
November 2015 | Volume 6 | Article 6101

Review
published: 30 November 2015

doi: 10.3389/fimmu.2015.00610

Frontiers in Immunology | www.frontiersin.org

Edited by: 
James Harris,  

Monash University, Australia

Reviewed by: 
Zhibin Chen,  

University of Miami Miller School of 
Medicine, USA  

Kelli Patricia Anne MacDonald,  
Queensland Institute of Medical 

Research, Australia

*Correspondence:
Johan van der Vlag  

johan.vandervlag@radboudumc.nl

Specialty section: 
This article was submitted to 

Immunological Tolerance,  
a section of the journal  

Frontiers in Immunology

Received: 30 July 2015
Accepted: 16 November 2015
Published: 30 November 2015

Citation: 
Rother N and van der Vlag J (2015) 

Disturbed T Cell Signaling and 
Altered Th17 and Regulatory T Cell 

Subsets in the Pathogenesis of 
Systemic Lupus Erythematosus.  

Front. Immunol. 6:610.  
doi: 10.3389/fimmu.2015.00610

Disturbed T Cell Signaling and 
Altered Th17 and Regulatory T Cell 
Subsets in the Pathogenesis of 
Systemic Lupus erythematosus
Nils Rother and Johan van der Vlag*

Department of Nephrology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences, Nijmegen, 
Netherlands

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the 
presence of autoantibodies against nuclear components. Circulating immune complexes 
of chromatin and autoantibodies deposit in various tissues leading to inflammation and 
tissue damage. It has been well documented that autoimmunity in SLE depends on 
autoreactive T cells. In this review, we summarize the literature that addresses the roles 
of T cell signaling, and Th17 and regulatory T cells (Tregs) in the development of SLE. 
T cell receptor (TCR) signaling appears to be aberrant in T cells of patients with SLE. 
In particular, defects in the TCRζ chain, Syk kinase, and calcium signaling molecules 
have been associated with SLE, which leads to hyperresponsive autoreactive T cells. 
Furthermore, in patients with SLE increased numbers of autoreactive Th17 cells have 
been documented, and Th17 cells appear to be responsible for tissue inflammation 
and damage. In addition, reduced numbers of Tregs as well as Tregs with an impaired 
regulatory function have been associated with SLE. The altered balance between the 
number of Tregs and Th17 cells in SLE may result from changes in the cytokine milieu 
that favors the development of Th17 cells over Tregs.
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iNTRODUCTiON

Systemic lupus erythematosus (SLE) is characterized by the presence of autoreactive antibodies 
against nuclear components, in particular, chromatin. Autoreactive B cells that produce pathogenic 
autoantibodies against nuclear components, such as double stranded DNA (dsDNA), nucleosomes, 
and histones, are central players in the pathogenesis of SLE (1). Autoantibodies can be detected years 
before the onset of clinical manifestations of the disease, which suggests a gradual loss of tolerance 
(2). Immune complexes of autoantibodies and chromatin deposit in various tissue, including the 
kidney, thereby triggering the activation of the complement system and subsequent influx of inflam-
matory cells (3). The vast majority of patients with SLE are female, which could be explained by a 
yet unknown mechanism involving the X-chromosome and/or the hormonal status (4). Prevalence 
of SLE varies from 20 to 150 cases per 100,000 individuals, with the highest occurrence reported in 
Brazil (3). To date, most patients with SLE are treated with non-specific immunosuppressive drugs 
and corticosteroids, which have severe side effects.
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As outlined, autoantibodies in SLE are mainly directed against 
nuclear components, which are normally present in the nucleus 
inside the cell. The exposure of the immune system to released 
nuclear antigens in SLE patients may be explained by an aberrant 
apoptosis and/or impaired clearance of apoptotic cells. Apoptosis 
is a tightly controlled cellular program that is characterized by the 
breakdown of cellular components, which includes the fragmen-
tation of chromatin. Normally, early apoptotic cells are swiftly 
cleared by phagocytes. However, in SLE, the process of apoptosis 
and/or the clearance of apoptotic material may be impaired, 
which could lead to the extracellular presence of chromatin trig-
gering immune cells of the innate and adaptive immune system 
(5, 6). Especially, apoptotic microvesicles containing apoptosis-
modified histones can be highly immunogenic through the 
activation of myeloid and plasmacytoid dendritic cells (DCs), and 
autoreactive B cells (7–12).

Normally, extracellularly present antigens ingested by antigen-
presenting cells are presented in major histocompatibility com-
plex class II molecules (MHC class II) to the T cell receptor (TCR) 
of CD4-positive T cells, thereby contributing to the activation of 
T cells. Certain lines of evidence suggest that T cells of patients 
with SLE are hyperresponsive compared to T cells from healthy 
individuals. The hyperresponsiveness of T cells in SLE may be due 
to changes in the signaling machinery downstream of the TCR. It 
has been described that autoimmunity toward chromatin in SLE 
depends on help of autoreactive T cells. In SLE, T cell function 
seems to be impaired, whereas the balance between regulatory 
T cells (Tregs) and Th17 cells appears to be disturbed (13–15), 
which will be the focus of this review.

T CeLL ACTivATiON AND TCR SiGNALiNG 
iN HeALTHY iNDiviDUALS

Upon recognition of the antigen presented in MHC class II, the 
TCRs on the T cell will organize in the so-called immunological 
synapse. The TCR/CD3 complex, together with the co-receptor 
CD4, co-stimulatory molecules, and other signaling molecules 
are recruited to the center of the supramolecular activation clus-
ter (SMAC) (16). The contact between the T cell and the APC is 
sustained through action of adhesion molecules, such as intracel-
lular adhesion molecule 1 (ICAM-1) on the APC and lymphocyte 
function-associated antigen 1 (LFA-1) on the T cell. Most of the 
TCR/CD3 complexes and signaling molecules are present in lipid 
rafts already prior to engagement of the TCR. Upon binding to 
MHC class II, these lipid rafts serve as initiating spots of TCR 
signaling and fuse during the establishment of the immunological 
synapse (17, 18).

Antigen presented by an APC in the context of MHC class 
II molecules, the engagement of co-stimulatory molecules (e.g., 
B7 on APC and CD28 on T cells) and cytokines (e.g., IL-2) are 
the three signals that are required for full activation of T cells. 
In addition to the TCR, the co-receptor CD4 binds to MHC II. 
Intracellularly CD4 is associated with the lymphocyte-specific 
protein tyrosine kinase (Lck) that phosphorylates tyrosine 
residues in the immunoreceptor tyrosine-based activation motifs 
(ITAMs) of the TCR associated CD3 and zeta proteins (TCRζ) 

(19). Phosphorylated ITAMs serve as docking platforms for the 
Syk family tyrosine kinase Zeta-chain-associated protein kinase 
of 70 kDa (ZAP-70) (20). ZAP-70, in turn, phosphorylates the 
adaptor protein linker of activated T cells (LATs), which regulates 
the initiation of certain downstream-signaling pathways (21, 
22). LAT can bind Ras GTP/GDP exchange factors, and thereby 
facilitates the activation of the Ras-mitogen-activated protein 
kinase (MAPK) pathway (23). LAT also serves as a docking 
protein for phospholipase Cγ1 (PLCγ1), which ultimately results 
in the activation of protein kinase C (PKC) and the release of 
calcium from intracellular stores (24). Activation of MAPK or 
PKC, and increased intracellular calcium levels leads to activa-
tion of transcription factors, such as activator protein 1 (AP-1), 
nuclear factor κB (NFκB), and nuclear factor of activated T cells 
(NFAT). Activation of the aforementioned transcription factors 
leads to the expression of numerous genes, an altered cytokine 
production, and proliferation and differentiation of T cells. T 
cell activation is a reversible process. Tyrosine phosphatases, for 
example, counteract the activity of tyrosine kinases by binding to 
immunoreceptor tyrosine-based inhibition motifs (ITIMs) that 
are present in, for example, cytotoxic T-lymphocyte antigen 4 
(CTLA-4) that competes with CD28 for binding to B7 (25).

ABeRRANT TCR SiGNALiNG iN  
PATieNTS wiTH SLe

In patients with SLE, an aberrant TCR signaling has been reported, 
which leads to hyperresponsiveness of T cells. Changes have been 
found in the expression of TCRζ, the activation of intracellular 
spleen tyrosine kinase (Syk), calcium signaling, and various other 
kinase pathways (see Table 1; Figure 1) (26–28), which will be 
further detailed in the subsequent paragraphs.

TCRζ eXPReSSiON AND FUNCTiON  
iN T CeLLS iN SLe

Expression levels of TCRζ are decreased in the majority of patients 
with SLE (28). In particular, TCRζ mRNA levels are lower in 
SLE, which may be explained by unstable mRNA variants due 
to polymorphisms or alternative splicing in the 3′ untranslated 
region (UTR) (30–32). In addition to reduced expression levels, 
phosphorylation of tyrosines in the ITAMs of TCRζ seems to 
be reduced (29). Moreover, T cells of patients with SLE are less 
responsive to stimulation with anti-CD3 antibodies.

The downregulation of TCRζ expression and activity, as out-
lined above, seems in contrast with the hyperresponsiveness of T 
cells in patients with SLE. However, it has been described that in 
T cells of patients with SLE the TCRζ can be replaced by the more 
potent FCγ receptor (FCγR) (46), as will be further discussed 
below. Furthermore, it has been shown that the inhibitory func-
tion of CTLA-4 is impaired in T cells of patients with SLE (47). 
Normally, CTLA-4 is associated with the tyrosine phosphatase 
SHP-2, which dephosphorylates TCRζ, thereby disrupting 
TCR signaling (48). Due to the decreased expression of TCRζ 
in patients with SLE, the regulatory function of CTLA-4 may 
be impaired. Finally, it has been suggested that impaired TCRζ 
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TABLe 1 | Aberrant TCR-signaling components in SLe.

Component Changes in SLe T cells Reference

TCRζ
Decreased TCRζ 
expression/
phosphorylation

Grammatikos et al. (26), Kyttaris 
et al. (27), Pang et al. (29), and 
Takeuchi et al. (28)

3′ UTR variants leading to 
instable versions of TCRζ

Chowdhury et al. (30), Gorman et al. 
(31), and Tsuzaka et al. (32)

Syk
Replaces canonical 
ZAP-70

Krishnan et al. (33) and Tanaka 
et al. (34)

More potent signal 
transduction

Tanaka et al. (34)

Increased expression: 
inability of CREMα to 
repress transcription

Ghosh et al. (35)

Calcium signaling
Increased recruitment of 
NFATc2 into the nucleus

Kyttaris et al. (36)

→  Elevated expression of 
CD154

Enhanced nuclear import 
of CAMK IV

Juang et al. (37)

→  Elevated expression of 
CREMα

Other signaling components
LAT displaced from lipid 
rafts

Abdoel et al. (38)

Aberrant phosphorylation 
of Erk

Cedeno et al. (39) and Yi et al. (40)

Genes identified by GwAS
UBASH3A Diaz-Gallo et al. (41)
PP2AC Katsiari et al. (42), and Tan et al. (43)
TNFAIP3 Graham et al. (44)
SLAM Morel et al. (45)
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signaling interferes with T cell selection processes in the thymus, 
which results in increased numbers of autoreactive T cells (34).

TYROSiNe KiNASe Syk iN T CeLLS iN SLe

The observation that TCRζ can be replaced by FCγR in T cells 
of patients with SLE suggested a possible role for Syk tyrosine 
kinase in the pathogenesis of SLE (34), since FCγR is known to 
interact with tyrosine kinase Syk rather than with the canonical 
tyrosine kinase ZAP-70. Syk is much more potent than ZAP-70 
in phosphorylating its targets, which could explain the hyperre-
sponsiveness of T cells in SLE. Indeed, Syk expression is massively 
increased in T cells of patients with SLE compared to healthy 
individuals, whereas ZAP-70 expression levels are similar (33). 
Furthermore, inhibition of Syk resulted in decreased phospho-
rylation, actin polymerization, and calcium responses in T cells 
of patients with SLE, and ameliorated skin and kidney disease 
in a mouse model for lupus (33, 49). Importantly, Grammatikos 
and colleagues showed that induced expression of Syk in T cells 
from healthy individuals leads to expression of inflammatory 
factors, such as IL-21 and CD44, which could be counteracted by 
silencing of Syk (26).

Two underlying mechanisms leading to an increased expres-
sion of Syk in T cells of patients with SLE have been identified. 
First, in T cells of patients with SLE increased levels of the tran-
scriptionfactor c-Jun drive the expression of Syk (50). Second, 
in SLE impaired binding of the transcriptional repressor cAMP 
responsive element modulator α (CREMα) in the promoter 
region of Syk has been shown, which is due to hypermethylation 
of the cAMP responsive element (35).

CALCiUM SiGNALiNG iN T CeLLS iN SLe

During T cell activation PLCγ1-mediated production of inositol 
triphosphate (IP3) leads to increased calcium levels in the cytosol. 
Subsequently, calcium bound to calmodulin enables the serine/
threonine phosphatase calcineurin to dephosphorylate inactive 
cytoplasmic phosphorylated NFAT that then translocates to the 
nucleus. After stimulation with either anti-CD3 antibody or 
PMA/ionophore, the nuclear recruitment of NFATc2 is increased 
in T cells of patients with SLE compared to those of healthy con-
trols (36). Furthermore, NFATc2 shows an increased association 
in the promoter of the gene encoding the co-stimulatory mol-
ecule CD154 in patients with SLE compared to healthy controls, 
which is associated with an increased CD154 expression (36). 
The increased expression of CD154 most likely contributes to 
the hyperresponsive phenotype of T cells in SLE. Expression of 
NFATc1 appears to be elevated in MRL/lpr mice, an experimental 
model for SLE, thereby explaining the increased CD154 expression 
(27). Interestingly, treatment of MRL/lpr mice with dipyridamole, 
a drug targeting the calcineurin–NFAT pathway, reduced CD154 
expression on T cells, decreased T cell dependent antibody pro-
duction, and improved clinical signs of nephritis (27).

Activated calmodulin can also activate calcium/calmod-
ulin-dependent kinase IV (CAMK IV). Activated CAMK IV 
translocates from the cytoplasm into the nucleus and activates 
transcription factors, which includes the transcriptional repres-
sor CREMα. Nuclear import of CAMK IV is increased in T cells 
in SLE, which could explain the increased activation of CREMα 
and subsequent suppression of the gene encoding IL-2 that is 
negatively regulated by CREMα. Notably, IL-2 is essential for 
a proper development of Tregs and Th17 cells (37) and will be 
further detailed in paragraphs about Th17 cells and Tregs.

OTHeR T CeLL SiGNALiNG MOLeCULeS 
iN SLe

As outlined, LAT plays a central role in activation of T cells. It has 
been reported that LAT expression is decreased in patients with 
SLE and LAT is not found in lipid rafts compared to T cells from 
healthy individuals (38). Consequently, activation of the MAPK 
pathway is impaired, and phosphorylation of Erk1/2 is decreased 
in SLE compared to controls (39). Furthermore, it has been shown 
that the LAT-dependent coupling of Grb to human son of seven-
less (hSOS), which facilitates the activation of Ras, was reduced 
in T cells of patients with SLE compared to T cells form healthy 
controls (39). Other studies showed aberrancies in peripheral T 
cell tolerance in SLE, i.e., induction of anergy, through sustained 
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FiGURe 1 | Schematic representation of TCR-signaling pathways and aberrancies in SLe. Engagement of TCR, through the recognition of antigen in the 
context of MHC class II, triggers the assembly of TCR, CD3, and TCRζ chains. TCRζ is phosphorylated and recruits ZAP-70, which in turn phosphorylates LAT. LAT 
serves as docking protein and phosphorylation initiates the activation of Ras–Erk, calcium-dependent, and PKC-driven signaling pathways. All signals result in the 
activation of transcription factors, accumulating in the nucleus and influencing gene expression. #Signaling components described to be aberrantly regulated in SLE 
(see Table 1 and text). Therapeutic targets are depicted in red. Key: R788 is Syk inhibitor; KN-93 is CAMK IV inhibitor.
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phosphorylation of Erk accompanied with an increased expres-
sion of the co-stimulatory molecule CD40L, thereby contributing 
to the persistent presence of autoreactive T cells (40).

Genome wide association studies (GWAS) revealed additional 
aberrancies in T cell signaling in SLE, which included a suppressor 
of T cell signaling called UBASH3A (41). Furthermore, SNPs in the 
PPP2AC gene have been associated with SLE (43). PPP2Ac expres-
sion in T cells of patients with SLE is increased, thereby reducing the 
production of the cytokine IL-2 that is essential for the induction of 
Tregs and Th17 cells (42). PP2A dephosphorylates and inactivates 
cAMP response element-binding protein (CREB), a transcriptional 
activator of IL-2 (51). Additionally, variants in the tumor necrosis 
factor alpha protein 3 (TNFAIP3) gene have been associated with 
SLE (44). TNFAIP3 encodes for a zinc finger protein that negatively 
regulates the NFκB pathway, which is a central player in activation 
of immune cells and inflammatory processes (52).

Th17 AND Tregs T CeLL SUBSeTS iN THe 
PATHOGeNeSiS OF SLe

T cells can be divided into multiple subsets according to their 
phenotype and function. Tregs are important CD4-positive T 
cells that function in peripheral T cell tolerance by inhibition of 

autoreactive T cells. Tregs can exert their tolerogenic functions 
via direct cell–cell contact or by the release of immunosuppressive 
factors, such as transforming growth factor β (TGFβ) and IL-10, 
whereas they are identified by the transcription factor FoxP3 (53). 
Reduced numbers of Tregs and impaired function of Tregs have 
been associated with SLE (54, 55).

Th17 cells constitute a subset of CD4-positive T cells that have 
been identified a decade ago. Development of Th17 cells requires 
TGFβ and IL-6, and they are identified by the specific transcrip-
tion factor RORγt, and their characteristic production of IL-17 
(56, 57). Th17 cells have been associated with chronic infection 
and autoimmune diseases including SLE (15).

Notably, in addition to Tregs and Th17 cells, double negative T 
cells, lacking both CD4 and CD8 expression, and T cells express-
ing the gamma and delta chain of TCR appear to play a role in 
the pathogenesis of SLE (58–61). However, we will focus in this 
review on Th17 cells and Tregs in SLE as further detailed in the 
subsequent paragraphs.

Th17 CeLLS iN SLe

Th17 cells seem to play a role in the pathogenesis of SLE. Prior 
to the discovery of Th17 cells, it was believed that Th1 and Th2 
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cells were the central players in establishing autoimmunity reac-
tions and tissue damage. For SLE, this view changed with the 
identification of high levels of IL-17 and Th17 cells in patients 
with SLE and in mouse models for SLE (62, 63). IL-17 and Th17 
cells are increasingly present in BXD2 mice that show a lupus-
like autoimmune phenotype and were implicated to contribute 
to the formation of germinal centers and subsequent production 
of pathogenic antibodies (62). In other mouse models of SLE, 
the Ets knockout mouse (Ets−/−) and the New Zealand Black 
(NZB) ×  SWR F1 cross (SNF1 mice), increased levels of Th17 
cells and IL-17 seem to contribute to the inflammation of kidneys, 
i.e., glomerulonephritis (64, 65).

Increased IL-17 production in SLE may be explained by over-
active costimulation via SLAM. Polymorphisms in the cluster 
of SLAM encoding genes have been associated with SLE (45). 
Expression of SLAMF3 and SLAMF6 is enhanced in T cells in SLE, 
whereas costimulation via SLAM seems more effective compared 
to costimulation via CD28 in initiating the transcription of the 
IL-17 encoding gene (66). Costimulation mediated by SLAMF3/
SLAMF6 results in the recruitment of RORγt and NFAT to the 
promoter region of the IL-17 encoding gene, thereby enhancing 
transcription of IL-17 compared to costimulation via CD28 (67). 
Importantly, silencing of SLAM or SLAM-associated protein 
(SAP) leads to a reduced production of IL-17 (66). As outlined, 
calcium signaling pathways, which promote the translocation of 
NFAT from the cytoplasm to the nucleus, are hyperactive in SLE 
T cells. This probably leads to higher levels of activated NFAT, 
which together with increased SLAM signaling drive the tran-
scription of IL-17 and promote Th17 development.

The transcription factor STAT3 is also involved in the develop-
ment of Th17. Expression of STAT3 is increased in T cells in SLE, 
whereas inhibition of STAT3 leads to decreased T cell migration 
and delayed onset of autoimmunity in lupus prone mice (68, 69).

In addition to Th17 cells, double negative (CD4−, CD8−) T cells 
can produce IL-17 in SLE (58). Notably, the number of double 
negative T cells is increased in patients with SLE compared to 
healthy individuals. Taken together, an increased level of IL-17 in 
patients with SLE establishes an autoreactive and inflammatory 
environment that can lead to tissue damage.

ReGULATORY T CeLLS iN SLe

As mentioned, Tregs are important cells in establishing periph-
eral T cell tolerance. Therefore, the number of Tregs and function 
of Tregs have been studied extensively in SLE. The majority of 
Tregs cells are characterized by the expression of the transcrip-
tion factor Foxp3 and high expression levels of the IL-2 receptor 
alpha chain (CD25). The development of Tregs depends on the 
presence of IL-2 and TGFβ. Currently, different subsets of Tregs 
have been described; however, we will focus in this review on 
Foxp3-positive cells.

The role of aberrancies in the number of Tregs and/or function 
of Tregs in the pathogenesis of SLE remains controversial. Some 
studies demonstrated a decreased number of Tregs in patients 
with SLE (54, 55), which could be explained by an increased 
susceptibility to Fas-induced cell death (55). By contrast, other 
reports demonstrate that the number of Tregs is similar for 

patients with SLE and controls (70, 71). In our opinion, the 
variation in outcome of different studies that address Tregs in 
SLE could be explained by different methods of isolation and 
characterization.

Regarding the suppressive function of Tregs in SLE, different 
claims have been published as well. Several reports demonstrate 
that the suppressive function of Tregs in SLE is impaired (54, 70, 
72). Other reports claim that the suppressive function of Tregs 
in SLE is not impaired, but that autoreactive effector T cells in 
SLE are less susceptible to suppression by Tregs (71). However, it 
also has been demonstrated that Tregs from healthy controls are 
able to suppress effector T cells of patients with SLE (72). Taken 
together, Tregs seem to play a role in the pathogenesis of SLE.

DiSTURBeD BALANCe BeTweeN 
Tregs AND Th17 CeLLS iN SLe: A 
MATTeR OF CYTOKiNeS?

As outlined above, there is strong evidence for a disturbed balance 
between Th17 cells and Tregs in patients with SLE. However, the 
mechanisms underlying alterations in numbers and/or function 
of Th17 and Tregs in SLE are only partially understood, but may 
involve the overall cytokine milieu (see Figure 2).

The growth factor TGFβ plays an important role in the devel-
opment of both Th17 cells and Tregs. TGFβ promotes the differ-
entiation of naïve T cells into Tregs. Furthermore, TGFβ induces 
the expression of Foxp3 in γδ T cells and stimulates γδ T cells to 
exert suppressive functions (61). For the development of Th17 
cells, the combined action of TGFβ and IL-6 is required, whereas 
Treg development depends on IL-2 and TGFβ. Interferon type I 
(IFN type I) levels, in particular IFN-α, are increased in patients 
with SLE (73, 74). IFN-α is primarily produced by plasmacytoid 
DCs (pDCs) upon recognition of nucleic acids by toll-like recep-
tor 7 and 9 (75). IFN-α contributes to the maturation of myeloid 
DCs that can activate autoreactive T cells in patients with SLE. It 
has been suggested that IFN-α also promotes the development of 
Th17 cells (76). It has been shown that IFN-α triggers the produc-
tion of IL-6 by myeloid DCs, whereas IL-6 is required for the 
development of Th17 cells (77). Moreover, it has been suggested 
that IFN-α impairs the suppressive function of Tregs in SLE. 
Importantly, in the presence of IFN-α producing DCs, Tregs of 
SLE patients as well as Tregs of healthy controls were not capable 
of suppressing T effector cells (78).

IL-2 is another cytokine that is crucial for the development of 
both Tregs and Th17 cells (79, 80). IL-2 is mainly produced by 
CD4+ T cells, and it is involved in the proliferation and survival of 
activated effector T cells. However, IL-2 or IL-2 receptor-deficient 
mice models show autoimmune phenotypes (81, 82), which may 
be explained by reduced numbers of Tregs that require IL-2 
for proper development and function (83). As outlined above, 
production of IL-2 in patients is impaired due to the concerted 
action of FCγR, Syk, CREMα, and CREB (51, 84). Interestingly, 
increasing levels of IL-2 restore the suppressive function of Tregs 
in SLE when tested in vitro (72).

Regulatory T cells as well as Th17 cells have been shown to 
possess a certain degree of plasticity. It has been described that 
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FiGURe 2 | Disturbed balance between Tregs and Th17 cells in SLe. Cytokines important in the induction and proliferation of respective cell types are 
depicted. Furthermore, also characteristic surface marker, transcription factors, and produced cytokines are illustrated. Red arrows indicate changes in expression 
found in SLE patients. Furthermore, treatment possibilities are depicted in red.
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mouse Foxp3+ Tregs are able to transdifferentiate into Th17-like 
cells due to the action of IL-6 in the absence of TGFβ (85–87). 
Also in human, Tregs are able to adapt a Th17-like phenotype, 
which is accompanied with the production of IL-17 (88). It 
appears that Tregs that produce IL-17 can retain their suppressive 
function until they are triggered by IL-6 and IL-1β (89). Taken 
together, the cytokine milieu in patients with SLE may disturb the 
balance between Th17 cells and Tregs in favor of the Th17 cells, 
thereby explaining autoimmunity and inflammation. Dynamic 
changes in the cytokine milieu may transiently disturb the bal-
ance between Th17 cells and Tregs, thereby driving flares of active 
disease in SLE (90, 91).

eFFeCT OF HiGH SALT DieT ON THe 
BALANCe BeTweeN TReGS AND Th17 
CeLLS
Recently, it has been described that high salt intake may induce 
the development of Th17 cells in autoimmune diseases (92, 93). 
The development of Th17 cells from naïve CD4+ T cells was 
enhanced by increased sodium chloride (NaCl) concentrations in 
the culture medium. Furthermore, increasing the dietary intake 
of NaCl in an autoimmune disease mice model (experimental 
autoimmune encephalomyelitis, EAE) increases autoimmune 
features of the model. However, high salt diet in mouse mod-
els for SLE did not affect SLE disease activity (94). It has been 
described that NaCl activates the MAPK pathway leading to the 
activation of serum/glucocorticoid-regulated kinase 1 (SGK1). 
SGK1, in turn, suppresses the activity of Foxo1, a repressor of 

IL-23 expression (93). Therefore, increased NaCl concentrations 
result in increased production of IL-23, which contribute to the 
development and maintenance of Th17 cells. Increased expres-
sion levels of SGK1 have been described in patients with SLE as 
well (95). Interestingly, high salt intake has been correlated with 
a decreased effectiveness of treatment with glucocorticoids in a 
Chinese cohort of patients with SLE (96).

TReATMeNT OPTiONS TARGeTiNG 
T CeLLS iN SLe

The increasing insight into the disease mechanisms of SLE allows 
for the development of more disease-specific drugs targeting, 
for example, the aberrant signaling mechanisms in T cells or the 
balance between Th17 cells and Tregs. Current treatment of SLE 
includes anti-inflammatory agents, anti-malarial drugs, gluco-
corticoids, and immunosuppressive medicines (3). Considering 
the central role of Syk in the aberrant signaling in T cells in SLE, 
currently specific Syk inhibitors are under development. The 
compound R788 inhibited the onset of kidney-related disease 
manifestations in mouse models for SLE (49). Furthermore, R788 
was successful in the treatment of rheumatoid arthritis in a phase 
II clinical trial, which could encourage a clinical trial of R788 in 
patients with SLE as well (97).

It is well documented that inhibitors of the calcineurin–
NFAT pathway, such as tacrolimus or dipyridamole decrease 
the production of inflammatory cytokines and reduce clinical 
manifestations in SLE (27). Furthermore, it has been described 
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that blocking of CAMK IV, using the pharmacological inhibitor 
KN-93 suppresses production of pro-inflammatory cytokines 
TNFα and IFNγ, and improves proteinuria and nephritis in the 
MRL/lpr mouse model (98).

Targeting of co-stimulatory or adhesion receptors on T cells 
is another treatment option. Since CD40 is expressed at higher 
levels on T cells of patients with SLE compared to those of healthy 
controls, inhibition of either CD40 or its ligand CD40L may 
reduce the activation of autoreactive T cells (40). CD44 expres-
sion on T cells of patients with SLE is enhanced as well. CD44 is 
involved in the adhesion of T cells and has been associated with 
increased cell migration toward the kidneys, thereby contributing 
to inflammation and damage of the kidney (99). Engagement of 
CD44 leads to the activation of Rho kinase (ROCK) and pro-
duction of IL-17. Therefore, inhibitors of ROCK could disrupt 
CD44-mediated signaling in T cells in SLE (100). Abatacept is a 
CTLA-4 immunoglobulin fusion protein that is used to compete 
with CD28 for binding to B7 proteins, thereby reducing activa-
tion of autoreactive T cells.

Restoration of the balance between Th17 cells and Tregs in 
patients with SLE could be achieved by manipulation of the 
cytokine milieu in such a way that the development of Tregs is 
favored over Th17 cells. A strategy could include the blocking of 
IL-17 or IL-23, cytokines important for the development of Th17 
cells. However, blocking IL-17 alone showed a worsening of the 
disease phenotype in mouse models (101, 102). More encouraging 
is the blocking of the IL-6 receptor using a monoclonal antibody, 
tocilizumab, which showed promising results in clinical phase I 
studies (103). Moreover, the inhibition of the main transcription 
factor involved in the development of Th17 cells, RORγt, using 

a synthetic molecule (SR1001) also appears to be beneficial in 
blocking the differentiation of Th17 cells (104).

CONCLUDiNG ReMARKS

We summarized multiple mechanism and pathways impaired in 
T cells from patients with SLE. A note of caution should be made, 
since in SLE, there is no general and/or complete picture regard-
ing its pathogenesis when comparing individual patients. So, not 
all aberrancies in T cell signaling and disturbances in Th17 cell/
Tregs as described in this review are present in all patients with 
SLE. Nevertheless, the signaling cascades emerging from the TCR 
and ultimately leading to changes in the expression of numerous 
genes play a key role in the phenotype of T cells in SLE. In general, 
aberrancies in TCR signaling lead to a hyperresponsive state of T 
cells in SLE. Moreover, aberrancies in TCR signaling may affect 
selection processes in the thymus, thereby impairing central toler-
ance. Small molecule inhibitors specific for certain key signaling 
molecules (e.g., Syk and CAMK IV) have been developed and 
show promising results in pre-clinical as well as in clinical studies. 
The interplay between Tregs, Th17 cells, and other cell subsets is 
complex and only in part understood. Restoring a healthy balance 
between Tregs and Th17 cells in patients with SLE is not a straight 
forward therapeutic option yet, but an interesting research goal 
that may be translated into clinical practice in a later phase.
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