viral UL40 
is characterized by a certain degree of polymorphism that may 
stimulate or inhibit NKG2C-mediated responses (72) and that 
HLA-E can bind different peptide sequences, e.g., those derived 
from Hsp60 (73, 74).

Moreover, HCMV has evolved several evasion strategies tar-
geting NK receptors and their ligands. Indeed different HCMV-
encoded proteins are capable of interfering with NK cell function 
(Table S1 in Supplementary Material).

On the other hand, in mice, MCMV infection unequivocally 
drives the expansion of NK cells expressing the activating recep-
tor Ly49H, upon specific recognition of m157, its virus-encoded 
ligand (75, 76). This expanded subset displays adaptive features 
typical of T lymphocytes, being a long-lived cell subset capable of 
mounting an efficient and specific recall response (75, 77). These 
studies suggested that also innate cells can develop memory-like 
properties in response to certain pathogens, displaying adaptive 
cells characteristics, i.e., antigen-specificity, longevity, clonally 
amplified responses upon antigen (re-) exposure (Table 1).

In human beings, HCMV-induced, long-living NKG2C+ NK 
cells might correspond to murine memory Ly49H+ NK cells, with 
similar memory properties. In line with this hypothesis, a recent 
study showed that when NKG2C+ NK cells were transplanted 
from HCMV-seropositive donors into seropositive HCST 
recipients, they underwent expansion and produced higher levels 
of IFN-γ as compared to NKG2C+ NK cells infused in seron-
egative recipients (78). This would imply that previously primed 
NKG2C+ NK cells, when exposed to a second viral challenge in 
the recipient elicit a more efficient anti-viral response, suggesting 
the acquisition of memory-like properties (78). In this context, 
it has been shown that NKG2C+ CD57+ NK cells, isolated from 
healthy HCMV-seropositive individuals, are characterized by an 
epigenetic remodeling at the IFN-γ locus. It is conceivable that 
this may be responsible for the enhanced IFN-γ production by 
NKG2C+ NK cells (Figure 1). This epigenetic imprinting reminds 
that detectable in memory CD8+ T cell or Th1 cells, suggesting 

that common molecular mechanisms may be involved in promot-
ing the generation of memory cells. Along this line, very recent 
studies showed that putative adaptive/memory NK cells lack the 
expression of certain signaling proteins (i.e., EAT-2, Syk, and 
FcϵRIγ) and that these features are likely to reflect a particular 
DNA-methylation pattern shared by these adaptive NK cells and 
CTLs. This epigenetic remodeling induced by HCMV would be 
responsible, at least in part, for the functional specialization of 
adaptive NK cells that are capable of efficiently killing HCMV-
infected targets via ADCC, in the presence of anti-HCMV 
antibodies, but show impaired response to cytokines (IL-12 
and IL-18) (79–81). On the other hand, killing by ADCC can 
be reduced by virus-encoded FcγRs that are known as HCMV 
inhibitors of IgG-mediated immunity (82).

The similarities between NK and T cells described in these 
reports (79, 80, 83) support the unexpected concept of memory/
adaptive NK cells. Indeed, with the exception of RAG-mediated 
gene rearrangements, NK cells share with T cells several features 
regarding both their development and mode of functioning. Thus, 
NK and T cells share a common lymphoid progenitor and undergo 
a “licensing” process that selects functional, non-autoreactive 
cells. Moreover, both cell types produce IFN-γ and TNF-α upon 
receptor- or cytokine-mediated activation and kill via perforin 
and granzymes, contained in the cytolytic granules (as in CTLs) 
(84, 85) (Table 1). However, while for T cells the generation of 
memory is a well-known process (86), at the present, neither the 
signals responsible for the epigenetic modifications detected in 
putative memory NK cells nor whether this remodeling may per-
sist in the progeny are known (83). Further investigation focusing 
on the HCMV-derived ligands recognized by NKG2C will help to 
clarify this point.

Although NKG2C expression represents the most typical 
marker of NK cell expansions promoted by HCMV infection, 
recent reports would indicate that also aKIRs may be involved in 
promoting HCMV-induced NK cell differentiation (87). Thus, in 
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patients given UCBT from donors carrying a homozygous dele-
tion of the NKG2C gene, a rapid expansion of mature NK cells 
expressing functional aKIRs was detected (88). In the absence of 
NKG2C, it is possible that aKIRs may participate in the HCMV-
driven NK cell maturation and in the control of infections after 
transplantation. This hypothesis would be in line with studies 
suggesting that the presence of aKIRs is protective against viral 
infections in different settings (18). Whether the engagement of 
aKIRs by (unknown) viral ligands could promote the genera-
tion of memory NK cells expressing aKIR, as hypothesized for 
NKG2C+ NK cells, is still unknown. In this context, it would 
also be important to investigate the level of specificity of these 
putative memory NK cells, expressing NKG2C and/or aKIRs, 
in anti-viral responses. In mice, memory Ly49H+ NK cells are 
capable of specific anti-MCMV responses while they do not 
respond to other pathogens (77). In human beings, an expan-
sion of NKG2C+ NK cells has been reported also in individuals 
undergoing acute hantavirus, chikungunyia and HCV infection 
(89–91). However, since all these patients were HCMV seroposi-
tive, the NKG2C+ NK cell expansion could have been driven by 
a subclinical HCMV reactivation. Along this line, two recent 
studies showed that in HCMV-seropositive individuals undergo-
ing acute EBV infection, NKG2C+ NK cells, although present 
in substantial proportions, did not expand, further suggesting 
that NKG2C+ NK cell expansions are HCMV specific (92, 93). 
On the other hand, during any anti-viral immune response, NK 
cells are exposed to multiple cytokines that may promote NK cell 
expansion and enhance IFN-γ production by NK cells through 
mechanisms that are not virus-specific (94).

Interestingly, a very recent study showed that antigen-specific 
NK cell memory could be induced in rhesus macaques after both 
SIV infection and vaccination (95).

Finally, it would be interesting to investigate whether memory-
like NK cells expressing NKG2C and/or aKIRs may also exert 
efficient anti-tumor and anti-leukemia activity.

COnCLUDinG ReMARKS

It is conceivable that NK cells expressing CD94/NKG2C and/
or aKIRs may play a protective role in different, viral infections. 

This protection would be primarily based on the recognition 
and killing of infected cells. Although many evidences support 
the existence of a correlation between the presence of certain 
aKIR genes and protection from given viral diseases, technical 
difficulties in the detection of NK cell subsets expressing aKIRs 
together with the elusive nature of most ligands recognized by the 
activating NK receptors make it difficult to clearly establish their 
actual role. However, in a given setting such as HIV infection, 
the presence of KIR3DS1+ NK cells in association with a specific 
HLA-I ligand (HLA-Bw4-I80) strongly predicts a favorable out-
come for infected patients.

In anti-HCMV responses, NK cells revealed unexpected 
adaptive features. Indeed, as discussed above, NK cells share 
important traits with adaptive T and B. Upon HCMV infection, 
NK cells may undergo clonal expansion generating long-living 
cells expressing NKG2C and/or aKIRs that are characterized 
by epigenetic modifications similar to those of memory T 
cells. Thus, it is possible that NK cells may develop memory 
responses as a strategy to keep more efficiently under control 
those viruses like HCMV that interact lifelong with the host, 
thus representing a constant challenge for the immune system. 
At present, we cannot exclude that also other viral infections 
may induce memory properties in NK cells. If the adaptive 
features shown by NK cells will be further substantiated and 
the mechanisms involved will be more precisely defined, this 
information may reveal useful also to implement NK cell-based 
treatments, such as adoptive transfer of specifically primed NK 
cells against given viruses.
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