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Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on 
innate immune cells, which activate intracellular signal transduction pathways to elicit an 
immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and 
can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-
κB) pathways. These pathways are critical for mounting an effective immune response. 
In order to evade detection and promote virulence, many pathogens subvert the host 
immune response by targeting components of these signal transduction pathways. This 
mini-review highlights the diverse mechanisms that bacterial pathogens have evolved 
to manipulate the innate immune response, with a particular focus on those that target 
MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that 
pathogens employ to subvert the immune response not only highlights the importance 
of these proteins in mounting effective immune responses, but may also identify novel 
approaches for treatment or prevention of infection.
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inTRODUCTiOn

Innate immunity provides the first line of defense against invading pathogens. Recognition of micro-
bial ligands, or pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors 
(PRRs), stimulates innate immune cells to upregulate the expression of cytokines, chemokines, and 
proteins that directly target microbes. Toll-like receptors (TLRs) have been well studied amongst 
the PRRs, with 10 described in human and 12 in mouse (1). TLRs on the cell surface recognize 
ligands from extracellular microbes, such as peptidoglycan by TLR1/TLR2, lipoprotein by TLR2/6, 
lipopolysaccharide (LPS) by TLR4, and flagellin by TLR5. TLR3, TLR7, TLR8, and TLR9 are located 
in intracellular vesicles where they recognize microbial nucleic acids.

Stimulation of all TLRs activates the mitogen-activated protein kinase (MAPK) and Nuclear 
Factor-κB (NF-κB) signaling pathways, both of which are critical for an effective immune response. 
The current understanding of the signaling events that trigger MAPK and NF-κB activation in 
response to TLR stimulation have been reviewed recently (1–4), but is summarized below and in 
Figure 1.

Following detection of PAMPs by a TLR, signaling is initiated by the recruitment of adaptor 
proteins to the cytoplasmic Toll and IL-1 Receptor (TIR) domain of the receptor. Two main pathways 
of TLR signaling exist, defined on their use of either the MyD88 (myeloid differentiation primary-
response protein 88) or TRIF (TIR domain-containing adaptor protein inducing interferon α/β) 
adaptor, with all TLRs except TLR3 able to utilize the MyD88 pathway. MyD88 recruits IL-1 receptor-
associated kinase (IRAK) 4, IRAK1 and IRAK2 to form a complex known as the Myddosome, which 
subsequently recruits the E3 ubiquitin ligase TNF receptor-associated factor 6 (TRAF6).
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FiGURe 1 | Blockade of MAPK and nFκB signaling by bacterial effectors. TLR signaling is initiated by the recruitment of adaptor proteins to the TIR domain 
of the receptor. Recruitment of MyD88 facilitates Myddosome formation through binding of IRAK4, IRAK1, and IRAK2. IRAKs bind to and recruit the E3 ubiquitin 
ligase TRAF6, which – perhaps with input from other E3s – generates lysine-63 (K63) linked polyubiquitin chains. K63 linked polyubiquitin chains are used as a 
substrate by LUBAC to form M1-K63 hybrid polyubiquitin chains. K63 and M1-K63 polyubiquitin chains are necessary for downstream signaling mediated by TAK1. 
TAK1 phosphorylates and activates IKKα/β, which form the IKK complex together with NEMO/IKKγ. The IKK complex phosphorylates IκBα, resulting in its 
K48-linked polyubiquitination and proteasomal degradation, which releases the p65 NFκB subunit from inhibition. The IKK complex also phosphorylates p105, 
generating the p50 NFκB subunit, and enabling the active p50-p65 NFκB dimer to translocate to the nucleus. TAK1 also controls activation of the ERK1/2, p38, and 
JNK MAPK pathways by acting as a MAP3K for the p38 and JNK pathways and controlling the activation of ERK1/2 via Tpl2. Phosphorylation of p105 by the IKK 
complex releases Tpl2 from inhibition, allowing Tpl2 to activate ERK1/2 signaling. MAPKs phosphorylate their own downstream targets including other kinases and 
transcription factors that regulate transcription. Activation of TLR3 and TLR4 can also recruit the TRIF adaptor, which activates NFκB and MAPK signaling via both 
Receptor Interacting Protein 1 (RIP1) and TRAF6 upstream of TAK1, and activates IRF3 via IKKϵ and Tank-binding kinase 1 (TBK1). Bacterial effectors block 
signaling by interfering with different components of the signaling cascades, as indicated in the figure.
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TRAF6 and/or other E3 ubiquitin ligases generate lysine-63 
(K63) linked polyubiquitin chains that are used by the linear ubiq-
uitin chain assembly complex (LUBAC) to generate linear (M1)-
K63 hybrid polyubiquitin chains. The formation of both K63 and 
M1-K63 hybrid polyubiquitin chains is required to assemble the 
signaling complexes that activate downstream pathways. TAK1 
plays a central role in activating downstream signaling pathways. 
First, it phosphorylates and activates IκB kinases (IKKα/β), which 
form the IKK complex together with NEMO/IKKγ. The IKK 
complex phosphorylates IκBα, enabling its recognition by the 
E3 ligase complex SCF-βTrCP (SKP1–cullin-1–F-box complex 
containing βTrCP), resulting in its K48-linked polyubiquitina-
tion and proteasomal degradation. Loss of IκBα releases the p65 
NFκB subunit allowing it to translocate to the nucleus.

TAK1 also controls activation of the ERK1/2, p38, and JNK 
MAPK pathways. MAPK activation requires a cascade of at least 

three kinases. MAPKs are activated by a MAPK Kinase (MAP2K), 
which itself is activated by phosphorylation by an upstream 
MAPK Kinase Kinase (MAP3K). TAK1 acts as a MAP3K for the 
p38 and JNK pathways and via IKK it controls the activation of 
Tpl2, the MAP3K that activates ERK1/2 downstream of TLRs. 
Tpl2 activity is controlled by p105, which tethers it in an inactive 
complex with Abin2. Phosphorylation of p105 by the IKK com-
plex, releases this complex, allowing Tpl2 to activate its substrates. 
MAPKs phosphorylate their own downstream targets including 
other kinases and transcription factors that regulate transcription 
(1–4).

Pathogenic bacteria have evolved elaborate strategies to 
perturb intracellular signaling pathways that activate the host 
immune response. This review describes the mechanisms 
bacteria use to inhibit TLR-dependent signaling, focusing 
on strategies that block MAPK and NF-κB signaling and 
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TABLe 1 | Mechanisms used by bacteria to inhibit TLR-dependent signaling by blocking MAPKs or nFκB.

Protein function Protein Bacterial species Disease Mechanism Reference

TIR mimic TlpA Salmonella Enteritidis Gastrointestinal 
disease

Postulated to compete with 
endogenous TIR domains to prevent 
signaling

Newman et al. (8)

TirS Staphylococcus aureus Skin, respiratory tract, 
and GI tract infections

Blocks TLR2 signaling Askarian et al. (9)

TcpC Escherichia coli CFT073 
(UPEC)

Urinary tract infection Binds MyD88 to prevent downstream 
signaling

Cirl et al. (10)

TcpB/BtpA Brucella melitensis Brucellosis Mimics Mal (TIRAP) to block TLR2/
TLR4 signaling; targets Mal for 
proteasomal degradation

Cirl et al. (10), Radhakrishnan et al. 
(13), Sengupta et al. (14)

BtpB Brucella melitensis Brucellosis Interacts with MyD88 to block TLR 
signaling

Salcedo et al. (12)

YpTIR Yersinia pestis Plague Interacts with MyD88 to block TLR 
signaling

Rana et al. (11), Spear et al. (66)

Protease LF Bacillus anthracis Anthrax Cleaves MKKs within MAPK-docking 
domain

Duesbery et al. (15), Vitale et al. (16)

NleD Escherichia coli (EPEC/
EHEC)

Gastrointestinal 
disease

Cleaves JNK and p38 within TxY dual 
phosphorylation motif

Baruch et al. (17)

NleC Escherichia coli (EPEC/
EHEC)

Gastrointestinal 
disease

Cleaves amino-terminus of p65 
NF-κB targeting it for proteasomal 
degradation

Yen and Ooka (18), Mühlen et al. (19), 
Baruch et al. (17), Pearson et al. (20)

CT441 Chlamydia spp. Urogenital tract 
infection, trachoma 
eye disease

Cleaves p65 NF-κB Lad and Yang (21)

CPAF Chlamydia spp. Urogenital tract 
infection, trachoma 
eye disease

Cleaves p65 NF-κB Christian et al. (23)

Acetyltransferase VopA Vibrio parahaemolyticus Gastrointestinal 
disease

O-acetylates MKKs in the activation 
loop to compete with phosphorylation; 
N-acetylates MKKs in the catalytic loop 
to disrupt ATP binding

Trosky et al. (24, 25)

AvrA Salmonella Typhimurium Gastrointestinal 
disease

O-acetylates MKKs in the activation 
loop to compete with phosphorylation

Jones et al. (26)

YopJ/YopP Yersinia spp. Plague/Yersiniosis O-acetylates MKKs, TAK1 and IKKα 
and IKKβ in the activation loop to 
compete with phosphorylation

Orth et al. (28), Mittal et al. (30), 
Mukherjee et al. (29), Haase and 
Richter (32), Thiefes et al. (33), 
Paquette and Conlon (31), Meinzer 
et al. (34)

Eis Mycobacterium 
tuberculosis

Tuberculosis N-acetylates DUSP16/MKP7 to block 
JNK activation

Kim et al. (35)

Phosphothreonine 
lyase

OspF Shigella spp. Dysentery Removes phosphothreonine in the TxY 
activation loop of MAPKs

Li et al. (37)

SpvC Salmonella Typhimurium Gastrointestinal 
disease

Removes phosphothreonine in the TxY 
activation loop of MAPKs

Mazurkiewicz et al. (38)

Kinase/
phosphatase

OspG Shigella Dysentery Binds to ubiquitin and E2-ubiquitin 
conjugates; prevents IκBα degradation

Kim et al. (43), Zhou et al. (44)

NleH1 Escherichia coli (EPEC/
EHEC)

Gastrointestinal 
disease

Inhibits IκBα degradation; binds to 
RPS3 to antagonize NF-κB activity

Gao and Wan (47), Royan et al. (46)

NleH2 Escherichia coli (EPEC/
EHEC)

Gastrointestinal 
disease

Inhibits IκBα degradation Royan et al. (46)

PtpA Mycobacterium 
tuberculosis

Tuberculosis Dephosphorylates p38 and JNK; 
competes with ubiquitin for TAB3 
binding

Wang et al. (61)
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Protein function Protein Bacterial species Disease Mechanism Reference

E3 ligase IpaH9.8 Shigella Dysentery Targets NEMO and MAPKK (Ste7) for 
degradation

Rohde et al. (48), Ashida et al. (50)

IpaH4.5 Shigella Dysentery Targets NF-κB p65 for ubiquitination, 
preventing transcription

Wang et al. (51)

IpaH0722 Shigella Dysentery Targets TRAF2 for ubiquitination, 
preventing PKC-induced NF-κB activity

Ashida et al. (52)

Deubiquitylase SseL Salmonella Typhimurium Gastrointestinal 
disease

Prevents Lys48-linked ubiquitination 
and degradation of IκBα

Le Negrate et al. (57)

ChlsDub1 Chlamydia trachomatis Trachoma eye  
disease

Prevents Lys48-linked ubiquitination 
and degradation of IκBα

Le Negrate et al. (57)

TssM Burkholderia 
pseudomallei

Melioidosis Prevents Lys63-linked ubiquitination 
of TRAF6/TRAF3 and Lys48-linked 
ubiquitination and degradation of IκBα

Shanks et al. (58)
Tan et al. (60)

Glutamine  
deamidase

OspI Shigella flexneri Dysentery Deamidates glutamine residue in 
Ubc13 to prevent TRAF6 binding

Sanada et al. (62)

Cysteine 
methyltransferase

NleE Escherichia coli (EPEC) Gastrointestinal 
disease

Targets Npl4 zinc finger domains of 
TAB2/3 to prevent binding to Lys63-
linked polyubiquitin and TAK1 activity

Zhang et al. (63)
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is summarised in Table  1. Interestingly, some intracellular 
bacteria can also activate MAPK or NF-κB pathways to their 
advantage at different stages of infection. For example, while 
within cellular vacuoles, Salmonella Typhimurium expresses 
the kinase SteC which phosphorylates MKK1/2 on Ser200 
in the kinase domain (5). Phosphorylation of Ser200 causes 
MKK1/2 to autophosphorylate on Ser218 and Ser220, leading 
to activation of ERK1/2 and resulting in reorganization of the 
actin cytoskeleton, which restrains bacterial growth to control 
bacterial virulence (5). S. Typhimurium also uses SopE, SopE2, 
and SopB, which act redundantly to activate MAPK and NF-κB 
via Rho-family GTPases and stimulate inflammation (6). 
Infection of alveolar macrophages with Legionalla pneumophila 
causes Legionnaire’s disease. L. pneumophila translocates the 
kinase LegK1 into macrophages where it activates NF-κB sign-
aling to inhibit apoptosis and promote intracellular bacterial 
replication (7). LegK1 phosphorylates a number of proteins in 
both the canonical and non-canonical NF-κB pathway, includ-
ing IκBα, IκBβ, IκBϵ, p100 (NFBK2), and p105 (NFKB1) (7). 
Phosphorylation of IκBα on serines 32 and 36 stimulate its deg-
radation and promote translocation of NF-κB to the nucleus, 
while phosphorylation of p100 on serines 866 and 870 causes 
its cleavage to generate the p52 subunit and induce formation 
of the p52/RelB non-canonical NF-κB complex.

BLOCKinG SiGnALinG BY MiMiCKinG 
TiR:TiR inTeRACTiOnS

A number of bacteria target the initial stage of TLR activation 
by expressing TIR-containing proteins (Tcps) that interfere with 
TIR–TIR interactions. A bioinformatics screen for bacterial 
proteins with homology to human TIRs identified the first TIR-
containing protein as TIR-like protein A (TlpA) from Salmonella 
enterica serovar Enteritidis (Salmonella Enteritidis), which 

causes food-borne gastroenteritis (8). TlpA dose-dependently 
suppresses TLR/IL1 induced NF-κB activity and is thought to 
achieve this by competing with endogenous TIR domains to block 
downstream signaling (8). A similar mechanism is proposed for 
the Staphylococcus aureus TIR domain protein TirS which blocks 
TLR2-induced MAPK and NF-κB signaling (9).

Other Tcps, including TcpC from the uropathogenic 
Escherichia coli strain CFT073, TcpB/BtpA, and BtpB from 
Brucella melitensis which causes the chronic and debilitating 
zoonotic disease Brucellosis and ypTIR from the plague-causing 
Yersinia pestis, are all able to bind to MyD88 and prevent down-
stream signaling from TLRs (10–12). Additionally, TcpB was pro-
posed to compete with the TIR-containing adaptor protein Mal/
TIRAP to prevent TLR2- and TLR4-dependent signaling (13). 
TcpB downregulates Mal expression by targeting phosphorylated 
Mal for proteasomal degradation by a mechanism similar to the 
cellular SOCS1-mediated degradation of Mal (14).

BACTeRiAL PROTeASeS

Several bacterial proteins can inhibit signaling by selectively 
cleaving signaling enzymes. Bacillus anthracis lethal factor (LF) 
is a protease that forms part of the anthrax toxin. LF specifically 
targets MAPK kinases (MKKs) by cleaving within the MAPK-
docking domain (D-domain), which is required for binding 
to downstream substrates. LF-induced proteolysis disrupts 
or removes the D-domain to generate kinases that are unable 
to interact with downstream MAPKs, thereby blocking their 
phosphorylation and activation. Although originally described 
to block MKK1/2 (15), LF is capable of cleaving all MKKs except 
MKK5 (16), resulting in reduced kinase activity for ERK, p38, and 
JNK MAPK pathways.

Enteropathogenic and enterohemorrhagic E. coli (EPEC/
EHEC) are closely related bacteria that cause severe food-borne 

TABLe 1 | Continued
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gastroenteritis. Both use type III secretion systems (T3SS) to 
inject effector proteins into the host cell. One of these, NleD, is 
a zinc metalloprotease that inactivates JNK and p38 by cleaving 
between the dual phosphorylation sites within the kinase activa-
tion loop (17). Proteolysis as a strategy to dampen the immune 
response is not restricted to MAPKs as EPEC/EHEC proteases 
also target the NF-κB signaling pathway. NleC, another zinc 
protease, cleaves the p65 subunit of NF-κB at its amino-terminus 
to promote its proteasomal degradation (17–20) and has also 
been shown to target other NF-κB components including IκBα, 
p50, and c-Rel (19, 20). The NF-κB p65 subunit is also a target 
of proteolysis by the Chlamydia proteases CT441 (21, 22) and 
Chlamydial protease-like activity factor (CPAF) (23). CT441 
inhibits NFκB activation by cleaving p65 at residue 351/2, which 
lies between the Rel-homologous domain and the transactivation 
domain (21).

BACTeRiAL ACeTYLTRAnSFeRASeS

Some bacterial effectors modify host signaling proteins to inhibit 
their activity. Vibrio outer protein A (VopA) is an acetyltransferase 
expressed by Vibrio parahaemolyticus that inhibits signaling by 
all MAPKs through both O-acetylation (serine and threonine 
acetylation) and N-acetylation (lysine acetylation) of MAP2Ks 
(24, 25). VopA acetylates MKK6 on three residues (Ser207, 
Lys210, and Thr211) in the activation loop and on Lys172 in 
the catalytic loop. Phosphorylation of Ser207 and Thr211 by 
MAP3Ks is critical for MKK6 activation, and acetylation of these 
resides by VopA blocks MKK6 activity. Lys172 coordinates the 
γ-phosphate of ATP, and its N-acetylation disrupts ATP binding 
to prevent phosphorylation of downstream substrates. This dual 
approach of preventing kinase activation and locking the kinase 
in an inactive state makes VopA an extremely potent inhibitor of 
MAPK signaling.

Salmonella Typhimurium expresses the O-actetyltranferase 
AvrA that modifies the threonine residue in the activation 
loop of MKK4 to prevent JNK activation (26). An interaction 
between MKK7 and AvrA was observed in a yeast-two-hybrid 
screen (27) suggesting that it can act on both MKKs that activate 
JNK. Although overexpressed AvrA inhibits both p38 and JNK 
phosphorylation, only JNK phosphorylation is inhibited during 
S. Typhimurium infection and JNK target genes are upregulated 
in cells infected with ΔAvrA, lending support for AvrA being 
targeted to the JNK signaling pathway (27).

Yersinia species deliver Yersinia outer proteins (Yops) into the 
host cell via a Type III secretion system. The Y. pestis/Yersinia 
pseudotuberculosis effector YopJ (YopP in Yersinia enterocolitica) 
inhibits MAPK signaling by blocking the phosphorylation and 
activation of MAP2Ks (28). YopJ O-actetylates critical residues in 
the MAP2K activation loop, as described for MKK6 and MKK2 
(29–31). In addition to targeting MAP2Ks, YopJ/YopP also 
inhibits the MAP3K TAK1 (31–34). YopJ O-acetylates Thr184 
and Thr187 in the activation loop of TAK1, preventing Thr187 
autophosphorylation and thereby blocking kinase activation. 
Conflicting reports exist regarding the effect of YopP on the 
formation of the TAK1-TAB2/3 complex, with one showing that 
YopP interferes with TAK1-TAB2 binding (32), while a second 

report demonstrated that it did not affect TAK1-TAB2/3 complex 
formation (33). YopP may also affect ubiquitination since overex-
pressed YopP blocks TRAF6-dependent polyubiquitination reac-
tions, although the authors note that they were unable to reliably 
detect this effect on ubiquitination in Yersinia-infected cells (32). 
By acetylating both TAK1 and MKKs to prevent their activation, 
YopJ/P targets both the MAPK and NFκB signaling pathways. 
This dual targeting strategy is reinforced by the demonstration 
that YopJ also O-acetylates IKKα and IKKβ in the activation loop 
to inhibit their kinase activity and prevent activation of the NFκB 
pathway (28, 30).

Mitogen-activated protein kinases are inactivated by a number 
of different phosphatases of which the dual specificity phosphatase 
(DUSP) family members are key regulators of MAPK dephos-
phorylation in immunity. The Enhanced intracellular survival 
(Eis) protein of Mycobacterium tuberculosis, the causative agent 
of tuberculosis, targets the JNK pathway. Eis N-acetylates lysine 
55 of the JNK-specific DUSP16, which is also known as MAPK 
phosphatase 7 or MKP7 (35). Lys55 lies within the substrate-
docking domain of DUSP16, and its acetylation by Eis results 
in reduced JNK activity in cells. Similarly, DUSP1/MKP1 that 
has been acetylated on Lys57 by p300 reduces p38 activity (36). 
Acetylated DUSP1 binds more readily to p38, resulting in higher 
phosphatase activity and reduced p38 activity (36). Eis acetyla-
tion of DUSP16 is thought to act in a similar manner to reduce 
JNK activity.

BACTeRiAL PHOSPHOTHReOnine 
LYASeS

The OspF and SpvC proteins of Shigella and S. Typhimurium, 
respectively, target MAPK activation by specifically removing 
the phosphate group from phosphothreonine in the TxY acti-
vation loop (37, 38). Rather than acting as threonine-specific 
phosphatases, OspF and SpvC function as phosphothreonine 
lyases to irreversibly inactivate MAPKs via an eliminylation 
reaction whereby the threonine phosphate group is dephos-
phorylated by β-elimination to generate the unsaturated amino 
acid dehydrobutyrine (37, 39). The effect is irreversible as dehy-
drobutyrine lacks a hydroxyl group and cannot be phospho-
rylated. Although OspF and SpvC have activity against ERK, 
p38, and JNK (37, 38), OspF shows selectivity for ERK and p38 
during Shigella infection (40, 41) and has actually been shown 
to potentiate JNK activity due to its phosphothreonine lyase 
activity on p38 disrupting a negative feedback loop between 
p38 and TAK1 (42).

BACTeRiAL KinASeS

Some bacteria express their own kinases. For example Shigella 
OspG is a serine/threonine kinase that binds to ubiquitin and 
E2-ubiquitin conjugates in the SCF-βTrCP complex, dampening 
the host immune response by reducing IκBα degradation (43, 
44). The interaction between OspG and ubiquitin activates its 
kinase activity, which is required for it to inhibit NFκB signal-
ing. Binding of OspG to E2-ubiquitin conjugates also represses 
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ubiquitin transfer to E3 ligases, as it has been shown to stabilize a 
UbcH5b-ubiquitin complex (45).

OspG shares significant sequence homology with the NleH 
family of proteins in E. coli and like OspG, NleH1, and NleH2 
can inhibit IκBα ubiquitination to prevent its degradation 
(46). However, NleH1/2 is regulated differently to OspG, 
since their kinase activity is not induced by ubiquitin (44). 
Instead, NleH1 binds to a novel subunit of NFκB, ribosomal 
protein S3 (RPS3), antagonizing its function of guiding p65 
to specific promoters and thereby reducing its transcriptional 
activity (47).

BACTeRiAL e3 LiGASeS

In addition to expressing kinases and phosphatases that can 
interfere with ubiquitin-dependent signaling, bacteria also use 
their own E3 ligases and deubiquitinase. IpaH proteins belong 
to the Novel E3 Ligase (NEL) family of ubiquitin E3 ligases of 
which Shigella IpaH9.8 and Salmonella SspH1 were the first 
described members (48). Although a large number of bacterial 
E3 ligases have been identified (49) many of their ubiquitination 
targets are unknown. Using the yeast Saccharomyces cerevisiae as 
a model system, it was demonstrated that IpaH9.8 acts as an E3 
ligase for the MAPKK Ste7 (48), and that in human cells IpaH9.8 
mediates lysine-27 polyubiquitination of NEMO/IKKγ resulting 
in the degradation of both proteins (50). Other IpaH family 
members also possess E3 ligase activity, with Shigella IpaH4.5 
ubiquitinating p65 to block NF-κB transcription (51) and 
IpaH0722 targeting TRAF2 for ubiquitin-dependent degradation 
to inhibit PKC-induced NF-κB activity (52). Interestingly reports 
are now emerging of bacterial E3 ligases targeting other aspects 
of immune signaling. For example, Shigella IpaH7.8 activates the 
inflammasome, resulting in cell death and enhanced bacterial 
replication (53).

BACTeRiAL DeUBiQUiTinASeS (DUBs)

Deubiquitinases (DUBs) are proteases that remove ubiquitin from 
proteins. Both the AvrA and SseL proteins of S. Typhimurium and 
the ChlsDub1 protein of Chlamydia trachomatis possess DUB 
activity that inhibits K48-linked ubiquitination and degradation 
of IκBα, thus blocking NFκB activation (54–57). In addition to 
its DUB activity, ChlsDub1 has also been shown to have deNED-
Dylating activity (59) that may contribute to suppressing IκBα 
degradation by antagonizing conjugation of the ubiquitin-like 
NEDD8 protein to the SCF-βTrCP complex, although this has 
not been formally demonstrated.

Burkholderia (Pseudomonas) pseudomallei, which causes 
melioidosis, expresses the effector protein TssM, which possesses 
DUB activity against both K63 and K48-linked polyubiquitin 
(58, 60). TssM overexpression causes reduced K48-linked 

polyubiquitination of IκBα and reduced K63-linked polyubiq-
uitination of TRAF6 to block NFκB-induced transcription (60).

OTHeR BACTeRiAL eFFeCTORS

In addition to the above proteins, further bacterial effectors that 
block MAPK and NFκB activity via different mechanisms have 
started to emerge. M. tuberculosis tyrosine phosphatase PtpA 
dephosphorylates JNK and p38 to dampen cytokine expression 
(61). PtpA uses a novel mechanism whereby its phosphatase 
activity is stimulated by binding to ubiquitin via a novel ubiq-
uitin-interacting motif-like (UIML) region (61). Mtb PtpA also 
suppresses NFκB activation by competitively binding to the Npl4 
zinc finger domain (NZF) of TAB3, blocking its ability to bind to 
ubiquitin chains and thereby reducing Tak1 activity.

The Shigella flexneri type III effector OspI blocks TRAF6 medi-
ated signaling by selectively deamidating a glutamine residue to 
glutamic acid in the E2 enzyme Ubc13 (62). The deamidation of 
Glu100 prevents Ubc13 from binding to TRAF6, inhibiting its E3 
ligase activity and thereby blocking downstream signaling.

The EPEC NleE protein also uses a unique mechanism to inhibit 
bacterial-induced signaling. NleE is an S-adenosyl-l-methionine 
(SAM)-dependent cysteine methyltransferase that targets the 
Npl4 zinc finger (NZF) domains in TAB2/3 (63). Modification of 
cysteine residues in the zinc finger domains of TAB2/3 abolishes 
their ability to bind to Lys63-linked polyubiquitin chains and 
therefore blocks downstream TAK1 activation, consistent with 
the observed inhibition of IκBα phosphorylation and NFκB 
signaling in the presence of NleE (64, 65). NleE proteins from 
other pathogens, such as S. flexneri protein OspZ, were shown 
to be functionally interchangeable with NleE in blocking NFκB 
signaling and may also act as a cysteine methyltransferases (65).

SUMMARY AnD FUTURe PeRSPeCTiveS

Bacterial pathogens have evolved diverse and elegant ways to 
block MAPK and NF-κB signaling downstream of TLR activa-
tion, enabling them to evade detection by the immune system 
and promote infection. Many bacteria employ strategies to 
simultaneously target a number of proteins within these, as well 
as other host pathways, to increase their chances of overcom-
ing the immune response. Future discoveries in understanding 
how and why pathogens target particular proteins will not only 
demonstrate their importance in immunity, but will also help our 
understanding of how bacteria activate intracellular signaling 
pathways, and have the potential to identify new targets for the 
treatment or prevention of infection.
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