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Fibrosis is a characteristic pathological feature of an array of chronic diseases, where 
development of fibrosis in tissue can lead to marked alterations in the architecture of 
the affected organs. As a result of this process of sustained attrition to organs, many 
diseases that involve fibrosis are often progressive conditions and have a poor long-term 
prognosis. Inflammation is often a prelude to fibrosis, with innate and adaptive immunity 
involved in both the initiation and regulation of the fibrotic process. In this review, we will 
focus on the emerging roles of the newly described innate lymphoid cells (ILCs) in the 
generation of fibrotic disease with an examination of the potential interplay between ILC 
and macrophages and the adaptive immune system.
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iNTRODUCTiON

Fibrosis is a characteristic pathological feature of an array of chronic diseases. The development 
of fibrosis in distinct tissues and organs is associated with numerous conditions, for example, idi-
opathic pulmonary fibrosis (IPF), cystic fibrosis (CF), systemic sclerosis, non-alcoholic steatohepa-
titis (NASH), primary biliary cirrhosis, cancer, and atherosclerosis. In these diseases, the chronic 
development of fibrosis in tissue can lead to marked alterations in the architecture of the affected 
organs and subsequently cause defective organ function. As a result of this process of sustained 
attrition to organs, many diseases that involve fibrosis are often progressive conditions and have a 
poor long-term prognosis. Indeed, due to the limited understanding of the mechanisms underlying 
the generation of fibrosis and the heterogeneity of fibrotic disease, there is currently a paucity of 
effective treatment strategies, contributing to the poor prognosis. The processes that underlie fibrosis 
are a tightly controlled natural mechanism of repair; however, dysregulation in the wound healing 
mechanism can result in aberrant fibrosis. Inflammation is often a prelude to fibrosis, with innate and 
adaptive immunity involved in both the initiation and regulation of the fibrotic process. In different 
organs, the insult to distinct cells, for example, bronchial epithelial cells in the respiratory tract, can 
lead to cell damage and release of various mediators, such as damage-associated molecular patterns 
(DAMPs), as well as proinflammatory and profibrotic factors. The mediators released can, depending 
on prevailing stimuli and local cellular environment, initiate a cascade within the cellular milieu in 
a tissue that leads to the accumulation of extracellular matrix components (ECM), rich in fibrillar 
collagens, fibronectin, and hyaluronic acid culminating in the deposition of fibrous connective tissue 
(1, 2). In this review, we will focus on the development of pulmonary fibrosis and the emerging roles 
of the newly described innate lymphoid cells (ILCs) in the generation of fibrotic disease with an 
examination of the potential interplay between ILC and macrophages.
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iNFLAMMATiON AND FiBROSiS

While chronic injury is a prominent factor in many fibrotic 
diseases, acute inflammatory reactions may also play an 
important role in the initiation of fibrosis. Using experimental 
models involving acute lung injury, such as bleomycin-induced 
pulmonary fibrosis, where cellular apoptosis and necrosis are the 
underlying causative mechanisms, acute inflammatory responses 
initiated via activation of DAMP signaling cascades, results in a 
profibrotic response. While most chronic fibrotic diseases have 
an underlying inflammatory cause in many cases, for example, 
IPF, the causative mechanisms are not fully understood. Indeed, 
IPF is not responsive to anti-inflammatory steroid treatment, 
conversely treatment appears to exacerbate disease (3). However, 
in certain fibrotic disorders where the inflammatory cause has 
been identified, the use of anti-inflammatory therapies, such as 
ibuprofen to reduce the symptoms of CF (4, 5), demonstrate the 
potential roles of inflammation in chronic fibrotic diseases.

A loss of membrane integrity of cells, through injury, apopto-
sis, or necrosis, results in uncontrolled release of cellular contents, 
some of which can act as DAMPs, initiating an inflammatory 
response to clear cellular debris and initiate wound healing. In 
addition, DAMPs can be further synthesized and released in 
response to local cellular damage. The receptors for DAMPs, the 
pattern recognition receptors, including the Toll-like receptor 
(TLR) family, can in addition to recognizing pathogen-associated 
molecular patterns (PAMPs) identify fragments of ECM, such as 
hyaluronic acid and fibrinogen cleavage products (6). Indeed, 
effective danger signaling is implicated in the generation of 
fibrosis, with TLR2-, TLR3-, TLR4-, and TLR9-deficient animals 
demonstrating exacerbated collagen deposition in experimental 
disease models (7). The excessive synthesis and release of DAMPs 
underlies “sterile inflammation,” with innate immune cells pro-
moting inflammation in the absence of an active infection (8). 
Apoptotic and necrotic epithelial cells are a primary source of 
DAMPs, in particular ATP, IL-33, and uric acid that can initiate 
fibrosis (7). Release of uric acid, which crystallizes locally, can 
activate the NALP3 inflammasome in macrophages resulting 
in the release of IL-1β (9). Inflammasome activation leads to an 
increase in a number of other proinflammatory and profibrotic 
cytokines and chemokines, such as CXCL1, platelet-derived 
growth factor (PDGF), and transforming growth factor β1 
(TGF-β1), linking innate immune activation and generation of 
fibrosis (10). Due to the requirement for inflammasome activa-
tion in the processing of IL-1β and IL-18 and the upregulation of 
other profibrotic mediators, inflammasome activation may play 
a critical role in wound healing; however, further investigation is 
required to address the potential for therapeutics targeting the 
inflammasome as beneficial in fibrotic disease.

THe ePiTHeLiAL BARRieR iN wOUND 
HeALiNG AND FiBROSiS

The epithelium serves as the initial defense against insult, pro-
viding both a physical and mechanical barrier, and is therefore 
a crucial interface to orchestrate both the innate and adaptive 
immune responses. Proinflammatory mediators released by 

damaged and dying epithelial cells, as well as recruited leukocytes, 
activate mesenchymal precursor cells in tissues and induce their 
trans-differentiation to ECM-producing myofibroblasts (1). 
The fibrosis cascade progresses following the insult to cells and 
subsequent release of mediators, such as IL-13, connective tissue 
growth factor (CTGF), and TGF-β, that operates downstream of 
initial cellular injury (6, 11). The mature epithelium in the lung is 
non-proliferative; however, in response to injury or inflammation, 
it is vital that the damage to the epithelium is repaired to ensure 
it remains an effective physical barrier. The signaling pathways 
activated in the process of repairing epithelial damage are similar to 
those initiated during development, with the dysregulation of these 
developmental pathways underlying the generation of fibrosis (12).

Transforming growth factor-β is the major profibrotic cytokine; 
it has central roles in promoting the activation and proliferation 
of fibroblasts, upregulates α-smooth muscle actin (α-SMA) and 
collagen I synthesis by myofibroblasts and promotes epithelial-to-
mesenchymal transition (EMT) (6). The Wnt signaling pathway 
has also been implicated in EMT, with overexpression of the 
WNT-1 inducible signaling protein regulating the expression of 
profibrotic markers, such as MMP7 and plasminogen-activator 
inhibitor 1 (PAI-1), thus promoting EMT locally (6). CTGF is a 
matricellular protein, which can mediate the activities of a number 
of other profibrotic and angiogenic factors, such as TGF-β, bone 
morphogenic protein (BMP) 4, and vascular endothelial growth 
factor (VEGF) (13, 14). CTGF has been implicated in fibrosis 
in the liver, lung, skin, and kidney and acts synergistically with 
TGF-β to promote chronic fibrosis inducing ECM expression and 
collagen production by fibroblasts (6). Indeed, trials of antibod-
ies targeting CTGF are currently ongoing in patients with IPF 
and liver fibrosis (15). Repetitive cycles of epithelial damage and 
repair are required for the generation of fibrosis (16, 17), with fac-
tors that damage the epithelium and initiate DAMPs and alarmin 
responses being actively pursued as potential therapeutic targets.

ePiTHeLiAL-DeRiveD CYTOKiNe 
MeDiATORS OF FiBROSiS

In addition to the “classic” profibrotic mediators, such as TGF-β 
and CTGF, recent research has focused on epithelial-derived 
type 2 cytokines as potential therapeutic targets for fibrosis. In 
response to epithelial cell injury, the alarmin cytokines IL-25, 
IL-33, and TSLP are released and are responsible for the initiation 
of a cascade of inflammatory responses. These cytokines have 
important roles in type 2 immunity, in particular in helminth 
infection and allergy (18). In the context of fibrosis, all three 
epithelial cell-derived cytokines have individually been shown to 
be involved in different aspects of fibrosis and are dysregulated in 
patients with fibrotic diseases (Table 1).

iL-25

IL-25, also known as IL-17E, is a member of the IL-17 family 
of cytokines and is secreted by many immune cells including 
activated Th2 cells, eosinophils, mast cells and macrophages, in 
addition to epithelial cells. IL-25 binds to IL-17RB, which forms a 
receptor complex with IL-17RA, activating the NF-κB pathway and 
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initiating Th2-mediated inflammation. IL-25 has been implicated 
in both experimental models of fibrosis and has been detected in 
samples from patients with chronic lung conditions and in the 
skin of patients with systemic sclerosis (19–23). Mice deficient in 
IL-25, or its functional receptor IL-17RB, show impaired collagen 
deposition in response to bleomycin-induced lung injury or S. 
mansoni egg-induced granulomatous pulmonary inflammation 
(21). Furthermore, intranasal administration of IL-25 induces 
collagen deposition and TGF-β and CTGF expressions in the 
lungs (21, 22). IL-25 is also upregulated in asthma and has been 
shown to play a role in airway remodeling and angiogenesis 
both in vitro and in in vivo models (24, 25). Treatment with an 
anti-IL-17RB antibody, thereby blocking IL-25-mediated signal-
ing, improves airway hyper-responsiveness in a mouse model of 
allergic lung inflammation (26, 27). The therapeutic benefits of 
inhibiting IL-25 in conditions, such as allergic lung inflamma-
tion, where airway remodeling is a key event, suggest that IL-25 
is an important mediator of tissue regeneration and consequently 
fibrosis in conditions, such as asthma.

IL-25-dependent fibrosis elicited in the lungs has been attrib-
uted to a downstream pathway involving IL-25-mediated expan-
sion of ILC2 within the lungs with subsequent induction of fibrosis 
via an IL-13-dependent mechanism (21). Further mechanistic 
studies have demonstrated that in addition to activating ILC2, 
IL-25 can also directly drive polarization of bone marrow-derived 
macrophages in vitro toward a type 2 phenotype, with increas-
ing surface expression of M2 marker CD206, in synergy with 
coadministered IL-4 (28). In addition, IL-25 can directly bind to 
human pulmonary fibroblasts through its receptor IL-17RB and 
can promote proliferation and differentiation to a myofibroblastic 
phenotype (22). These data suggest that IL-25 is an important 
mediator of fibrosis with roles in human fibrotic disease and, as 
such, is an exciting therapeutic target.

iL-33

IL-33 is the functional ligand for the IL-1 receptor family member 
ST2 in a complex with IL-1R accessory protein (IL1RAP) (29). 
IL-33 is not normally secreted, instead it is found localized to 
heterochromatin in the nucleus; however, it is released upon cell 

TABLe 1 | expression of selected epithelial-derived cytokines in human fibrotic diseases.

Cytokine Disease Observation Reference

IL-25 IPF Increased IL-25 detected in BAL fluid of IPF patients’ levels positively correlate with fibrotic marker 
periostin

Hams et al. (21)

Asthma Rhinovirus-induced IL-25 exacerbates asthma attacks Beale et al. (25)
Systemic sclerosis Increased IL-25+ cells in the skin of SSc patients Lonati et al. (23)

IL-33 IPF IL-33 is elevated in the lungs and BAL of IPF patients Luzina et al. (34)
Asthma Increased IL-33 in the serum and sputum of patients with allergic asthma Hamzaoui et al. (31)

Guo et al. (32)
Hepatitis IL-33 is increased in the endothelial cells from livers of patients with hepatitis B, hepatitis C, and cirrhosis Marvie et al. (33)
Systemic sclerosis Serum IL-33 is increased in SSC patients Yanaba et al. (30)

Serum IL-33 positively correlates with skin lesions

TSLP Asthma Bronchial and BAL expression of TSLP increased in asthmatics Ying et al. (41)
TSLP promotes airway remodeling in lung fibroblasts Wu et al. (42)

Systemic sclerosis TSLP is upregulated in the skin of patients with SSc Christmann et al. (43)

damage as an alarmin. IL-33 and ST2 have been causally linked 
with fibrotic conditions, including Crohn’s disease, pulmonary, 
and liver fibrosis (Table 1) (30–32). In mouse studies, Il33−/− and 
Il1rl1−/− mice demonstrate decreased collagen deposition in 
models of lung, liver, and intestinal fibrosis (33–37). Interestingly, 
only the full length but not the proteolytically cleaved mature 
IL-33 is implicated in the pathogenesis of the bleomycin-induced 
model of pulmonary fibrosis (34, 38). Mechanistically, IL-33 
initiates a local inflammatory response through the recruitment 
and activation of type 2-associated effector cells including eosino-
phils, basophils, mast cells, and ILC2, resulting in the release of 
Th2 cytokines and activation of macrophages, thereby potentially 
contribution to the downstream development of fibrosis. Indeed, 
in the liver and lung, the profibrotic effects of IL-33 are closely 
linked with increased IL-13 production from ILC2 (35, 39, 40).

TSLP

TSLP is secreted predominantly by keratinocytes but is also found 
in the small airway and intestinal epithelium, and signals via a 
heterodimeric receptor comprising one chain of IL-7Rα and one 
chain of TSLPR. TSLP has also been implicated in several models 
of fibrosis [Table  1 (41–43)], with diminished pulmonary and 
skin fibrosis in mice deficient in the receptor for TSLP (44, 45).

While it is evident that these epithelial alarmin cytokines indi-
vidually contribute to the generation of fibrosis, there is overlap 
and functional redundancy in IL-25, IL-33, and TSLP potentially 
due to the ability of all three cytokines to activate ILC2, as reported 
by Locksley and colleagues, with respect to chitin-elicited pul-
monary inflammation (46). However, this apparent redundancy 
may be due to different ligand and receptor expression at different 
anatomical sites and a hierarchy of action at each tissue, although 
this speculation would need experimental clarification.

iNNATe LYMPHOiD CeLLS

Innate lymphoid cells are a recently described group of innate 
cells of a lymphoid lineage that do not express antigen-specific 
receptors. These cells have important roles in the innate response, 
regulation of homeostasis and inflammation, and interplay 
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with adaptive immunity. While relatively rare in the systemic 
circulation in comparison to other hematopoietic cells, ILCs 
are enriched at epithelial barrier surfaces and act as regulators 
of chronic inflammation and tissue remodeling, acting to bridge 
innate and adaptive immunities.

Mature ILCs can be identified by a lack of markers associated 
with cells of a lymphoid lineage; however, they share expression 
of Thy1, the common gamma chain (γc), and IL-7Rα (47). ILC 
develops from common lymphoid progenitors (CLPs) in the 
fetal liver and adult bone marrow, relying upon the transcrip-
tion factors’ inhibitor of DNA binding 2 (Id2), nuclear factor 
interleukin-3 regulated (NFIL3), promyelocytic leukemia zinc 
finger protein (PLZF), and thymocyte selection-associated 
mobility group box (Tox) (47–52). Expression of Id2 is essential 
for the development of ILCs; however, PLZF is only transiently 
expressed in the early ILC precursor populations, with levels 
barely detectable in mature ILCs, suggesting that its importance 
in the early development of ILCs (49). Expression of NFIL3 and 
Tox is detected earlier than Id2 in the development cascade of ILC; 
however, these transcription factors do not appear to be as critical 
as Id2 for ILC development, with only minimal effects observed 
in the ILC repertoire in mice deficient in either NFIL3 or Tox 
(48, 51). These precursor cells differentiate to NK precursors or 
common helper innate lymphoid precursors, which, under the 
influence of additional transcription factors and cytokines give 
rise to mature ILC subsets (Figure 1) (53, 54).

Innate lymphoid cells can be divided into distinct subsets 
based on the cytokines they produce and the transcription factors 
necessary for their development and function: group 1, which 
produces interferon (IFN) γ and includes NK cells; group 2, which 
produces Th2-associated cytokines; and group 3, which produces 
IL-17 and IL-22 (Figure 1). Expression of the transcription fac-
tors T-bet, GATA3, and RORγt is required for the development 
of ILC1, ILC2, and ILC3 respectively (Figure 1). While GATA3 
is required for the maturation of all ILC subsets, it is expressed at 
much higher levels in ILC2. The transcription factors RORα and 
Bcl11b are also required for effective function of ILC2, deficiency 
in either RORα or Bcl11b diminishes the generation of mature 
ILC2 (55–58). Expression of the aryl hydrocarbon receptor (Ahr) 
appears critical for ILC3 function, with reduced IL-22 production 
and decreased presence of ILC3 in the intestines of Ahr-deficient 
mice (59). There is some plasticity between ILC subsets, ILC3 
can downregulate RORγt expression, allowing T-bet to become 
the prominent transcription factor, and ILC3 cells can take on a 
more ILC1 phenotype associated with increased IFNγ expression 
(47). A recent study has also demonstrated that CD14+ DCs in the 
intestine of Crohn’s disease patients promote polarization of ILC3 
to CD127+ ILC1 (60). An IL-25-elicited ILC2 population also has 
been detected, which has been shown to transition to produce 
IL-17 (61). Furthermore, in the absence of the T cell-associated 
transcription factor Bcl11b in ILC2, there is an increase in the 
expression of RORγt, and the cells take on an ILC3-like phenotype 
(57, 58, 62). While each ILC subset has unique roles in host defense 
and development, the plasticity between groups suggests that ILC 
subtypes may change depending on the tissue environment.

Innate lymphoid cells play an important role in orchestrating 
acute inflammation in response to infection and also chronic 

inflammation and wound healing. While ILC2 is commonly 
associated with chronic tissue inflammation and fibrosis, ILC1 
has not yet been formally implicated in the pathogenesis of 
fibrosis, while ILC3 is also associated with the development 
of fibrosis and is elevated in the bronchoalveloar lavage (BAL) 
fluid of asthma patients (63, 64). ILC3 is an important source 
of IL-17, which may mechanistically underlie a role for ILC3 in 
fibrosis. IL-17A has been implicated in the generation of fibrosis, 
with elevated levels detected in patients with IPF and CF (65, 
66). Furthermore, IL-17A has a critical role in the generation of 
bleomycin-induced pulmonary fibrosis, which is dependent on 
TGF-β, suggesting codependent roles for IL-17A and TGF-β in 
the pathogenesis of fibrosis (65). Therefore, as a source of IL-17 
in mucosal tissues, ILC3 may represent an important cell subset 
in the progression of IL-17-mediated fibrosis. The relative roles 
of ILC subsets may have further implications in the pathogenesis 
of lung inflammation. Indeed, a recent study has identified both 
Th2-high and Th17-high clusters of asthma patients, which are 
inversely correlated (67). Experimental models have shown that 
therapeutically targeting one cluster promotes the other subtype 
and that combination therapy may prove more effective (67). This 
study clearly demonstrates the interplay between Th2-cytokine-
producing cells and IL-17-producing cells and the potential 
implications for inflammatory and fibrotic diseases.

TYPe 2 iNNATe LYMPHOiD CeLLS, 
CHRONiC TiSSUe iNFLAMMATiON, AND 
FiBROSiS

ILC2 is characterized by their ability to produce the Th2 cytokines 
IL-4, IL-5, IL-9, IL-13, and amphiregulin (Figure  1) (68–71). 
They rely upon the transcription factors GATA3 and RORα for 
their development and the cytokines IL-25 and IL-33 for their 
maturation and recruitment (55, 69, 72). Recently, it has been 
reported that ILC2 can be further classified into two distinct sub-
types: the IL-33-elicited Lin-T1/ST2+ “natural ILC2” (nILC2) and 
the IL-25-elicted Lin-KLRG1hi “inflammatory ILC2” (iILC2) (61). 
While ILC2 has been implicated in the pathogenesis of fibrosis, 
the relative functions of nILC2 and iILC2 with regards to inflam-
mation, tissue repair, and fibrosis has yet to be fully elucidated.

ILC2 is implicated in the effective resolution of helminth 
infection, and in the development of allergic inflammation (73). 
Furthermore, ILC2 has been shown to play an important role 
in wound healing, tissue repair, and consequently chronic tis-
sue inflammation and fibrosis (74). Studies have demonstrated 
that while the pathogenesis of ILC2 in fibrosis is associated with 
IL-13 release (21, 56), ILC2-mediated wound healing and tissue 
regeneration in the lung are promoted by release of amphiregulin 
by ILC2 (70, 71). ILC2 is associated with tissue fibrosis in experi-
mental models, and dysregulated ILC2 responses have been 
detected in samples from patients with chronic inflammatory 
diseases, including IPF, atopic dermatitis, chronic rhinosinusi-
tis, and asthma (21, 75–78). Furthermore, depletion of ILC2 in 
experimental models of fibrosis attenuates collagen deposition; 
conversely, transfer of ILC2 can induce tissue collagen deposi-
tion (21, 39).
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Increased localized expression of IL-25 and IL-33 is associated 
with expansion of ILC2 that may thereby promote tissue fibrosis 
through a number of mechanisms (Figure  2). ILC2-derived 
IL-5 can recruit and activate eosinophils, contributing to tissue 
inflammation (79). ILC2 can also enhance Th2 responses, either 
indirectly via IL-13-mediated DC priming or directly through 
major histocompatibility complex class II (MHCII) interaction 
with TCR on CD4+ T cells (56, 80, 81). ILC2-derived IL-13 can 
activate macrophages toward a profibrotic phenotype and can 
also induce collagen deposition from fibroblasts (21). These stud-
ies clearly demonstrate an important pathogenic role for ILC2 
in the generation of fibrosis. This suggests that targeting ILC2 
and the associated signaling pathways offers the possibility for 
therapeutic exploitation.

TYPe 2 ReSPONSeS iN FiBROSiS

CD4+ Th1 and Th2 cells and the cytokines they produce are 
important mediators in the inflammatory phase of fibrosis. While 
Th1-derived IFNγ inhibits fibrosis, the Th2 cytokines IL-4, IL-5, 
and IL-13 have been linked to a number of fibrotic conditions. 
Both IL-4 and IL-13 can promote polarization of macrophages 
to an alternatively activated profibrotic phenotype, recruit innate 
cells, such as basophils and eosinophils, and can directly act on 
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fibroblasts to induce myofibroblast differentiation and collagen 
deposition (82, 83). Indeed, transgenic mice overexpressing IL-13 
spontaneously develop tissue fibrosis with significant collagen 
deposition (84). IL-5 release by Th2 cells can also recruit and 
activate eosinophils, which are a potent source of the profibrotic 
cytokines TGF-β, PDGF, and IL-13 (85).

Studies using IL-4- and IL-13-deficient mice (Il4−/−, Il13−/−, 
Il4ra−/−, and Il-13ra1−/−) demonstrate a prominent role for 
IL-13 over IL-4 in the Th2-induced generation of fibrosis 
(86–89). Using IL-13-deficient mice, a profibrotic role for IL-13 
was shown in S. mansoni egg-induced fibrosis in the livers of 
infected mice as well as in the lungs of egg-injected animals 
(87, 90). As reported first by Wynn and colleagues using soluble 
IL-13Ralpha2-Fc (86), a specific role for IL-13 in fibrosis was 
identified with anti-IL-13 antibodies now in clinical trials 
for fibrotic diseases (91). The functional receptors for IL-13, 
IL-4Rα, and IL-13Rα1 are expressed on fibroblasts, fibrocytes, 
and myofibroblasts (92). IL-13 can directly induce inhibition 
of the matrix metalloproteinase synthesis and can drive the 
differentiation of resident fibroblast and circulating fibrocytes 
to myofibroblasts, resulting in enhanced collagen deposition 
(83, 93, 94). These studies clearly demonstrate the importance 
of Th2 cells and specifically the associated cytokines, IL-4 and 
IL-13, in the pathogenesis of fibrosis.
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TGFβ, and can also directly influence differentiation of fibroblasts to myofibroblasts. TSLP, thymic stromal lymphopoetin; TGFβ, transforming growth factor β; ILC2, 
group 2 innate lymphoid cell; MΦ, macrophage.
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Recent studies have identified crosstalk between the innate 
and adaptive immune responses as integral in the initiation and 
maintenance of type 2 immunity (Figure 3). ILC2 is able to acti-
vate Th2 cells via MHCII-mediated antigen presentation, whereas 
MHCII expressing ILC3 suppresses T cell activation due to the lack 
of costimulatory molecules (80, 95). Antigen-specific interaction 
between ILC2 and Th2 cells leads to the production of IL-4, IL-13, 
and also IL-2 by the Th2. Notably, Th2-derived IL-2 interacts 
with CD25 expressed on ILC2 activating ILC2 to release IL-13 
(80). Furthermore, in addition to directly producing IL-13, ILC2 
produces IL-5, which activates eosinophils, which are also potent 
producers of IL-13 and TGF-β (79). These cytokines are all able to 
activate recruited and resident macrophages to a profibrotic pheno-
type, as well as directly inducing trans- differentiation of fibroblasts. 
This interplay between innate ILC2 cells and adaptive CD4+ T cells 
to induce macrophage activation and myofibroblast differentiation 
provides interesting mechanistic insight and identifies pathways 
that could potentially be exploited by novel therapeutics.

MACROPHAGeS SUBTYPeS, 
iNFLAMMATiON, AND FiBROSiS

Macrophages are phagocytic cells, which are integral in homeo-
stasis, development, and immunity and are found in all tissues 
where they display distinct anatomical and functional diversity. A 
brief overview of the central role that macrophages play in fibrosis 
is provided, as there have recently been a series of comprehensive 
reviews focused on macrophages (1, 96–99). Resident mac-
rophages regulate tissue homeostasis by responding to changes 
in the local environment. If required, circulating monocytes are 
recruited to the site of insult and activated to the desired pheno-
type or resident cells may proliferate locally in response to tissue 
injury (100). Macrophages can exist in many activation states 

dependent upon the inflammatory environment or stimulation 
used (98). Macrophages were commonly broadly divided into 
two subtypes: those associated with a type 1 response, termed 
“classically” activated or “M1,” which are generally proinflam-
matory, and “alternatively” activated or “M2,” which are typically 
associated with type 2 responses and wound healing. These two 
macrophage subtypes are defined experimentally by in  vitro 
responses to IFNγ and the TLR4 agonist lipopolysaccharide 
(LPS) and the Th2 cytokines IL-4 and IL-13, respectively, with 
macrophages differentially generated having a unique gene pro-
file and distinct functions. However, it is now accepted that the 
broad M1 versus M2 dichotomy terminology does not adequately 
describe the diverse phenotypes of macrophages. Therefore, 
newer and broader characterization of subtypes based on the 
activation of the macrophages under experimental conditions 
has been proposed (Figure 4) (98). Macrophages have a key role 
in the generation of fibrosis with distinct subtypes temporally 
activated and expanded in damaged tissue contributing to aspects 
of both the development of fibrosis and its subsequent resolution 
(97). Studies specifically depleting CD11b+F4/80+ macrophages, 
using Cd11b-DTR mice, have demonstrated that macrophages 
are crucial for the maintenance of type 2 immunity and also the 
associated generation of fibrosis (101, 102).

When tissues are damaged following infection or injury, circu-
lating Ly6C+ monocytes are recruited and differentiate into pro-
inflammatory macrophages as they migrate through the affected 
tissue (103). Proinflammatory macrophages elicited via STAT1 
in response to localized release of IFNγ or TLR agonists are a 
potent source of the cytokines tissue necrosis factor (TNF)-α, 
IL-6, IL-12, and IL-23, and reactive oxygen species (ROS), which 
act to kill invading pathogens (96). To counteract the damaging 
effects of macrophage-derived reactive oxygen and nitrogen spe-
cies to the local tissue, macrophages undergo apoptosis or switch 
to an anti-inflammatory phenotype, which dampens the immune 
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response and facilitates tissue repair (96). If the causal insult is 
not removed, as is the case in a number of chronic inflammatory 
diseases, the resulting aberrant activation of macrophages can 
lead to fibrosis. Indeed, macrophages play a crucial role in the 
pathogenesis of most chronic fibrotic diseases.

Activation of macrophages by proinflammatory stimuli causes 
a metabolic switch from oxidative phosphorylation to glycolysis, 
similar to the Warburg effect originally identified in tumors (104, 
105). This switch occurs in response to inflammatory stimuli, 
such as LPS and type I interferon, as well as hypoxic conditions 
and activation of hypoxia-inducible factor-1α (HIF-1α) (105). 
Indeed, the metabolic status of macrophages is closely linked to 
their function. Aerobic glycolysis is initiated upon activation of 
proinflammatory macrophages, increasing the uptake of glucose 
and attenuating the activities of the respiratory chain allowing for 
the generation of ROS, this provides the cell with a rapid release of 
energy essential for the removal of pathogens (106). Conversely, 
anti-inflammatory macrophages have a more sustained role 
requiring a slower release of energy and thus rely on fatty acid 
oxidation and oxidative metabolism (107). There is a clear distinc-
tion in metabolism between macrophage subtypes; however, the 
relevance of these observations and the implications for diseases, 
such as fibrotic disease, are, as yet, not fully understood.

The development of anti-inflammatory macrophages within 
a type 2 immune environment in response to IL-4 and IL-13 
via STAT6 signaling has specific functions in wound repair and 
resolution (99). Macrophages elicited by IL-4 and IL-13 have a 

distinctive expression profile characterized by high expression of 
Arginase (Arg) 1, chitinase-like protein Ym1 and RELMα, and 
release of the chemokines CCL17, CCL22, and CCL24 (Figure 4). 
Macrophages can also be activated by IL-10, via STAT3, which 
results in autocrine production of IL-10; these macrophages 
are characterized by expression of IL-4Rα [Figure  4 (108)]. 
Indeed, IL-4/IL-13-primed macrophages expressing Arg1 have 
been shown to inhibit IL-13-mediated fibrosis, via suppressing 
the activation of CD4+ T cells and suppressing myofibroblasts 
by competing for arginase in the local environment (109, 110). 
Conversely, IL-13-elicited macrophages are also implicated in the 
pathogenesis of fibrosis (102). There is clearly a balance between 
the pro- and antifibrotic roles of macrophages in inflammation; 
however, IL-13-elicited profibrotic macrophages (PFMs) are 
associated with the release of TGF-β and are considered profi-
brotic in most chronic inflammatory diseases.

Distinct from the pro- and anti-inflammatory macrophage pop-
ulations a CD11blow non-phagocytic macrophage population that 
does not express Arg1, termed resolution-promoting macrophages 
(Mres), has been identified in the lymphoid organs and adipose 
tissue (111). These macrophages appear to be antifibrotic and 
immune regulatory, secreting low levels of inflammatory cytokines 
and IL-10 and therefore may play an important role in the localized 
and systemic termination of an inflammatory response (112).

Recently, the epithelial-derived cytokines IL-25, IL-33, and 
TSLP discussed above have been shown to activate macrophages, 
both directly and indirectly, by promoting expansion of IL-13-
expressing ILC2 (113–115). Indeed, IL-13 production from ILC2 
and also eosinophils and Th2 cells has been shown to induce and 
maintain localized tissue macrophage activation both in the lung 
and in the adipose tissue (21, 115, 116). This interplay between 
ILC2 and Th2 cells in the maintenance of potentially PFMs at 
tissue sites could have implications in fibrotic disease.

Given the heterogeneity of macrophages (Figure  4), studies 
have focused on characterizing the PFM populations. These 
include IL-4-elicited proangiogenic PFMs that express a number 
of factors that are key mediators in the tissue repair process 
including TGF-β, PDGF, VEGF, as well as a number of matrix 
metalloproteinases (MMPs) (96). These factors contribute to the 
fibrotic cascade via recruitment of tissue fibroblasts, circulating 
fibrocytes and bone marrow-derived myofibroblasts, activation 
of resident myofibroblasts, and differentiation of epithelial cells 
into myofibroblasts through EMT. Indeed, in fibrotic tissue, 
macrophages localize in close proximity to myofibroblasts, sug-
gesting the importance of macrophages and macrophage-derived 
mediators in the progression of fibrosis (2). Macrophages are 
clearly important regulators of wound healing and therefore also 
fibrosis. The heterogeneity in macrophage populations (Figure 4) 
highlights the extent of further mechanistic investigation needed 
to address the relative roles of macrophage populations in the fine 
balance between wound healing and fibrosis.

CONCLUSiON

In this article, we have expanded on the potential roles of innate 
cells in fibrosis with a focus on the interplay between the epithelial-
derived cytokines, ILC2, and macrophages. We have also explored 
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the role of ILC2 in bridging the innate and adaptive immune 
system in the context of inflammation and fibrosis. Dysregulation 
of macrophages underlies a majority of inflammatory and fibrotic 
disease conditions, with a number of therapies targeting mac-
rophages currently under development (97). While the relative 
roles of macrophages in the induction and resolution of fibrosis 
have been extensively studied, it is yet unclear whether distinct 
populations of macrophages control these disparate functions, or 
whether the phenotype of the local macrophages alters dependent 
on changes in the tissue microenvironment. Many mechanisms 
underlying fibrosis are common to multiple organs, which is 

important for the development of potential therapeutics (117). 
A key to developing effective therapeutics for tissue fibrosis is the 
identification of common pathways and, although further studies 
are needed, the epithelial cytokines and ILC2 axis interplay with 
macrophages is a promising area for therapeutic intervention.
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