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Antigen-specific immunity requires regulated trafficking of T cells in and out of diverse tis-
sues in order to orchestrate lymphocyte development, immune surveillance, responses, 
and memory. The endothelium serves as a unique barrier, as well as a sentinel, between 
the blood and the tissues, and as such it plays an essential locally tuned role in regulating T 
cell migration and information exchange. While it is well established that chemoattractants 
and adhesion molecules are major determinants of T cell trafficking, emerging studies 
have now enumerated a large number of molecular players as well as a range of discrete 
cellular remodeling activities (e.g., transmigratory cups and invadosome-like protrusions) 
that participate in directed migration and pathfinding by T cells. In addition to providing 
trafficking cues, intimate cell–cell interaction between lymphocytes and endothelial cells 
provide instruction to T cells that influence their activation and differentiation states. 
Perhaps the most intriguing and underappreciated of these “sentinel” roles is the ability 
of the endothelium to act as a non-hematopoietic “semiprofessional” antigen-presenting 
cell. Close contacts between circulating T cells and antigen-presenting endothelium 
may play unique non-redundant roles in shaping adaptive immune responses within the 
periphery. A better understanding of the mechanisms directing T cell trafficking and the 
antigen-presenting role of the endothelium may not only increase our knowledge of the 
adaptive immune response but also empower the utility of emerging immunomodulatory 
therapeutics.
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iNTRODUCTiON

To fulfill their roles of conducting immune surveillance and mediating immune responses, cells of 
the immune system (leukocytes) must continuously traffic into and out of the tissues and vascular–
lymphatic circulation. In the case of T lymphocytes (T cells), this trafficking is required to perform 
repeated serial encounters with diverse host cells in search of cognate peptide antigens presented 
on their surface (1). The endothelial cell lining of the contiguous vascular–lymphatic circulatory 
system is a highly unique anatomical structure; it serves both as a physical barrier that separates 
the tissue and blood–lymph compartments as well as as an interface for communication between 
the two. Thus, leukocyte–endothelial interactions are of special importance for the regulation of 
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FiGURe 1 | Blood–lymph circulatory system and lymphocyte 
trafficking. Upper panel: schematic shows the contiguous blood–lymph 
circulatory system. Arterial, oxygen-rich, blood (pink) flows away from the 
heart and into the microvasculature (arterioles, capillaries, and venules). 
Oxygen-depleted blood (blue) flows from the microvasculature back to the 
heart. Lymph (green) collected from the tissues (yellow) is taken up by the 
lymphatic capillaries to flow through the afferent lymphatic vessels, lymph 
nodes (LN), efferent vessels, and back into the blood circulation via the 
lymphatic duct. Local microvasculature of the LN (i.e., high endothelial 
venules; HEV) serves as a location for lymphocytes to enter the LN. Dark blue 
and dark green lines indicate the vascular and lymphatic endothelial barriers, 
respectively. Boxed region (lower panel) shows a segment of a postcapillary 
venule during the process of lymphocyte extravasation. This process evolves 
in stages: (1) transient rolling interactions mediated predominantly by 
selectins; (2) subsequent chemokine-dependent activation; (3) firm arrest, 
which is mediated by the binding of lymphocyte integrins (e.g., LFA-1, 
Mac-1, and VLA-4) to endothelial cell-adhesion molecules (e.g., ICAM-1, 
ICAM-2, and VCAM-1); (4) lymphocyte lateral migration on the surface of the 
endothelium, probing for a site to penetrate through it (tenertaxis); and (5) 
Lymphocytes diapedesis across the endothelial barrier to enter the 
interstitium either following the paracellular route (by opening a gap between 
two adjacent endothelial cells) or transcellular route (by migrating directly 
through the body of a single endothelial cell).
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the immune system. Albeit with high degree of local diversity 
and heterogeneity, collectively these serve as critical rate-limiting 
determinants of immune cell trafficking across the endothelial 
barrier (a process known as “transendothelial migration” or “dia-
pedesis”) (1, 2). Moreover, close interactions between immune 
cells and the endothelium are increasingly appreciated to influ-
ence the quality of immune responses through diverse modes of 
information exchange including antigen presentation.

In this review, we provide an overview of the basic features of 
the vascular–lymphatic circulation and T lymphocyte trafficking, 
summarizing the expanding knowledge of the subcellular dynam-
ics that regulate diapedesis. After establishing this background, 
we discuss the known functional contributions of endothelial 
cells to the regulation of adaptive immunity, the unique cellular 
and molecular mechanisms involved in this process, and their 
potential relevance to immunopathologies and emerging immu-
nomodulatory therapy.

eNDOTHeLiA AND  
vASCULAR–LYMPHATiC CiRCULATiON

The body is functionally organized through a multitude of 
compartmentalization schemes that are diverse in scale and 
architecture. In vertebrates, which possess a closed cardiovascular 
system, the two most rudimentary compartments are the tissues 
and the contiguous vascular (or blood)–lymphatic circulation (3) 
(Figure 1). The latter is essentially a series of liquid (and blood cell) 
filled vessels that are densely interdigitated throughout the tissues. 
The endothelium is the cellular lining of these vessels, providing 
the essential barrier that establishes and maintains the separate 
tissue and blood–lymph compartments (Figure 1, lower panel). 
In all cases, the minimal barrier unit consists fundamentally of 
a monolayer of vascular (VEC) or lymphatic (LEC) endothelial 
cells that are bound to each other by adherens and tight junction 
proteins (e.g., VE-cadherin, PECAM-1, JAM-1, CD99, claudins, 
and occludins) and to the underlying matrix by integrin adhesion 
receptors (e.g., αvβ3 and α5β1) (4–6) (Figure 1).

Overall, the vascular component of the circulatory system is 
comprised of a series of large (macrovascular) arterial vessels 
that carry oxygen-rich blood away from the heart and progres-
sively branch into smaller diameter arteriole vessels and finally 
capillaries where oxygen and nutrient are exchanged (Figure 1). 
Downstream of the capillary beds, individual vessels progressively 
merge into larger postcapillary venules and veins that eventually 
return to the heart. In total, the vascular endothelium represents 
an enormous surface area [~4000–7000 m2 (7, 8)], whereby all 
vascularized tissues are densely packed with microvessels such 
that most tissue cells lie within tens of microns of a vessel (9, 
10). An important consequence of this arrangement is that every 
tissue microenvironment has a local interface (i.e., VECs) with 
the circulation.

The lymphatic component of the circulatory system runs 
parallel to, works with, and is physically contiguous with the 
cardiovascular component. Here, however, instead of forming a 
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closed circulation, the lymphatic vessels begin blindly in the tis-
sue (akin to tree roots; Figure 1) (11). The initial vessels (terminal 
lymphatic capillaries) merge progressively to form afferent col-
lecting vessels that feed into secondary lymphoid organs (SLOs; 
LN, spleen, Peyer’s patch, and tonsils). Downstream of the SLO is 
efferent lymphatic vessels that merge into collecting vessels and 
finally into the thoracic duct that connects to the venous blood 
circulation via the subclavian vein (Figure  1). The lymphatic 
system maintains fluid homeostasis by providing a conduit 
through which tissue fluids, derived from inherently leaky blood 
capillaries, are collected and returned to the vascular circulation. 
This also serves as a route by which tissue antigens are either pas-
sively (in the lymph fluid) or actively [via trafficking of phagocytic 
interstitial antigen-presenting cells (APCs), e.g., dendritic cells; 
DCs] delivered to SLOs (11) (Figure 1).

In addition to the essential roles in tissue oxygenation and 
fluid homeostasis, vascular–lymphatic circulation and endothelia 
should be viewed as critical non-hematopoietic components of 
the immune system. The basic immune surveillance and response 
function of leukocytes demands continuous and efficient traffick-
ing throughout the body (1). The vascular–lymphatic circulation 
provides a means of rapid and organized transit of immune cells. 
As discussed below, immune cells must also repeatedly leave 
(extravasate) and re-enter (intravasate) the circulation in diverse 
settings, which requires them to continuously migrate through 
endothelial barriers (a process known as “transendothelial migra-
tion” or “diapedesis”) (1, 2). The immune cells and the endothe-
lium have coevolved complex biochemical and biomechanical 
information exchange systems that drive selective diapedesis 
of leukocytes with high efficiency and precise spatiotemporal 
control. Emerging understanding of endothelial as “semiprofes-
sional” APCs further suggests non-redundant roles in shaping 
adaptive immune responses.

AN OveRview T LYMPHOCYTe 
FUNCTiON AND TRAFFiCKiNG

T cells are the part of the adaptive immune system that surveys 
the tissues for the presence of infecting pathogens (e.g., virus or 
bacteria) or aberrant host cells (e.g., tumor cells), specifically 
by detecting non-self/abnormal protein fragments (i.e., peptide 
antigens; Ag) through specialized cell surface T cell receptors 
(TCRs). Critically, peptide Ag can only be sensed when presented 
on the surface of another cell by major histocompatibility com-
plex (MHC) proteins (12, 13). T cells that express the cell surface 
marker CD4 only respond to Ag presented on class II MHC 
molecules (MHC-II) and participate in immune reactions mostly 
through secretion of cytokines that “help” other immune cells to 
conduct their functions (termed “CD4 T helper or Th cells”) (12, 
13). Those that bear CD8 respond to Ag presented on MHC-I 
and function in direct killing of Ag bearing cells (termed “CD8 
T cells” or “cytotoxic T cells”; CTLs) (12, 13). T cells that have 
never encountered their specific cognate Ag are termed “naive. 
” Those that have been activated by Ag become either “effector 
cells” that participate actively in immune responses to eradicate 
the detected pathogen or long-lived “memory” cells that serve as 
the basis for “acquired” or “adaptive” immunity.

The process of T cell maturation, surveillance, and responses 
requires diverse trafficking patterns and interactions with the 
endothelium. T lymphocytes originate from stem cells in the 
bone marrow that become lymphoid precursors. These first 
intravasate across the bone marrow endothelium (14–16) and 
thereby enter the blood circulation to immediately home and 
extravasate into the thymus and complete their maturation. 
Ultimately, mature naive, non-self-reactive lymphocytes re-enter 
the blood and initiate immune surveillance by engaging in con-
stitutive cycles of migrating into and out of SLOs in search of 
cognate Ag. Inside the LN, T cells patrol the “T cell area” where 
they form serial short-lived intimate contacts with the DCs that 
allow them to survey the cell surface MHC–Ag complexes (17, 
18). In the absence of cognate Ag recognition, T cells exit the 
LN, mediating extensive interactions with the LEV that line the 
cortical and medullary sinuses of the LN, as well as the efferent 
lymphatic vessels that carries them back into the blood circula-
tion (19–22). When cognate MHC/Ag is encountered [in concert 
with the appropriate combination of self-surface costimulatory 
and coinhibitory molecules and cytokines (12, 13, 23–25)] by T 
cells, they engage in extended (~30–60  min) intimate cell–cell 
interactions with DCs, which triggers their activation (e.g., 
calcium flux and nuclear translocation of the transcription factor 
NFAT), proliferation, and differentiation into Ag-specific effec-
tor and memory lymphocytes (26–29). These cells re-enter the 
circulation reprogramed (e.g., with decreased CD62L and CCR7 
and increased LFA-1, VLA-4, CCR3, CCR5, and CXCR3 expres-
sions) to adhere preferentially to, and diapedeses across, activated 
endothelia of infected/inflamed peripheral tissues (1, 30).

In addition to the above processes, emerging intravital imag-
ing technologies have begun to reveal settings in which sustained 
intra- and extravascular T cell–endothelial interactions take place 
that are not strictly associated with diapedesis. For example, CD4 
Th1 and Th17 lymphocytes were discovered to undergo repeated 
transient (~20  min duration) arrest on resting liver sinusoidal 
endothelium (31). Additionally, natural killer T cells (32, 33) and 
effector T lymphocytes were shown to undergo extended both 
luminal and abluminal long-range “patrolling migration” on liver 
sinusoidal and brain microvascular endothelium, respectively 
(34). Taken together, the above discussion highlights a multitude 
of diverse T cell–endothelial interactions that allow for informa-
tion exchange that can influence the trafficking, activation, and 
differentiation of lymphocytes.

Heterogeneity in Lymphocytes, 
endothelium, and Their interactions
As noted above, there are many different scenarios for lymphocyte/
endothelial interactions. It is critical to appreciate that enormous 
contextual heterogeneity exists spatially and temporarily in such 
encounters. Of course it is well established that lymphocytes take 
on diverse characteristics as naive, effector, and memory pheno-
types evolve. Moreover, a large (and still expanding) collection of 
differing subsets exists [e.g., CD4 effectors include Th1, Th2, Th9, 
Th17, Th22, Tregs, Tfh, and Tfr (35)]. Collectively, these exhibit 
specialization in their protein expression that give rise to diverse 
trafficking patterns and responses to their local environment. 
Perhaps the most obvious example, naive lymphocytes avidly 
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and perpetually enter LN via their specialized high endothelial 
venules (HEV) but ignore activated microvasculature of other tis-
sues. Moreover, effector memory lymphocytes show great tissue 
selectivity driven in particular by surface expression of specific 
chemokines and/or adhesion molecules both on their surface and 
ECs. For example, gut-specific lymphocytes selectively express 
the integrin α4β7 and the chemokine receptor CCR9, which 
binds the adhesive ligand MadCAM and the chemokine CCL25, 
which are selectively presented on HEV and microvasculature of 
the intestine (36, 37). While we will expand on some of these 
topics, these differences have been extensively documented and 
comprehensively reviewed elsewhere (1, 35, 38, 39).

The endothelium exists to subserve the tissues it perfuses. 
As such it takes on specialized form and function to both adapt 
to its microenvironment and meet the local and diverse needs. 
Such heterogeneity can be observed at multiple levels in structure 
and in function. Major differences exist in arterial versus venous 
aspects of the circulation, where, for example, large differences 
in oxygen tension and pH exist (7). Additionally, macrovascular 
structures that serve dominant conduit functions experience far 
greater fluid shear forces compared to the microvasculature that 
plays a major role in the regulation of selective permeability and 
the control of immune surveillance. Furthermore, vascular beds 
of different tissues exhibit widely different features (9, 10). For 
example, microarray analysis comparing endothelia of either 
macro- versus microvasculature or arterial versus venus circula-
tion and of different tissues has demonstrated distinction in cell 
surface adhesion molecules, cell surface signaling receptors, 
intracellular signaling molecules, and cytoskeletal proteins (40). 
Thus, different endothelial cells will differ in their morphology 
and their ability to sense and respond to various stimuli. In par-
ticular, with respect to immune system function, it is important 
to note that in most tissues (with the exception of lung and liver, 
see below), the postcapillary venules are distinctly responsive to 
inflammatory cytokines and therefore selectively increase expres-
sion of adhesion molecules that bind leukocytes (e.g., E-selectin, 
P-selectin, ICAM-1, and VCAM-1). As such these function as a 
major site for leukocyte–endothelial interactions and leukocyte 
transendothelial migration. Distinct lymphocyte/endothelial 
interactions are also seen along the microvasculature of differ-
ent tissues. For example, HEV of lymphoid organs selectively 
expresses adhesion molecules (e.g., peripheral node addressin; 
ligand for L-selectin) and chemokines (e.g., CCL21; ligand for 
CCR7) to promote homing of naive lymphocytes, whereas 
intestinal microvascular express molecules to selectively recruit 
gut-specific effectors as noted above. Additionally, the tight junc-
tions of the brain microvasculature significantly limit leukocyte 
trafficking and thereby contribute to the immune privilege of the 
CNS. On the other hand, the relatively porous (fenestrated and 
sinusoidal) endothelium of the liver allows luminal lymphocytes 
to continually probe underlying APCs (e.g., Kupffer cells) to 
receive tolerogenic signals from food antigens.

Collectively, the above points to the critical idea that all 
lymphocyte and endothelial interactions are not created equally. 
Said another way, the phenotype of any given lymphocyte and 
a given endothelial cell represents the product of each of their 
microenvironments/experience, which drives potentially vastly 

different outcomes of specific lymphocyte/endothelial interac-
tions. Relevant microvascular cues are diverse and numerous 
including, for example, cytokines, pathogens, tissues damage, 
oxygen tension/hypoxia, and biomechanical strains. Such selec-
tive outcomes should be viewed as the critical underpinning of a 
well-orchestrated immune response and therefore of exceeding 
importance. That being said, this review cannot possibly hope 
to catalog all of the potential combinations and their outcomes. 
Equally important, the vast majority of these combinations have 
yet to be systematically explored. Thus, in the following sections, 
we will focus on well-established themes and attempt to highlight 
illustrative examples of heterogeneity where possible.

THe MULTiSTeP CASCADe OF 
LYMPHOCYTe DiAPeDeSiS

Lymphocyte trafficking across the endothelium is a tightly con-
trolled process that requires highly orchestrated dynamics on the 
part of both the lymphocyte and the endothelium. Though the 
process of intravasation and extravasation is equally important 
and probably share many the mechanisms (16, 41, 42), only the 
latter has been characterized in detail as discussed herein. The 
initiating events in extravastion (whether for constitutive or 
inflammation-induced trafficking) are the active cytokine-driven 
expression and cell surface presentation of chemoattractants and 
adhesion molecules by endothelial cells (1, 2, 43–47). This sets 
the stage for a well-ordered multistep cascade of lymphocyte 
adhesion and diapedesis (Figure 1, lower panel).

Lymphocytes entering a postcapillary venule of a LN or an 
inflamed tissue first undergo transient tethering and rolling 
interactions with the endothelium mediated by the selectin fam-
ily of adhesion molecules binding to their glycoprotein/glycolipid 
ligands (step 1; Figure 1, lower panel) (30, 48, 49). This promotes 
increased cell–cell contacts that facilitates lymphocyte sensing of 
chemokines presented on the endothelial surface, which in turn 
induces intracellular signaling responses (step 2) leading to high 
affinity interaction of lymphocyte integrin adhesion receptors 
(e.g., LFA-1, Mac-1, and VLA-4) with their endothelial ligands 
(e.g., ICAM-1, ICAM-2, and VCAM-1) and subsequent firm 
lymphocyte arrest (step 3) (50). Lymphocytes then undergo 
actin-dependent spreading, polarization, and integrin/CAM-
dependent lateral migration over the luminal surface of the 
endothelium (step 4). This apparently allows T cells to search for 
sites permissive for endothelial barrier breach (51, 52). Ultimately, 
lymphocytes penetrate the endothelium either at the intercellular 
junctions (i.e., paracellular migration) or directly through indi-
vidual endothelial cells (i.e., transcellular migration) and move 
into the tissues (step 5) in a process mediated by integrins, CAM 
ligands, and other adhesion molecules, such as PECAM-1, JAM-
1, and CD99 (2, 30, 48, 49, 53, 54).

Although the above cascade is widely applicable, alterna-
tives and exceptions exist. For example, in lung and liver (two 
particular large and important vascular beds), extravasation is 
observed to occur at the capillaries, typically through a rolling-
independent process (9, 10). Moreover, as noted above, subsets of 
lymphocytes have been observed to undergo extensive patrolling 
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migration on endothelium (step 4) without necessarily progress-
ing to transmigration (32–34).

T CeLL ReMODeLiNG DURiNG 
ADHeSiON AND DiAPeDeSiS

Function blocking antibodies and other pharmacologic and 
genetic approaches have been instrumental for the elucidation 
of the above cascade and the identification of an ever-growing 
list of chemoattractant, adhesion, and signaling molecules that 
participate in trafficking (55). More recently, high-resolution 
live-cell fluorescence imaging has begun to reveal new subcel-
lular dynamic behaviors that underlie the orchestrated process of 
lymphocyte diapedesis. As noted above, initial arrest of T cells on 
endothelium is followed by dramatic cytoskeletal rearrangements 
leading to rapid spreading and polarization, with the prominent 
appearance of a trailing uropod and a leading edge lamellipodia 
that promote lateral migration over the endothelium.

It has become recognized that during spreading and lateral 
migration, lymphocytes generate discrete actin-rich micron-
scale projections that extend in the direction orthogonal to the 
plane of migration (42, 56–58) (Figure  2). These cylindrically 
shaped structures, termed invadosome-like protrusions [ILPs; 
related to podosomes and invadopodia found in other cells 
types (59)], protrude from the bottom of the T cells, exerting 
mechanical forces against the surface of the endothelium. This 
drives extremely close cell–cell contacts that lead to sharp 
indentations in the endothelium (termed “podo-prints”) (56) 
(Figure 2). ILPs are enriched in, and functionally require, LFA-1, 
the actin regulatory proteins WASp and HS1 (a hematopoietic 
homolog of cortactin) and src kinase (42). As T cells migrate, 
they continuously extend and retract clusters of ILPs against the 
endothelium that rapidly turnover (life-times of ~20 s). In this 
way, lymphocytes effectively probe or “palpate” the local biome-
chanical properties (e.g., stiffness) of the endothelial substrate as 
they move over it (Figure 2).

Such “biomechanical scanning” facilitates the stochastic 
identification of regions of endothelial surface that are sufficiently 
tenuous to allow ILPs to progressively extend and formally breach 
the endothelial barrier and thereby initiate diapedesis (56, 60). 
Thus, lymphocytes seem to employ ILPs in an active process of 
seeking out the path-of-least-physical-resistance for egress into (or 
out of) the tissue (termed “tenertaxis”; from the latin tener, soft) 
(60). Lymphocytes deficient in WASp [i.e., as is found in patients 
with the genetic immune-deficiency known as Wiskott–Aldrich 
syndrome (WAS)] spread and laterally migrate normally but fail 
to form ILPs, which effectively results in defective tenertaxis that 
in turn leads to inefficient diapedesis (56).

Additionally, investigations have shown that the extremely 
intimate cell–cell contacts (which are normally opposed by 
formidable electrostatic and steric repulsion forces inherent in 
the cell glycocalyx) that are driven by ILPs allow lymphocytes 
to detect discrete pools of chemokine that are held close to the 
endothelial plasma membrane (61). Thus, lymphocyte ILPs may 
function both for biomechanical and biochemical probing of 
the endothelial surface (as discussed further below). Of note, 

lymphocyte ILPs have been widely evidenced ultrastructurally 
in vivo in virtually all lymphocyte–endothelial interaction settings 
(e.g., bone marrow, thymus, HEVs, SLOs, and diverse inflamed 
tissues) including both intravasation and extravasation events 
(14, 16, 21, 22, 54, 62–72). Thus, ILPs may represent a broadly 
relevant sensory organelle that lymphocytes use to continuously 
probe their local cellular environment as they traffic.

eNDOTHeLiAL ReMODeLiNG DURiNG T 
CeLL ADHeSiON AND DiAPeDeSiS

While the endothelium was once considered an inert membrane, 
it is now clear that it actively responds to lymphocyte adhesion and 
is involved in guidance during the process of diapedesis. As noted 
above, the endothelium plays active, carefully controlled roles in 
the expression and presentation of chemoattractans and adhesion 
molecules. Additionally, detailed imaging studies have revealed 
avid local cytoskeletal remodeling at the site of contact with T cell. 
Specifically, upon adhesion of lymphocytes (or other leukocyte 
types), integrin-mediated (i.e., LFA-1, Mac-1, and VLA-4) bind-
ing and resultant clustering of endothelial ICAM-1 and VCAM-1 
induce rapid formation of actin-dependent microvilli-like pro-
trusions via signaling through the ERM family of cytoskeletal 
adaptor proteins (73–76) (Figures 2A–C). During rapid lateral T 
cell migration, these microvilli contacts tend to form asymmetri-
cally, serving as tethers attached at the uropod of the lymphocyte 
encouraging lateral migration arrest (75) (Figure  2A). As the 
lymphocyte slows its lateral migration, endothelial microvilli 
form more symmetrically around it to effectively embrace it 
forming a cuplike structure known as “transmigratory cup” 
(Figures 2B,C). This results in an expansion of cell–cell contact 
area that is coenriched in LFA-1, VLA-4, ICAM-1, and VCAM-1. 
Such an arrangement strengthens adhesion to resist fluid shear 
forces and also provides an adhesion scaffold oriented perpen-
dicular to the plane of the endothelium that guides and facilitates 
diapedesis (76). Another important consequence of (or role for) 
the transmigratory cup structure is that the resultant extended 
close cell–cell contacts should promote maintenance of effective 
endothelial barrier (i.e., with respect to fluid and solutes) during 
diapedesis. In this regard, recent studies have elucidated a further 
active endothelial remodeling process that assures rapid reseal-
ing of the endothelium at the conclusion of a given diapedesis 
event. Specifically, it was demonstrated that the endothelium 
restores its integrity by mobilizing an integrin-, Rac-1-, and 
Arp2/3-dependent actin-rich “ventral lamellipodia” that rapidly 
re-seals the endothelial barrier from its ventral surface (77). Thus, 
endothelial cells actively support and guide lymphocyte egress 
across itself while maintaining barrier integrity through intimate 
adhesions and actin remodeling dynamics.

eNDOTHeLiUM AS A ReGULATOR OF 
iMMUNe CeLL ACTivATiON AND 
DiFFeReNTiATiON

As discussed above, clearly the endothelium is a critical regula-
tor of immune cell trafficking. However, it is also clear that the 
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FiGURe 2 | Dynamic remodeling of lymphocytes and endothelium during diapedesis (A–C). Schematic shows lymphocyte (green) and EC (blue) dynamics 
during T cell lateral migration over, and transcellular diapedesis across, the endothelium. (A–C) Successive time points at intervals of ~30–60 s. Dynamic insertion 
(~0.2–1 μm in depth) and retraction of multiple actin-rich lymphocyte invadosome-like protrusions (ILPs) into the apical surface of the endothelium occurs during 
lateral migration (A–C). Once a location of sufficiently low endothelial resistance has been identified (tenertaxis), an ILP progressively extends several micrometers in 
depth, ultimately breaching the endothelium transcellularly (C). Also shown is the “transmigratory cup” structure (asterisks), which consists of vertical endothelial 
microvilli-like projections (rich in F-actin; red, ICAM-1, VCAM-1, PECAM-1, and JAM-1) that surround the periphery of adherent lymphocytes (B–D). Electron 
micrograph of a T cell (green) extending multiple ILP (red asterisks) into the surface of two endothelial cells (EC1, EC2; blue) near an intact junction in order to probe 
for a site to initiate diapedesis (i.e., breach the endothelial barrier) (60).
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endothelium acts as a sentinel (e.g., to relay local tissue status 
signals) in ways that additionally influence immune cell acti-
vation and differentiation states. Studies in a range of innate 
and adaptive immune cells have established that diapedesis 
across inflamed endothelium has broadly proinflammatory or 
“priming” effect on these cells (78). On the contrary, other 
studies (discussed in part below) suggest settings whereby 
endothelial encounter may impart anti-inflammatory or 
tolerogenic effects. Such reports suggest that the endothe-
lium, which is strategically positioned as the blood–tissue 
interface and an obligate interaction partner for trafficking 
immune cells, can serve as critical checkpoint for adjusting 
or controlling immune reactions. Importantly, as integrators 
of their local environment, endothelia exhibit local hetero-
geneity that should be expected to contribute to the specific 
outcomes of such interactions. In the following section, we 
will review the emerging evidence for unique, non-redundant 
roles of endothelia as peripheral/stromal, semiprofessional, 
non-hematopoietic, APC (nhAPC).

A FUNCTiONALLY DiSTiNCT PeRiPHeRAL 
NON-HeMATOPOieTiC APC 
COMPARTMeNT

Hematopoietic APCs, DCs in particular, play absolutely essential 
roles in the initiation and shaping of adaptive immune responses. 
However, the use of bone marrow chimeras (among other 
approaches) has led to the discovery of a functionally important 
peripheral, “non-hematopoietic” (“parenchymal,” “stromal”) 
compartment of APCs (nhAPCs). These play critical and distinct 
roles that complement those of hematopoietic APCs (79–84). 
Indeed, using bone marrow chimeras in combination with whole 
animal genetic knock-out strains (e.g., of the APC coinhibitor 
molecule PD-L1), essential contributions of nhAPCs have been 
revealed in promoting tolerance in settings of diabetes (83, 85), 
atherosclerosis (86), organ transplant (87, 88), myocarditis (89), 
and EAE (90). Similar studies have established unique roles for 
nhAPCs in mitigating tissue damage during systemic viral infec-
tion (91, 92), suppression of lung inflammation (93), and driving 
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graft-versus-host disease (94). Multiple cell types have been iden-
tified as putative members of this “stromal” APC compartment 
including endothelial cells, fibroblasts, myofibroblasts, pericytes, 
smooth muscle cells, and mesenchymal stem cells (79–81). 
Among them, the strongest evidence suggests the endothelium 
as at least one of the key cell types that contribute to the identified 
nhAPC function.

THe eNDOTHeLiUM AS A UNiQUe nhAPC

Induction of a T cell response requires three canonical signals 
to be provided by the APC: (1) cell surface cognate peptide Ag 
in complex with MHC-I and -II (implicit in the activity is the 
ability to both phagocytose and process Ag); (2) cell surface 
costimulatory ligands; and (3) secreted cytokines. The appropri-
ate combination of all three of these inputs is required to activate 
naive T cells (12, 13, 23–25). The quality of each of these signals 
determines the strength and type of responses generated (e.g., 
proinflammatory Th1 versus anti-inflammatory/tolerogenic 
CD4 regulatory T cells; Treg). Once primed and expanded, 
the resultant effector T cells re-enter the circulation to home 
to peripheral sites of inflammation in search of cognate Ag 
on interstitial APCs and targets. Thus, an obligate step in this 
process is the adhesion of the effector T cell to the endothelium. 
As described below, endothelial are equipped with all of the 
necessary capabilities (with one key exception) to provide APC 
signals 1–3.

Endothelial cells can express MHC-I and -II both consti-
tutively (though with respect to the latter, some potentially 
important distinctions may exist between human and mouse, as 
discussed below) and at higher levels in response to inflammatory 
cytokines (95, 96) (Figure 3). Endothelial cells also express Ag 
processing machinery (e.g., LMP2, 7, TAP1, 2, invariant chain, 
and HLA-DM) and have been shown to efficiently take up, pro-
cess, and present/crosspresent Ag in vitro and in vivo (97–103). 
Moreover, endothelia express a significant range of costimulatory 
(e.g., ICAM-1, VCAM-1, CD40, LFA-3, ICOSL, 4-1BB, OX40L, 
and TL1A) and coinhibitory (e.g., PD-L1 and PD-L2) molecules, 
as well as cytokines, both of which are regulated by inflamma-
tory cues (45, 89, 95, 104–106) (Figure  3). Absent from most 
endothelia are CD80 or CD86 costimulators that are indispen-
sable for the activation of naive lymphocytes (Figure 3). Thus, 
endothelial cannot prime naive lymphocytes, but they can readily 
mediate Ag-specific stimulation of Ag-experienced (i.e., effector/
memory) CD4 and CD8 lymphocytes and are therefore regarded 
as “semiprofessional” APCs (107–112).

The above suggests that the endothelium may provide a unify-
ing nhAPC compartment densely distributed throughout the 
body and strategically positioned at the blood–tissue interface. At 
the same time, based on the ability of the endothelium to integrate 
cues from its microenvironment (9, 10), endothelial APC function 
should be expected to be locally tuned to uniquely and differen-
tially influence Ag-specific immunity. Indeed, diverse endothelia 
show heterogeneous expression patterns of MHC-I, MHC-II, 
coinhibitory and costimulatory molecules (APC surface mol-
ecules), and functions in adaptive immune responses. Such local 
specialization may be roughly analogous to the differentiation of 

classic hematopoietic APC, such as macrophages into microglia 
in the brain and into Kupffer cells in the liver.

Before we further discuss the existing observations, however, 
it is necessary to acknowledge some critical limitations. First, 
unlike hematopoietic APCs that have been subjected to extensive 
systematic characterization, the existing knowledge of tissue- and 
context-specific patterns of endothelial APC surface molecules 
derives from disparate and often anecdotal observations. In 
human systems, in vivo/in situ investigations are limited to a few 
biopsy- and autopsy-based studies and have usually not included 
comprehensive panels of the relevant molecules (113–116). 
Likewise, though it is practically more feasible to conduct the 
requisite systematic analysis of endothelia in murine tissues, stud-
ies and data are still limited. Additionally, while some relatively 
more detailed characterizations have been conducted ex vivo with 
isolated (largely human and mouse) endothelia, these may not 
faithfully reflect the tissue-specific features found in vivo.

Moreover, it should be noted that some discrepancies in APC 
surface molecules have been noted in human and mouse, though 
in light of the above, these require further clarification. In vitro both 
endothelia express MHC-II and both require stimulation by INF-γ 
in order to do so (95). In vivo, however, whereas the microvascula-
ture of most human tissues expresses significant levels of MHC-II 
constitutively (95, 117), early studies (that focused on coronary 
artery and microvasculature of the bladder and ureter) (118, 119) 
questioned whether similar constitutive expression took place in 
mice. Yet, constitutive expression of MHC-II was subsequently 
demonstrated in murine liver sinusoidal (45, 120, 121) and lung 
endothelium (93) and on lymphatic endothelia of LN (122, 123). 
Moreover, we have recently quantified variable levels of constitu-
tive MHC-II expression in mouse heart, lung, kidney, liver, and 
skin with the most striking levels found on lung endothelium 
(Sage and Carman, unpublished observations). Additionally, 
important differences exist between mice and humans in their 
endothelial expression of key adhesion and costimulatory and 
molecules. For example, P-selectin is constitutively expressed by 
human ECs, where it is sequestered in Weibel–Palade bodies in 
non-activated endothelium and expressed on endothelia surface 
following histamine or thrombin presence. Its surface expression 
is not further upregulated by inflammatory cytokines, as it the 
case in mice. The costimulatory molecules CD40 and the ICOS 
ligand GL50 are found on endothelia of humans but not mice 
(124). While CD58 (a ligand for lymphocyte CD2) is a major 
costimulatory molecule expressed in human ECs, the analogous 
ligand in mice CD48 exhibits both dramatically different affin-
ity for CD2 (~50-fold lower) and endothelial distribution (125, 
126). Taken together, such factors suggest potentially important 
species-dependent differences in endothelial APC functions and 
cautions must be taken in inferring applicability of experimental 
models to human systems [for review, see in Ref. (124)].

THe T CeLL–eNDOTHeLiAL 
iMMUNOLOGiCAL SYNAPSe

It is has been established that the basic subcellular dynamics at the 
T cell–APC interface are critical determinants of the responses 
(127). Studies using either professional APCs or artificial APC 
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FiGURe 3 | endothelial cells as “semiprofessional” non-hematopoietic APCs. Schematic comparison of the Ag presentation, costimulatory, coinhibitory, and 
adhesion molecules expressed by dendritic cells (gray) and endothelial cells (blue). Note that endothelial cells, unlike most other non-hematopoietic cells, express 
most of the critical molecules found in DC express. Important exceptions include CD80 and CD86 that are critical for the activation of naive T cells, as well as the 
costimulatory/adhesion molecules DC-SIGN. Blue, black, and orange “X”s indicate the possible sites of action for several emerging T cell/APC-directed 
immunomodulatory therapeutics.
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models have shown that Ag recognition promotes rapid calcium 
flux that translates to a migratory arrest and sustained interaction 
with the APC [i.e., an immunological synapse (IS)]. Microscopic 
approaches reveal that this is associated with micron-scale clus-
ters of TCR that mediate active signaling (128), which are formed 
by cytoskeletal modulators, such as Cdc42, WASp, WAVE2, Vav1, 
Arp2/3, and HS1 (129, 130).

In the first detailed dynamic imaging investigation of the T 
cell–endothelial ISs showed that in diverse in vitro models (i.e., 
using both human and mouse freshly isolated CD4 Th1 effector 
memory, IL-2-activated CD4 Th1, and CD8 CTL along with 
dermal and lung microvascular endothelium and either peptide 
or super-antigens) endothelial Ag presentation was shown to 

consistently induce a sustained (30–60  min) calcium flux that 
was coupled to a transient arrest in migration and nuclear trans-
location of NFAT (112). Close characterization of the T cell–EC 
IS revealed that initiation of T cell probing by ILPs (Figure 4) 
consistently preceded, and was required for, Ag recognition and 
the triggering of calcium flux (Figure 5). This suggests that the 
“informational scanning” roles of ILPs discussed above [i.e., in 
relation to specific pools of endothelial surface chemokines (61)] 
are also relevant for detection of MHC/Ag. As noted above, the 
glycocalyx [a 50–500 nm thick polysaccharide coating found on 
all cells (131, 132) that stabilizes the plasma membrane (133)] 
provides a barrier to close intercellular membrane–membrane 
encounter. As such, small cell surface adhesion and signaling 
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FiGURe 4 | imaging the T cell–endothelial immunological synapse (podo-synapse). (A) Schematic (upper panel) represents formation of stabilized arrays of 
lymphocyte ILPs protruding into the endothelial surface (note that the labeling of the plasma membrane in green and the cytosol in red corresponds the live-cell 
imaging experiment, below) following antigen recognition. Images show light microscopy of T cells [by differential interference contrast (DIC) interacting with 
mem-YFP (green) and cytosol DsRed (ref) transfected ECs]. Podo-prints on endothelium are evidenced as rings of plasma membrane (mem-YFP) where cytosol is 
excluded (black areas in the “cytosol” image at 15 min). This imaging approach readily reveals the dynamics and discrete three-dimensional architecture of individual 
ILPs as well as the collective “podo-synapse” ILP array during Ag recognition (112). (B) Lymphocytes were incubated with activated, Ag-pulsed endothelium for 
5 min, fixed, and stained as indicated and imaged by confocal microscopy. ILPs are enriched in ICAM-1 (green), LFA-1 (red), and Actin (blue), as well as many other 
immunological signaling molecules (e.g., TCR, MHC-II, PKC-Φ, phyosphotyrosine, and HS1 not shown) (112, 151).
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molecules [e.g., TCR and MHC, each ~7  nm tall (134)] are 
effectively shielded (131, 132, 135–137) (Figure 5A). In this way, 
the glycocalyx inhibits, or at least limits, immune cell adhesion 
and immune recognition (138–147). Protrusive forces provided 
by ILPs overcome this barrier, driving close membrane–mem-
brane apposition (Figure 5A) and thereby promoting molecular 
interactions that might otherwise be inefficient or impossible. It 
is interesting to note that while the leading edge lamellipodia of 
T cells have been well known to possess heightened Ag recogni-
tion sensitivity (148–150), this very same subcellular region is 
now shown to be the preferential site of ILP formation (56, 60, 
112). Thus, ILPs could be regarded as specialized “actuators” of 
immune surveillance.

Following initial Ag recognition, the resulting intracellular 
calcium flux induces accumulation of stabilized clusters of ILP 
that generate a unique IS topology termed a “podo-synapse” 

(112) (Figures  4 and 5). Here individual Ag-stabilized ILPs 
become enriched in actin, TCR, and other molecules sugges-
tive of active local signaling (e.g., PKC-Φ, phospho-tyrosine, 
and HS1) (Figures 4 and 5). Thus, ILPs may promote sustained 
TCR signaling by providing sub-micron-scale volumes that have 
“signalosome” qualities for increased signaling efficiency (152–
156) analogously to the signaling microclusters and “multifocal” 
ISs that have been defined in planar lipid bilayer APC model 
(157–164) and on DCs (157–159), respectively. Additionally, 
the collective architecture formed by the arrays of stabilized 
ILP arrays that form may serve other functions. Specifically, the 
podo-synapse exhibits striking topological similarity to osteo-
clast “podosome-belts” (165, 166) (Figures 4 and 5), structures 
that form sealing zones for directed secretion of bone-degrading 
enzymes (167). Thus, the podo-synapse architecture could be 
envisioned to function analogously, that is, to direct concentrated 
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FiGURe 5 | Model for iLPs function in Ag recognition and response to Ag presented by the endothelium. (A) Schematic shows side views of a memory/
effector T cell (green) interacting with the endothelium (blue) presenting cognate Ag. During lateral migration (step 1), lymphocytes dynamically drive ILPs against the 
opposing cell (step 2, inset 2a). Close interactions between T and APC/target cells, which are partially opposed by the cell glycocalyces (inset 2b), form at ILP tips, 
facilitating TCR/MHC interactions (inset 2c) in these zones that allows initiation of a response (step 3, calcium flux). (B) Avid calcium signaling (Fura-2, rainbow range 
indicator) response for effector/memory T cells migrating on endothelial presenting cognate antigen (lower panel) but not antigen-negative control endothelial (upper 
panel) (112). (C) T cells were labeled with Fura-2 and imaged live migrating on Ag-pulsed, mem-DsRed transfected endothelium. Upper panels show mem-DsRed. 
Arrows indicate initial ILP formation (see rings of fluorescence; see also Figure 4A). Middle panels indicate calcium flux values on a rainbow scale. Lower panels 
show the DIC image of the T cell–EC interaction. Note that as in (A), initial ILPs (read out hear by visualization of the cognate podo-prints) preceded the initiation of 
calcium flux which follows shortly after and accumulation of stabilized ILPs (i.e., formation of a podo-synapse) occurs commensurate with peak calcium flux (112).
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secretion of cytokines or cytotoxic agents toward the target cell, 
while limiting bystander effects.

As discussed in the following section, one of the characterized 
functional roles for endothelial Ag presentation is Ag-specific 

recruitment of T cells (168–173). Studies examining freshly iso-
lated human CD4 effector memory and human dermal microvas-
cular endothelial cells presenting super-antigen, further defined 
distinctive structures involved in such TCR-regulated trafficking 
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(168). Specifically, large “transendothelial protrusions” (TEPs) 
were found to develop in an Ag-, TCR-, ICAM-1-, and fractalkine-
dependent and costimulatory molecule-independent manner in 
T cells positive for nuclear NFAT (168). These TEPs were evident 
extending through the endothelial junctions and therefore 
are thought to be the first step in Ag-specific transendothelial 
migration. Following completion of diapedesis, lymphocytes (as 
well as all other leukocytes) spend a significant amount of time 
(5–20 min) in the abluminal space (i.e., between the endothelium 
and the underlying basement membrane) before they enter the 
tissue and begin their search form interstitial APCs or targets. 
There are many potential consequences of these T cell/EC inter-
actions (explored further in later sections): for instance, we know 
that EC Ag presentation can induce lasting effects on T cells (e.g., 
nuclear NFAT translocation, altered surface expression of activa-
tion markers, cytokine expression, and proliferation). This would 
suggest that responses to immediately subsequent interactions 
with interstitial APCs and targets might be altered (e.g., primed, 
suppressed, and phenotypically skewed). Yet, such consequences 
have to be directly determined. Likewise, it seems reasonable to 
expect that similarly to other APCs, endothelia receive “help” 
through their Ag-specific ISs with CD4 lymphocytes. The ability/
importance, for example, of CD40 in providing signals to APCs is 
clearly illustrated by B cells, which depend on lymphocyte CD40L 
engagement to stimulate proper immunoglobulin responses 
(174). CD40 is also expressed on endothelial cells (in humans) 
(104, 175) and stimulation of endothelial CD40 promotes 
strong endothelial activation, as demonstrated by upregulated 
expression of E-selectin, ICAM-1, and VCAM-1 and increased 
leukocyte adhesion (104, 176, 177). Thus, one might hypothesize 
that sustained CD40 ligation resulting from Ag recognition might 
induce endothelial activation that influences subsequent recruit-
ment of other (e.g., innate) immune effectors.

POTeNTiAL FUNCTiONS OF 
eNDOTHeLiAL nhAPC

While overall roles for endothelial cells in adaptive immunity 
remain to be completely elucidated, it is clear that their func-
tions will be ancillary to those of professional APCs (95, 178). 
Nonetheless, as discussed above, unique non-redundant 
functions for nhAPC have been established. Endothelia are 
perhaps the most abundant APC in the body [outnumbering the 
professional APC compartment by ~1000-fold (39, 179)], and 
they are strategically positioned to make constant contacts with 
circulating lymphocytes. As such, endothelia would seem to have 
excellent opportunity to exert qualitatively distinct and locally 
tuned peripheral regulation of adaptive immune responses. As 
summarized below, such regulation may be highly varied reflect-
ing the highly heterogeneous contexts in which they develop.

Given the central function of endothelium in regulating traf-
ficking of immune cells, it may not be surprising that multiple 
studies have shown that Ag presentation can alter trafficking of 
T cells bearing the cognate TCR, whereas some studies evidence 
Ag-mediated migratory stop signals that prevent or delay diape-
desis (112, 180, 181), others support the intriguing hypothesis 

that Ag presented on the endothelium promotes the selective 
diapedesis (and therefore recruitment) of Ag-reactive T cells 
(168–173). Along these lines, a recent study demonstrate that 
recruitment of Treg to sites of inflammation is strongly favored 
by their ability to recognize self-Ags presented by endothelium 
(182). Of note, the specific expression patterns of costimulatory/
coinhibitory molecules found on endothelium are thought to 
strongly influence the above processes (183).

Other studies have evidenced ability of endothelial antigen 
presentation to either drive inflammation or promote tolerance. 
Regarding the former, resting CD4 memory cells have been 
shown in  vitro and in  vivo to become activated to proliferate 
and secrete inflammatory cytokine (e.g., IFN-γ, IL-2, IL-4, and 
IL-10) in response to Ag (or allo-Ag) presented by endothelium 
in an MHC-II- and costimulator-dependent manner (107–109, 
112, 184–186). Moreover, presence of MHC-I-bearing cognate 
Ag on endothelia promotes CD8 CTL activation and endothelial 
cell killing, in a coinhibitor (i.e., PD-L1 and PD-L2)-modulatable 
fashion (89, 105, 111, 112). Additionally, through their ability to 
capture and retain Ag (a process called “archiving”) LEC they 
have been shown to help maintain protective CTL memory (187).

The idea that ECs can provide a form of peripheral tolerance 
(e.g., “transmigration anergy”) has been evidenced in diverse set-
tings (188, 189). In the liver, a well-known strongly tolerogenic 
environment, the liver sinusoidal ECs (LSECs) exhibit extremely 
efficient scavenging, crosspresentation (100, 101, 190), and 
unique tolerogenic functions (191, 192). For example, LSEC 
promotes Ag- and coinhibitor-dependent CTL tolerance (102), 
suppression of CD4 proinflammatory Th1 and Th17 responses 
(31, 193, 194), and differentiation of CD4 Tregs (195). Additional 
endothelia with particularly prominent tolerogenic properties 
are those that line the lymphatic vessels and the contiguous sub-
capillary, cortical, and medullary sinuses of the SLOs (LECs) (45, 
103, 121). Through absent costimulatory and high coinhibitory 
(i.e., PD-L1) molecule expression, crosspresentation of Ag to 
CTLs causes clonal deletion of self-reactive lymphocytes (196, 
197). As T cells must cross the cortical and/or medullary LECs in 
order to egress from the LN, these LECs are proposed to serve as 
anatomical checkpoint to enforce self-tolerance in lymphocytes 
as they attempt to egress from the LN (121).

ROLeS FOR eNDOTHeLiAL nhAPC iN 
DiSeASe

Most diseases have a significant inflammatory component 
and as such are inherently linked to alterations in endothelial 
phenotype and function along with and altered trafficking of 
immune cells. Significant circumstantial evidence suggests the 
endothelial nhAPC functions are also altered in disease. Notably, 
endothelial expression of MHC-II is greatly upregulated in 
multiple autoimmune/inflammatory diseases including allograft 
rejection, diabetes, dilated cardiomyopathy, myocarditis, multi-
ple sclerosis, rheumatoid arthritis, lupus, vasculitis, and Crohn’s 
disease (113, 114). Moreover, changes in endothelial expression 
of key costimulatory and coinhibitory molecules (e.g., CD40 
and PD-L1) have been linked with pathogenesis in multiple 
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inflammatory and autoimmune diseases, as discussed below 
(89, 104–106). It remains to be determined, however, whether 
these changes are functionally relevant and, if so, whether they 
are contributing to pathogenesis or are rather acting to limit 
it. Below, we summarize several settings whereby endothelial 
nhAPC functions seem relatively well established to be promot-
ing pathogenesis.

Allograft Rejection
Functional roles of EC MHC are perhaps best evidenced in allo-
response, which have clearly been demonstrated in the extensive 
in vivo models and clinical investigation of transplantation (163, 
198–200). In vitro CD4 and CD8 effector/memory T cells are also 
well evidenced to be directly activated by allogeneic endothelium 
(163, 164). Likewise, in  vivo the endothelium of solid organ 
transplants (which are the first cells that host lymphocytes 
encounter) plays a critical MHC-dependent role in promoting 
allo-responses and also can become a major target for CD8-
mediated injury. Additionally, in studies of graft-versus-host 
disease (i.e., in setting of stem cell transplantation), allo-reactive 
donor CD8 CTLs were shown to be directly responsible for 
endothelial damage (201).

Diabetes
Studies have shown in  vitro that human endothelial cells 
can take up and process the type I diabetes islet autoantigen 
GAD65 and functionally present it on MHC-II molecules, 
which induces selective transmigration of Ag-specific Th1 
lymphocytes (97). Additionally, the expression level of MHC-I 
on endothelial tissues has a direct impact upon the efficiency 
of migration of autoreactive T cells in  vivo (202). Similar 
studies in a murine model of type I diabetes demonstrated 
that insulin-specific CD8 lymphocytes home to the pancreas 
in a manner that was dependent on endothelial presentation 
(173). These findings suggest a pathogenic model whereby the 
trafficking and nhAPC roles of the endothelium conspire to 
promote local enrichment of autoreactive proinflammatory 
lymphocytes.

Multiple Sclerosis
Initial studies in Experimental Autoimmune Encephalitis (an 
animal model of MS) made the observation that T cell infiltra-
tion into the brain was consistently preceded by elevated MHC-II 
expression on brain microvascular endothelium. This suggested 
the idea that EC Ag presentation might have a causal role in gen-
erating such infiltrates (203). Further work showed that MHC-I/
Ag presented on the luminal surface of the blood–brain barrier 
was functionally responsible for Ag-specific trafficking of T cells 
to the brain (204). In vitro studies have also demonstrated that 
human brain endothelial cells constitutively coexpress of MHC-I, 
MHC-II, CD40, and ICOSL, readily take up fluorescently labeled 
Ags via macropinocytosis and drive Ag-dependent proliferation 
of CD4 and CTLs (198).

Cerebral Malaria
Endothelial antigen presentation in the development and 
progress of cerebral malaria has been implicated both by the 

observation that deposition of Plasmodium antigens could be 
detected in autopsies of patients that die of the disease and by 
the fact that Plasmodium-derived lactate dehydrogenase or pAl-
dose was detected in the blood vessels of brain, heart, and lung, 
specifically inside endothelial cells (205). Additionally, in  vitro 
studies have shown that brain endothelial cells can take up Ag 
from Plasmodium-infected red blood cells and can activate CD4 
and CD8 lymphocytes (205). Recent studies in the murine model 
of cerebral malaria caused by P. berghei ANKA (PbA) showed 
that endothelial cells are the population of nhAPC responsible 
for crosspresentation PbA antigen in vivo (rather than pericytes 
or microglia) and that PbA antigen crosspresentation by primary 
brain endothelial cells in vitro confers susceptibility to killing by 
CD8+ T cells from infected mice (199).

eNDOTHeLiAL CeLLS AS PUTATive 
MeDiATORS OF APC-TARGeTeD 
iMMUNOMODULATiON

Antigen-presenting cell-targeted immunomodulatory therapy is 
an extremely exciting and promising frontier (200, 201, 205–211). 
Therapies targeting costimulators and coinhibitors that can have 
either adjuvant or tolerizing function have become an enormously 
important new strategy. For example, blocking antibodies that 
disrupt the PD-1/PD-L coinhibitory axis represents an innova-
tive new “tolerance-breaking” treatment for cancer and excess/
chronic infection (200, 201, 205–207).

However, significant incidence of severe inflammatory pathol-
ogy still exists with such approaches (208–212). It is recognized 
that a better understanding of precisely where/how (i.e., on which 
APCs) these drugs act is necessary to improve their utility for 
these and many other diseases (208–212). A range of studies 
have demonstrated that critical and distinct effects of PD-1/
PD-L1 blockade are contributed through peripheral nhAPCs, 
and several of these investigations strongly imply endothelial cell 
specifically in such effects (82, 83, 85, 86, 89, 92, 207, 213).

Additionally, a series of clinical and in vitro studies suggest that 
therapeutic effects of statins on atherosclerosis (214–219) and 
rapamycin on cardiac transplant rejection (220) may be through 
altering endothelial expression of PD-L1 and CD40. However, 
putative roles for endothelia APC in mediating effects of these 
immunomodulatory drugs have yet to be directly characterized. 
The fact that endothelial are perhaps the most abundant [i.e., 
outnumbers the professional APC compartment by ~1000-fold 
(39, 179)] and bioavailable APCs in the body would suggest that a 
better understanding of endothelia as APC and as putative targets 
for immunomodulatory therapy is warranted (201).

SUMMARY

While the endothelium provides an as essential barrier between 
the blood–lymph circulation and the tissues, it also functions 
as an active regulator of immune function. Specifically, through 
expression and presentation of chemoattractants and adhesion 
molecules and cytoskeletal remodeling, the endothelium plays 
fundamental role in directing the selective trafficking of immune 
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cells in and out of tissues. Additionally, through expression of 
MHC-I, MHC-II, and a wide array of costimulatory molecules, 
endothelial exhibit “semiprofessional” APC functions that can 
communicate Ag-specific information to effector/memory T 
cells in the periphery. Furthermore, evidence from diverse mod-
els presents an emerging picture of endothelia as locally tuned 
functionally heterogeneous APCs that instruct highly context 
dependent responses. While these functions are ancillary to those 
of professional APCs, the large scale and strategic anatomical 
positioning of the endothelial nhAPC compartment suggests 
important, non-redundant functions in peripheral in adaptive 

immune responses that should be considered in the context of 
emerging APC-directed immune-modulatory therapeutics.
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