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Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease. Despite 
years of study, the etiology of SLE is still unclear. Both genetic and environmental fac-
tors have been implicated in the disease mechanisms. In the past decade, a growing 
body of evidence has indicated an important role of gut microbes in the development 
of autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, and multiple 
sclerosis. However, such knowledge on SLE is little, though we have already known that 
environmental factors can trigger the development of lupus. Several recent studies have 
suggested that alterations of the gut microbial composition may be correlated with SLE 
disease manifestations, while the exact roles of either symbiotic or pathogenic microbes 
in this disease remain to be explored. Elucidation of the roles of gut microbes – as well 
as the roles of diet that can modulate the composition of gut microbes – in SLE will shed 
light on how this autoimmune disorder develops, and provide opportunities for improved 
biomarkers of the disease and the potential to probe new therapies. In this review, we 
aim to compile the available evidence on the contributions of diet and gut microbes to 
SLE occurrence and pathogenesis.
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iNTRODUCTiON

The mammalian gut harbors trillions of microorganisms known as the microbiota (1). Increasing 
evidence in recent years suggest that host microbiota and immune system interact to maintain tissue 
homeostasis in healthy individuals (2–6). Perturbation of the host microbiota, especially in the gut, 
has been shown to be associated with many diseases. Among these are autoimmune disorders that 
include inflammatory bowel disease (IBD) (7, 8), type 1 diabetes (T1D) (9–12), rheumatoid arthritis 
(5, 13–15), and multiple sclerosis (16, 17). However, little is known on the role of gut microbiota in 
systemic lupus erythematosus (SLE) (18).

Systemic lupus erythematosus is an autoimmune disorder characterized by severe and persistent 
inflammation that leads to tissue damage in multiple organs. According to the Lupus Foundation of 
America, about two million Americans currently live with the disease. The prevalence ranges from 
20 to 200 cases per 100,000 persons, with higher prevalence for people of African, Hispanic, or Asian 
ancestry (19, 20). Although the disease affects both males and females, women of childbearing age 
are diagnosed nine times more often than men.

Our research team has recently described the dynamics of gut microbiota in a classical SLE mouse 
model MRL/Mp-Faslpr (MRL/lpr) (21). In young, female lupus mice, we found marked depletion of 
Lactobacilli, and increase of Clostridial species (Lachnospiraceae) together with increased bacterial 
diversity compared to age-matched healthy controls. Importantly, dietary treatments that improved 
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lupus symptoms in lupus mice also restored gut colonization of 
Lactobacillus and decreased that of Lachnospiraceae. In human 
SLE, a recent cross-sectional study has shown that a lower 
Firmicutes to Bacteroidetes ratio was present in women with 
SLE even after disease remission (22). Similarly, a higher level 
of Bacteroidetes was found in lupus-prone SNF1 mice with more 
severe disease (23), though this was not evident in MRL/lpr mice 
(21). These results suggest a potentially important role of gut 
microbiota on lupus pathogenesis, in particular a potential role 
of Bacteroidetes, since the relative abundance of these bacteria is 
increased in human SLE and at least one murine lupus model. In 
this review, we aim to compile the available evidence that associ-
ates gut microbes to SLE.

eNviRONMeNTAL FACTORS AND SLe

It is well established that genetic factors influence lupus suscepti-
bility. However, the lack of disease concordance between geneti-
cally identical twins strongly suggests the role of non-genetic 
factors, most likely of environmental factors (24). The role of 
environmental factors in the etiology of SLE is evidenced by the 
dramatic difference in disease incidence between West Africans 
and African Americans, both derived from the same ethnic group 
but exposed to different environments (25). With an obviously 
higher burden of infections, the frequency of SLE is much lower 
in West Africa than Africans living in Europe or USA. The mecha-
nism behind this observation is still unclear, but improvement in 
hygiene and absence of certain microbes may have contributed to 
the higher incidence and faster progression of lupus disease (26). 
In addition to microbes, a number of environmental triggering 
factors have been described to be associated with SLE, including 
UV light and cigarette smoking, some of which trigger lupus 
through epigenetic mechanisms (27–30).

The Hygiene Hypothesis
Increase of SLE occurrence in the developed world has been 
reported. Data from several regions of USA show that the inci-
dence of SLE increased at least threefold within the second half 
of the twentieth century (31, 32). This increase could be related 
to changes of environmental factors, though better diagnostic 
methods and increasing awareness of the disease may partially 
lead to the change in SLE frequency. Similar increase has been 
observed in a study analyzing the incidence of SLE in Denmark 
(33). Genome evolution rate seems to be unpersuasive to this 
increase. In contrast, due to advancements on medicine and 
vaccination, a number of infectious agents have been gradually 
eliminated in developed countries, and the sanitation condition 
has been largely improved. Some have thus proposed that lower 
exposure to infections leads to the rise of allergies and some 
autoimmune diseases, such as T1D (34, 35). This is called “The 
Hygiene Hypothesis.” Considering the rise of SLE frequency in 
developed countries, it is reasonable to extend the hypothesis to 
this autoimmune disorder.

Increasing hygiene standards eliminates both pathogenic 
and non-pathogenic microbes from the environment. Infections 
from pathogenic microbes, or the lack thereof, are known to be 
associated with SLE occurrence. Epstein–Barr virus (EBV) and 

cytomegalovirus (CMV), for example, have been linked to the 
pathogenesis of SLE by several reports (36–40). Commensal 
microbes residing inside the host, in return, have been shown 
to maintain and expand CD8+ memory T cells during CMV 
infection, supporting the notion that microbiota and CMV 
cooperatively augment immune activation (41). While EBV and 
CMV are largely considered triggers of SLE, it is increasingly evi-
dent that some infections may be beneficial and the lack of them 
might actually facilitate SLE. In one surprising report (42), two 
female SLE patients with severe SLE showed improved disease 
after experiencing infections for a short period of time. Before 
the infections, both patients failed to respond to a long time of 
immunosuppressive therapy. Neither experienced relapse after 
the amelioration of SLE symptoms following the infections. One 
of the patients even had a successful pregnancy, which is known 
to trigger lupus flares. Unfortunately, the study did not identify 
the causing agent that ameliorated the disease. However, another 
study has identified hepatitis B virus (HBV) as a protective factor 
against SLE (43). In their study, 2.5% of SLE patients were found 
positive for the presence of HBV-core antibody, compared to 
10.7% from normal controls, which suggests a potential benefit 
of HBV infection against the occurrence of SLE. In addition, in 
a large serologic survey, Helicobacter pylori seronegativity was 
found to be associated with an increased risk and earlier onset 
of SLE in African Americans, suggesting a protective role of 
H. pylori in SLE patients (44, 45). These studies suggest that, in 
developed countries where HBV and H. pylori infections are 
decreasing (46–48), the risk for developing SLE could become 
higher. T cell exhaustion during chronic infection may explain 
the ability of these pathogens to down-regulate inflammation and 
ameliorate SLE (49, 50).

In lupus-prone mouse models, beneficial roles of some patho-
genic microbes have also been suggested. Chen et  al. reported 
that with the infection of Toxoplasma gondii, New Zealand Black 
(NZB) × New Zealand White (NZW) F1 (NZB/W F1) mice had 
significantly decreased mortality, ameliorated proteinuria level, 
and reduced anti-DNA IgG in serum. IFNγ and IL-10 expression 
was reduced in the spleen in the presence of T. gondii, suggesting 
the suppression of T helper 1 (Th1) and Th2 responses, respec-
tively, both demonstrated to be pathogenic in murine lupus (42, 
51). In addition, when examining NZB/W F1 mice treated with 
live Plasmodium chabaudi, another prevalent parasite, several 
independent groups have found that the malaria-causing microbe 
can prevent clinical symptoms of murine lupus and protect the 
animals against lupus nephritis (52–54). This is perhaps due to 
the changed cytokine profile and redox status in both liver and 
kidney of the mice. Moreover, virus infection has also been found 
to improve murine lupus symptoms in addition to parasites. For 
instance, the infection of lactate dehydrogenase elevating virus 
(LDV) has been shown to significantly suppress the production of 
anti-nuclear antibody (ANA) and the development of glomerulo-
nephritis in NZB/W F1 mice (26, 55–58). The beneficial effect is 
hypothesized to be associated with superoxide anion production 
from macrophages and modulation of prostaglandin E. While 
LDV and P. chabaudi do not infect humans, results from these 
mouse studies suggest that some infections might be associated 
with decreased severity of SLE.
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Antibiotics and SLe
Antibiotics, which can remove gut bacteria, are known to trigger 
lupus flares. These include sulfa drugs such as  trimethoprim–
sulfamethoxazole (Septra), tetracycline-related antibiotics 
such as minocycline, and penicillin-related antibiotics such as 
amoxicillin. Increased sun sensitivity with antibiotics may be one 
mechanism behind the observations. However, antibiotics also 
cause diarrhea and remove beneficial microbes from the intesti-
nal tract. Could it be the removal of “good” bacteria a mechanism 
by which antibiotics induce flares in SLE patients? In addition, 
bacterial metabolites produced by gut microbes can modulate 
immune function. Recently, several groups have found that 
metabolites produced by gut bacteria, especially butyrate pro-
duced by Clostridia, can promote the differentiation of regulatory 
T cells (Tregs) in the colon, spleen, and lymph nodes to suppress 
inflammation (59–62). Thus, removal of certain gut commensals 
with antibiotics could potentially lead to decreases of bacterial 
metabolites, such as homoserine lactone, N-acetylmuramic acid, 
and N-acetylglucosamine (63)  –  which could be immunosup-
pressive  –  thereby facilitating lupus progression. Incidentally, 
African Americans have used antibiotics much more frequently 
than people in West African countries (64, 65), and this may 
have impacted the differences in lupus prevalence and severity 
between the two populations.

Dietary Components and SLe
Diet, one of the main environmental factors with known effects on 
gut microbiota, has been studied extensively in both SLE patients 
and lupus-prone mice. Vitamin D (VD), vitamin A (VA), and 
omega-3 polyunsaturated fatty acids (PUFAs), for instance, have 
been found to modulate lupus onset or flares. Current knowledge 
suggests that dietary components can influence SLE through 
changing the composition and function of gut microbiota, 
modulating immunological pathways, and/or exerting epigenetic 
changes (18, 30, 66, 67). Here, we summarize the recent updates 
on the roles of VD, VA, and PUFAs on lupus.

Vitamin D deficiency is increasingly common, resulting in 
increased risks for multiple disorders (68, 69). Although VD can 
be synthesized by the body in sunlight, adequate VD in diet is 
recommended. VD plays an important role in the homeostasis 
of the immune system, through a nuclear receptor existing in all 
immune cells, VD receptor (VDR). Polymorphisms of VDR have 
been recently reported to be associated with SLE susceptibility 
(70). In SLE patients, lower VD levels are associated with higher 
SLE activity. Handono and colleagues found that 1,25(OH)2D3 
can inhibit neutrophil extracellular trap (NET) formation in 
cultured cells from SLE patients with hypovitamin D (71). 
Inhibition of NETs prevents endothelial damage that promotes 
the progression of lupus disease (72), suggesting a possible 
benefit of supplying VD in SLE patients with suboptimal VD 
levels. Recently, it has been reported that VD supplementation 
increases the number of Treg cells and induces the shift toward 
Th2 response in pre-menopausal female SLE patients, although 
a direct efficacy toward disease activity was not observed (73, 
74). Likewise, no correlation was found between SLE-associated 
cytokine profiles and VD levels (75). However, in juvenile-onset 
SLE, which is more aggressive than adult SLE, dietary intake of 

VD has been reported to preclude disease progression in several 
recent studies (75–78). It is worth noting that the doses of VD 
utilized in these studies were different – one was rather intensive 
(50,000 international units or IU/week) and the other was more 
standard (2,000 IU daily) – but the outcomes were similar with 
improvement of SLE Disease Activity Index. Further studies are 
required to verify these findings in juvenile-onset SLE, and to 
explore the mechanisms of why a lack of response to VD was 
seen in adult SLE.

Vitamin A has long been recognized as an immune regulator. 
VA exerts its effects mainly via all-trans-retinoic acid (tRA), an 
active metabolite of VA. For SLE, the role of VA has been revealed 
through oral administration of tRA to either SLE patients or lupus-
prone mice. In SLE patients, some benefit of tRA to ameliorate 
lupus nephritis and proteinuria has been reported (79, 80). For 
murine lupus, several mouse models, including NZB/W F1 and 
MRL/lpr, showed reduced proteinuria and renal damage when 
supplemented with tRA (81–85). In our study (85), although 
tRA treatment improved lupus-like kidney disease in MRL/lpr 
mice, there were serious side effects: worsened inflammation in 
the skin, brain, and lung, as well as increased levels of circulating 
autoantibodies. Our findings suggest the need to monitor diverse 
organs in SLE patients if tRA were used as a treatment, avoiding 
any potential damage to organs other than the kidneys.

Polyunsaturated fatty acids, with the main representative 
being omega-3 fatty acid, have been studied as complementary or 
alternative treatments for SLE for many years. Omega-3 PUFAs 
cannot be synthesized by the human body or other mammals. 
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) 
are two well-recognized members of omega-3 PUFAs that are 
found in deep sea cold water fish. Fish oil is thereby utilized in some 
animal studies and clinical trials to test the efficacies of omega-3 
PUFAs. In 1980s, DHA and EPA were both demonstrated to ame-
liorate renal disease, reduce anti-dsDNA autoantibody levels, and 
prolong lifespan of NZB/W F1 mice (86–88). It was found that 
fish oil prevents murine lupus by reducing levels of various pro-
inflammatory cytokines, including IL-1β, IL-6, TNFα, and TGFβ, 
and increasing the expression of antioxidant enzymes (89–95). 
In addition, Fernandes and colleagues found that DHA-enriched 
fish oil, compared to EPA-enriched fish oil, was better at attenuat-
ing renal disease and increasing the survival of NZB/W F1 mice 
(90). This suggests that the relative abundance of EPA and DHA 
in fish oil might impact the outcomes of experiments designed to 
examine the effects of fish oil on SLE. Moreover, a recent study 
reported that omega-6 PUFAs did not have the same beneficial 
effect on lupus nephritis as omega-3 PUFAs (96). The disease-
ameliorating effect of omega-3 PUFA against murine lupus was 
further confirmed in several lupus-prone mouse models other 
than NZB/W F1 (86, 97, 98). Starting late 1980s, more than 10 
interventional studies with omega-3 PUFAs as treatments have 
been done in patients with SLE. Some studies showed promising 
results, especially for SLE patients with cardiovascular disease, 
which has emerged as an important cause of death in patients 
with SLE (99, 100).

While VD, VA, and PUFAs are known to change the composi-
tion of gut microtioba (21, 101, 102), how different dietary com-
ponents modulate the microbiota of SLE patients and subsequent 
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disease is unclear. One recent study has described diet-mediated 
increases of specific microbial genera that are known to be lower 
in SLE (103). Further studies are necessary to determine whether 
the modulation of diet – likely to be less expensive and safer than 
immunosuppressive drugs  –  can be effective at establishing a 
healthy balance between the host and symbiotic microbiota in 
the gut of SLE patients. If so, diet modulation might become a 
cost-effective approach for the management of SLE.

BACTeRiAL ANTiGeNS AND SLe

Bacteria constitute a large part of the symbiotic microbiota 
living in our body. Diverse components of Gram-positive and 
Gram-negative bacteria have been reported to contribute to the 
initiation and maintenance of lupus disease through stimulating 
TLRs, especially TLR2 and TLR4. TLRs are pattern recognition 
receptors that can recognize invading microorganisms bearing 
pathogen-associated molecular patterns (104). Details of TLR 
signaling pathways and their effects on autoimmune diseases, 
including SLE, have been reviewed elsewhere (105). In the cur-
rent review, we will focus on the roles of bacterial antigens in 
lupus and their possible link to the sex bias observed in SLE. We 
hypothesize that commensal bacteria naturally present in our 
microbiota might provide autoantigens that mediate the develop-
ment of SLE.

Lipopolysaccharide
Lipopolysaccharide (LPS) is a Gram-negative cell wall compo-
nent that can be recognized by TLR4. In SLE patients, soluble 
CD14 (sCD14), which is released by monocytes in response 
to LPS, is increased in the blood (106). The level of sCD14 is 
highly correlated with disease activity parameters, suggesting the 
involvement of LPS in lupus development. In addition, repeated 
injections of LPS into lupus-prone mice resulted in increased 
autoantibody production and development of glomerulonephri-
tis (107–111). Activation of TLR4 also promotes lupus disease 
activity in transgenic mice (107, 112, 113). Lupus spontaneously 
develops in mice with overexpression of a molecular chaperone 
of TLR4 that increases its responsiveness; but when commensal 
bacterial flora was deleted through treatment with antibiotics, the 
enhanced lupus phenotype was largely ameliorated (107). This 
suggests that TLR4 hyperresponsiveness to gut flora (which con-
tains LPS) plays an essential role in lupus development. Moreover, 
Ni and colleagues found increased levels of serum autoantibodies 
and more severe lung injury when challenging apolipoprotein 
E-deficient (ApoE−/−) mice with LPS (114). Furthermore, 
immunization of non-autoimmune mice (C57BL/6 or BALB/c) 
with phospholipid-binding proteins induced lupus-like disease, 
and this was facilitated by the presence of LPS (115–117). Taken 
together, these data suggest that enhanced TLR4 signaling by LPS 
stimulation is sufficient to induce SLE. LPS might do so by induc-
ing neutrophil activation and migration (118–120), key processes 
that promote the development of SLE (72). Inhibition of TLR4, on 
the other hand, reduces autoantibody production and decreases 
glomerular IgG deposits in the kidney for some lupus-prone 
murine models (121, 122). However, in TLR4-knockout MRL/
lpr mice, disease activity was not modified (123). This may be due 

to the different genetic backgrounds of the mice strains. Further 
testing of disease outcome through TLR4 knockout should be 
done in additional strains of lupus-prone mice to determine the 
role of TLR4 deficiency in lupus.

In addition to the effect of LPS on neutrophil activation 
(118–120), several recent studies have explored the mechanisms 
by which LPS induces lupus. Qin et al. reported that the inter-
action of TLR4 and LPS strongly induced CD40 expression in 
macrophages and microglia (124). It was also found that LPS had 
the ability to increase CD40 mRNA expression in various tissues, 
including liver and kidney, in NZB/W F1 mice (125). CD40 
silencing reduced the glomerular deposits of IgG and C3 in these 
mice, revealing a possible role of LPS-TLR4-CD40 signaling in 
the pathogenesis of lupus. Another possible role for LPS-TLR4 in 
lupus is to induce autoantibody production or isotype switching 
toward more pathogenic immunoglobulins, like IgG (126). Both 
MyD88- and TRIF-mediated signaling pathways are believed to 
contribute to increased autoantibody levels, though TRIF may 
play a more important role in driving autoantigen-specific IgG 
response (126). Moreover, it has been found that IL-18 is induced 
by LPS stimulation and this cytokine may cooperate with LPS–
TLR4 in breaking the tolerance in mice with lupus nephritis (127).

Systemic lupus erythematosus is a female-biased disorder. 
Accumulating evidences have linked TLR4 function to estrogen 
and estrogen receptor α (ERα). Studies by Gilkeson’s group have 
found that female SLE patients possess more active monocytes 
with enhanced TLR4 responsiveness than male SLE patients 
(128). In lupus-prone mice, ERα deficiency ameliorated renal 
damage and prolonged survival compared to ERα-sufficient 
controls (129). Importantly, knocking out ERα in both lupus-
prone and control mice resulted in impaired TLR4 activation 
in immune cells, indicating that estrogen and ER signaling can 
influence TLR4 responsiveness (130, 131). These results suggest 
possible contribution of TLR4 activation to sex bias in SLE.

Other Bacterial Antigens
Lipoteichoic acid (LTA), a major component of Gram-positive 
bacterial wall, is also reported to be involved in lupus pathogen-
esis. LTA is a ligand for TLR2, whose expression is increased in T 
cells, B cells, and monocytes from SLE patients (132). Increased 
TLR2 leads to enhanced IL-17A and IL-17F production and is 
associated with inflammatory response of CD4+ T cells. In mice, 
TLR2 activation is known to trigger lupus nephritis (133). In both 
B6/lpr mice and pristine-induced lupus mice, TLR2 knockout 
resulted in decreased autoantibody levels and ameliorated lupus-
like symptoms (121, 134, 135). However, like the deficiency of 
TLR4, in MRL/lpr mice, TLR2 deficiency did not affect lupus 
pathogenesis (123, 136), possibly due to mouse strain differences.

Another bacterial antigen and component of bacterial biofilms, 
amyloid fiber (curli), has been reported to induce autoantibody 
production (137). Amyloid fibers can tightly bind to extracel-
lular DNA that exists in many bacterial biofilms. Amyloid-DNA 
composites have been found to be strong stimulators of both 
innate and adaptive responses, with the ability to promote IL-6 
and TNFα production and type I interferon response in NZB/W 
F1 mice (138). Importantly, injection of curli-DNA composites 
greatly increased the autoantibody level in lupus-prone mice, 
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and even stimulated autoantibody production in wild-type mice. 
Using an amyloid-induced lupus model, Cao and colleagues 
have recently uncovered important roles of natural killer cells 
and IFNγ in SLE pathogenesis downstream of type I interferon 
response (139).

THe “SLe MiCROBiOTA”

The significance of symbiotic microbiota in the development of 
T1D has been shown in non-obese diabetic mice, which spon-
taneously develop T1D with a bias toward females (11, 12). The 
function of microbiota in T1D is found to be highly associated 
with sex hormones. Fecal transplant of male gut microbiota to 
female mice ameliorated the disease and increased testosterone. 
For SLE, although the initial comparison between lupus-prone 
mice in germ-free vs. conventional housing conditions showed 
no difference in disease severity (140), emerging evidences in 
both SLE patients and lupus-prone mice point to a potential link 
between lupus and microbiota (Figure 1).

Intestinal dysbiosis has been reported in SLE patients. 
Compared to age- and sex-matched healthy controls, the fecal 
Firmicutes/Bacteroidetes ratio was found to be significantly 
lower in SLE patients even during remission (22). The same 
research group also described alterations in the composition 
and metabolic functions of gut microbiota in SLE (63). In mice, 
a recent study has shown that ANA production, a hallmark 
feature of autoimmune diseases that include SLE, is affected 
by neonatal colonization of gut microbiota (141). Using mice 
deficient of lymphotoxin-β receptor (LTβR)  –  the signaling of 

which controls development of secondary lymphoid organs – the 
authors found that LTβR-expressing RORγT+ innate lymphoid 
cells, located in the intestinal lamina propria, were important 
for the maintenance of immunological tolerance. Importantly, 
it was found that antibiotics-mediated removal of segmented 
filamentous bacteria (SFB) inhibited the development of ANA 
(141). However, in another recent study, SFB were found to be 
unassociated with the outcome of lupus in (SWR  ×  NZB)-F1 
(SNF1) mice (23). When given acidic pH water, SNF1 mice 
showed slower development of nephritis and a lower level of 
circulating ANA, and the improved outcome was associated 
with changes of gut microbiota unrelated with SFB (23). In their 
study, the relative abundance of Lactobacillus and the ratio of 
Firmicutes/Bacteroidetes were higher in mice with lower lupus 
severity (23). These changes were consistent, respectively, with 
our results in MRL/lpr mice (21) and the findings of microbiota 
composition in human SLE patients (22). The same authors 
have also reported the role of gut immune cells in female-biased 
development of lupus in SNF1 mice (142). Compared to male 
counterparts, the gut mucosa of female SNF1 mice has a higher 
frequency of gut-imprinted α4β7 T cells, higher expression of 
type I interferons, and a larger number of cells secreting IL-17, 
IL-22, and IL-9 (142). Altogether, the intestinal microenviron-
ment, including microbiota, immune cells and cytokines, could 
contribute to the development of lupus.

Our research group has recently found that, in female lupus-
prone mice, there are significant reduction of Lactobacillaceae 
and increase of Lachnospiraceae both prior to disease onset and 
in the late stage of disease with severe lupus symptoms (21). 
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We also found that lupus-like symptoms, including nephritis, 
were improved with oral treatment of tRA. Importantly, the 
improvement was highly associated with the ability of tRA to 
restore Lactobacilli (21). Our work shows the potential benefits 
of modulating gut microbiota, especially by increasing the level 
of Lactobacilli, in the treatment of lupus. Lactobacilli can be 
introduced as probiotics, which are known to be beneficial to the 
host when administered in adequate amounts. Proposed health 
benefits provided by the consumption of Lactobacilli include pre-
vention of constipation, hepatic disease, infections, allergies, and 
as recently suggested, inhibition of autoimmune diseases such as 
IBD and T1D (143–149). Some Lactobacillus strains have been 
demonstrated to exert specific effects that include modulation 

of host microbiota, inhibiting the formation of NETs, improving 
antioxidant status, or increasing the expression of genes encod-
ing junction and adhesion proteins (150–152). This suggests an 
attractive prospective of utilizing certain strains of Lactobacillus 
in disease management for SLE.

To directly examine the potential effects of sex and gut micro-
biota on SLE, one approach would be to correct the imbalanced 
microbial composition associated with SLE with fecal transplan-
tation –  from healthy individuals to patients, or from males to 
females – and see if the correction ameliorates disease symptoms. 
This is yet to be reported for either lupus-prone mouse models 
or SLE patients, and remains an area that researchers actively 
explore.
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