
December 2015 | Volume 6 | Article 6321

PersPective
published: 16 December 2015

doi: 10.3389/fimmu.2015.00632

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Eva Rajnavolgyi,  

University of Debrecen, Hungary

Reviewed by: 
Mohey Eldin El Shikh,  

Queen Mary University of London, 
UK  

Julie Tabiasco,  
INSERM, France

*Correspondence:
Paola Bossù  

p.bossu@hsantalucia.it

Specialty section: 
This article was submitted to Multiple 

Sclerosis and Neuroimmunology,  
a section of the journal  

Frontiers in Immunology

Received: 01 October 2015
Accepted: 02 December 2015
Published: 16 December 2015

Citation: 
Bossù P, Spalletta G, Caltagirone C 

and Ciaramella A (2015) Myeloid 
Dendritic Cells are Potential Players in 
Human Neurodegenerative Diseases.  

Front. Immunol. 6:632.  
doi: 10.3389/fimmu.2015.00632

Myeloid Dendritic cells are Potential 
Players in Human Neurodegenerative 
Diseases
Paola Bossù1* , Gianfranco Spalletta1,2 , Carlo Caltagirone1,3 and Antonio Ciaramella1

1 Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy, 2 Menninger Department of 
Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA, 3 Department of Neuroscience, 
University of Rome Tor Vergata, Rome, Italy

Alzheimer’s diseases (AD) and Parkinson’s diseases (PD) are devastating neurodegener-
ative disturbances, wherein neuroinflammation is a chronic pathogenic process with high 
therapeutic potential. Major mediators of AD/PD neuroimmune processes are resident 
immune cells, but immune cells derived from periphery may also participate and to 
some extent modify neuroinflammation. Specifically, blood borne myeloid cells emerge 
as crucial components of AD/PD progression and susceptibility. Among these, dendritic 
cells (DCs) are key immune orchestrators and players of brain immune surveillance; we 
candidate them as potential mediators of both AD and PD and as relevant cell model for 
unraveling myeloid cell role in neurodegeneration. Hence, we recapitulate and discuss 
emerging data suggesting that blood-derived DCs play a role in experimental and human 
neurodegenerative diseases. In humans, in particular, DCs are modified by in vitro culture 
with neurodegeneration-associated pathogenic factors and dysregulated in AD patients, 
while the levels of DC precursors are decreased in AD and PD patients’ blood, possibly 
as an index of their recruitment to the brain. Overall, we emphasize the need to explore 
the impact of DCs on neurodegeneration to uncover peripheral immune mechanisms 
of pathogenic importance, recognize potential biomarkers, and improve therapeutic 
approaches for neurodegenerative diseases.

Keywords: Alzheimer’s disease, Parkinson’s disease, blood-derived myeloid cells, monocyte-derived dendritic 
cells, dendritic cell precursors, blood Dcs

iNtrODUctiON

Neurodegeneration is a pathologic process leading to the loss of structure and function of neuronal 
tissue. The two most frequent neurodegenerative disturbances affecting humans are Alzheimer’s 
(AD) and Parkinson’s disease (PD), respectively, leading to dementia and movement disorders. 
They are age-dependent and progressive diseases with distinct clinical and pathological features 
and different types of neurons and brain areas resulting affected, but with some overlapping 
pathologic mechanisms. Both diseases are typified by the presence in the brain of the peculiar 
age-related accumulation of specific misfolded molecules, namely amyloid β peptides (Aβ) and tau 
protein in AD, and α-synuclein protein (α-syn) in PD. Such molecules are widely hypothesized 
to be primary cause of disease and appear implicated in several key pathogenic mechanisms (1, 
2). The presence of abnormal molecular deposits is accompanied by the activation of resident 
brain immune cells (microglia) and release of pro-inflammatory mediators. Thus, despite both 
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disturbances appear primarily triggered by non-immune causes, 
inflammation has been increasingly described as a common 
and central pathogenic factor of the neurodegenerative process 
(3–5). It is generally accepted that an impaired ability of brain 
immune cells to clear dangerous substances and damaged tissue 
promotes the establishment of inflammation, whose persistence 
in turn may lead to neurodegeneration progression through a 
self-perpetuating chronic process that ends up with brain tissue 
damage, but the precise mechanisms underlying the multifaceted 
role of inflammation in the disease are still intensely debated 
(6, 7). Recent genetic and expression studies have identified a 
number of genes connected with inflammation and immune 
response as risk factors for the development of both AD and PD 
(8, 9), reinforcing the view that inflammation is a major causative 
factor and not just a consequence of neurodegeneration. This is 
especially true in the sporadic forms of AD/PD, which are much 
more common than the familial forms (10–12). Furthermore, the 
use of anti-inflammatory drugs may delay or prevent the onset of 
AD and PD, validating the concept that inflammation is a good 
therapeutic target (13–15), even though some clinical trials gen-
erated disappointing results (16). Such inconsistency is attributed 
to the incomplete understanding of the interactions occurring 
between immunity and central nervous system (CNS), including 
the potential regulative functions of blood-derived immune cells 
(17). In this regard, the modern concept of the brain’s immune 
privilege based on a dynamic interaction between peripheral 
immune system and CNS (18, 19) and the very recent discovery 
of meningeal lymphatic vessels in the brain (20) validate the idea 
that the bidirectional communication between CNS and systemic 
immunity is more resourceful than before considered. Although 
no massive infiltration of blood-derived immune cells is reported 
in neurodegeneration, it is growing the thought that the recruit-
ment of bone marrow-derived immunocompetent cells from the 
systemic circulation to the brain is an important event, which 
could regulate neuroinflammatory response and influence neu-
rodegeneration (21).

Given such premises, dendritic cells (DCs), acting as key 
controllers of the immune response and inflammation, may be 
crucially involved in maintaining brain immune surveillance, 
helping resident microglia in response to insults, and regulating 
the local and systemic immune response during neuroinflam-
mation (22). Here, we will examine the current evidence that 
converges to propose DCs as potential disease-relevant cell types 
in both AD and PD.

PeriPHerALLY DeriveD iMMUNe ceLLs 
iN NeUrODeGeNerAtiON

Microglia, the brain-resident mononuclear phagocytic cells, play 
a central role in AD and PD chronic inflammation, with insights 
in disease susceptibility, pathophysiology, diagnosis, prognosis, 
and therapy (23). Although normally microglia have a protective 
role linked to their ability to clear harmful material, their activa-
tion in AD and PD has been related to the brain accumulation of 
abnormally aggregated proteins, increased production of inflam-
matory factors, and neuronal loss. More recent data suggest that 

during neurodegeneration, microglia acquire a dysfunctional 
rather than activated phenotype, characterized by defective clear-
ance and loss of neuronal support capability. Although microglia 
are main drivers of neurodegenerative disease, their precise role 
is still a matter of debate and, importantly, it is now emerging that 
they may not be the only effectors of brain immune response. 
Sustained by the revised concept of the immunoprivileged brain, a 
contribution to neurodegeneration of additional mediators of the 
innate immune system beside microglia is widely hypothesized 
(17, 24), and systemic inflammation is considered an exacerbat-
ing force in neurodegenerative diseases (25, 26).

The notions that aging and neuroinflammation promote 
disturbance of the blood–brain barrier (BBB) and that neuro-
vascular dysfunctions lead to alteration of the crosstalk between 
different cell types at the brain–blood interface in both AD and 
PD (27, 28) make conceivable the participation of peripheral cells 
in neurodegeneration.

Myeloid cells that can mediate the brain innate immune 
response beside microglia include perivascular cells, meningeal 
macrophages and blood-borne monocytes, macrophages, and 
DCs. All these cell types are not homogeneous populations; 
they differ in terms of origin, function, and fate, respond in a 
variable way to environmental changes, and act in concert during 
neurodegeneration (29). While the characteristics of the differ-
ent myeloid cell populations participating in brain homeostasis 
and inflammation have been reported elsewhere (30), here we 
describe some of the most recent evidence sustaining the value of 
blood-derived monocytic cells in AD and PD.

Many of the genes recently identified to be associated with 
both familial and sporadic forms of AD and PD have been found 
to be also expressed and play important roles in peripheral innate 
immune cells. Specifically, CD33 and TREM2 gene variants have 
been reported as significant risk factors for AD (31, 32) and 
associated also with PD (33). These genes are strictly coupled 
with myeloid cell functions leading to the clearance of misfolded 
molecules, and are expressed, other than on microglia, also on 
peripheral myeloid cells. Consistently, a gene expression profile 
study shows overexpression of AD and PD risk alleles specifically 
in patients’ blood monocytes (34).

Several studies report that monocytic cells, able to infiltrate 
the degenerated brain following specific signaling pathways, 
may be capable to modulate AD progression (35). Consistently, 
in real-time in  vivo imaging studies, vascular Aβ clearance is 
carried out by patrolling monocytes (36), according to previous 
results showing that peripherally derived myeloid cells are protec-
tive in AD through mechanisms of brain recruitment involving 
MCP-1 chemotaxis (37–39). At variance, peripherally derived 
macrophages have a detrimental role in TREM2-deficient AD 
mice (40), suggesting that the function of infiltrating myeloid 
cells may be complex and dependent on cell subset and inflam-
matory context considered. Clinical evidence on the involvement 
of peripherally derived mononuclear phagocytes comes from 
the observations that AD macrophages infiltrate the brain and 
damage the BBB, and in the blood they show abnormal cytokines 
release, increased apoptosis, and impaired ability to engulf Aβ 
(41, 42). Regarding PD, monocyte infiltration is involved in 
aggravation of neurodegeneration in murine transgenic models 
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(43). Similarly, circulating blood monocytes have been found 
altered in PD patients as for transcriptome profile and function, 
and their hyperactivity has been shown to correlate with disease 
severity (44). Consistently with AD, the CCL2–CCR2 system 
appears to play a dominant role also in monocyte recruitment 
to PD patients’ brain (45). However, the precise identity and 
dynamic of infiltrating myeloid immune cell subpopulations as 
well as their role in the disease context is to date still vague. In 
fact, despite novel molecular biological tools have shed some light 
on the origin and functions of microglia versus other myeloid 
cell populations in the CNS (46), the identification of infiltrating 
myeloid subsets (including DCs) is hard in neurodegeneration, 
especially in humans, where restricted cell numbers, high mor-
phological and functional heterogeneity linked to environmental 
changes, and lack of specific markers (47) prevent to make 
accurate distinctions.

eviDeNce FOr DeNDritic ceLL 
PArticiPAtiON iN 
NeUrODeGeNerAtiON

Dendritic cells are chief orchestrators of the immune response 
and main link between innate and adaptive immune response 
(48). They form a heterogeneous cell population, located in 
different body tissues, with diverse immunological functions. 
Considering the main properties of DCs, such as migratory 
abilities, pivotal role in looking out potentially harmful factors, 
and ability to regulate both innate and acquired immunity and 
to resolve responses potentially harmful if left uncontrolled, they 
may be key players in brain immune surveillance and good can-
didates as participants in neuroinflammation and neurodegen-
eration. Linked to their key activity to educate T cells in driving 
the immune response, DCs may stimulate lymphocytes during 
their entry into brain and activate an adaptive immune response 
during AD and PD pathogenic processes. Indeed, dysregulation 
of the adaptive immune response, in terms of abnormal brain T 
cell activation and infiltration, has been reported in both experi-
mental and human conditions of AD and PD (49–53).

Brain Dcs
Regarding the identification of DCs in the brain, as exhaustively 
reviewed by Colton (54), a number of studies mainly performed 
in animals have provided evidence for their presence within 
CNS. Generally defined as brain DCs, these cells have dendritic 
morphology and express major histocompatibility complex 
class II molecules (MHCII) and leukocyte integrin CD11c, are 
heterogeneous and may exert complex immunological func-
tions, and likely derive from circulating DC precursors, rather 
than from within the brain, as suggested by their juxtavascular 
location in the meninges and the choroid plexus (55). Brain DCs 
are present in CNS compartments, including cerebral spinal fluid 
(CSF), meninges, choroid plexus, and perivascular spaces of both 
rodents and humans (56–58), where they may act as immune sen-
tinels at the interfaces between the brain and periphery. Although 
low in the steady state, DCs’ frequency increases in CNS under 
neuroinflammatory conditions (57, 59, 60) and during aging (61), 

raising the possibility of their participation in neurodegenerative 
processes.

Though the DC presence in AD or PD brain parenchyma has 
not definitively proved so far, it has been hypothesized in murine 
models of AD (62), demonstrated in aged yellow fluorescent 
protein transgenic mice (61) and only guessable in postmortem 
human AD brain tissue, where in glial cells, a phenotypic change, 
recalling that of activated DCs, was observed (63).

While protective activities linked to their ability to clear Aβ 
have been suggested for CD11c+ cells in AD mouse models (64, 
65), indirect data suggest that DCs are pivotal in PD pathogenesis, 
where an immune response to self-antigens may be a causative 
factor (66, 67).

Additional insights about DC participation in human neu-
rodegeneration come from in  vitro experiments addressed to 
explore how Aβ peptides impact DC function in humans, as well 
as from in vivo analysis of DC precursors’ frequency in blood of 
patients with neurodegeneration (Table 1).

In vitro Monocyte-Derived Dcs
As renowned cell model to analyze human DC functional response 
(73), in  vitro-generated monocyte-derived DCs (moDCs) have 
been used under neurodegenerative specific conditions. MoDCs 
triggered with Aβ25–35 peptide show only a slight decrease in 
surface expression of MHCII (68). At variance, when the same 
cells are differentiated in the presence of Aβ1–42 in a long-lasting 
stimulation state, which presumably better mimics AD conditions, 
Aβ induces increase in cell survival and soluble antigen uptake, 
elevated production of IL-1β, IL-6, and IL-18, but a decrease in 
MHC expression and ability to activate T cells (69). Interestingly, 
moDCs obtained from AD patients, as compared to age-matched 
control subjects, show more pronounced pro-inflammatory 
features and reduced antigen-presenting ability (70), and notably 
they produce lower levels of BDNF following Aβ1–42 stimulation 
(71). All together, these findings, other than advocate for the 
suitability of this cell model to investigate the mechanisms of 
myeloid involvement in neurodegeneration, also indicate that 
under AD conditions, DCs might contribute to brain damage 
by mechanisms of overactivation of inflammatory responses and 
Aβ-mediated reduction of trophic support to neurons, suggesting 
that they may be mediators of AD neurodegeneration.

Blood Dcs
To exercise their ability to survey the brain and activate adaptive 
immune response, precursors of DCs should migrate from the 
bone marrow to CNS sites. In humans, the most suitable popu-
lations of circulating cells with such features are the two main 
subpopulations of blood immature DCs, namely myeloid (mDCs; 
lin− CD11c+ MHCIIhi, CD123lo) and plasmacytoid (pDCs; lin− 
CD11c− MHCIImod, CD123hi) cells, similar to those described in 
the CSF (57, 74, 75). Thus, to confirm the potential relevance of 
DCs in neurodegenerative diseases, frequency and phenotypic 
abnormalities of the two blood DC precursor subsets, mDCs and 
pDCs, and their relationships with disease outcome have been 
evaluated in both AD and PD patients. Preliminary results from 
our research group indicate a significant drop of myeloid DC 
precursors in blood of AD patients, occurring in association with 
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tABLe 1 | In vitro and in vivo evidence for Dc participation in human neurodegenerative diseases.

Disease Dc type Model Analysis Main finding reference

AD Monocyte-
derived 

In vitro triggering with Aβ25–35 Phenotype, cytokine production, T cell 
activation

↓ MHCII Schmitt et al. (68)

Monocyte-
derived 

In vitro generation with Aβ1–42 
(long lasting stimulation)

Phenotype, phagocytosis, cytokine 
production, T cell activation

↑ Cell recovery; ↑ antigen uptake; ↑ IL-1β/IL-6/
IL-18; ↓ IL-12/IL-10; ↓ MHCII; ↓ APC ability

Ciaramella et al. 
(69)

Monocyte-
derived 

In vitro generation from AD 
patients’ monocytes

Phenotype, phagocytosis, cytokine 
production, T cell activation

↑ Cell recovery; ↑ ICAM-1; ↑ IL-6; ↓CD40;  
↓ APC ability

Ciaramella et al. 
(70)

Monocyte-
derived 

In vitro generation from AD 
patients’ monocytes triggering 
with Aβ1–42

Phenotype, phagocytosis, cytokine/
neurotrophin production, T cell 
activation

↓ BDNF Ciaramella et al. 
(71)

Blood 
precursors

Ex vivo precursors from AD 
patients’ blood 

Flow cytometry in blood cells (Lin 1-/
MHCII+/CD11c+ or CD123+)

↓ mDCs; association with AD symptom 
severity

Ciaramella et al. 
(2015, submitted)

PD Blood 
precursors

Ex vivo precursors from PD 
patients’ blood

Flow cytometry in blood cells (Lin 1-/
MHCII+/CD11c+ or CD123+)

↓ mDCs; ↓ pDCs; association with PD 
symptom severity

Ciaramella et al. 
(72)
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increased severity of disease symptoms (Ciaramella et al. 2015, 
submitted). Similarly, blood DC levels, regarding both mDC and 
pDC subsets, are decreased in PD patients in association with 
increased impairment of motor functions, suggesting innovative 
exploitations of DC monitoring as a clinically significant tool for 
neurodegenerative diseases (72). Although the reduction of blood 
DCs may be due to different circumstances, including alterations 
in either viability, mobilization, or differentiation of DCs from 
their progenitors, it may likely depend on their recruitment from 
circulation to degenerating brain, similarly to what observed also 
in other brain diseases.

Collectively, the above described in vitro and in vivo human 
studies lead to speculate that in AD and PD, a percentage of 
blood DCs moving from peripheral blood may reach the brain 
of patients, probably at choroid plexus or meninges level, where 
they may sample CSF content for brain antigens (including Aβ), 
acquire a dysregulated phenotype, and contribute to the inflam-
matory milieu, playing a putative pathological role in neurode-
generation, as depicted in Figure 1.

Additional studies should be addressed to better understand 
whether, after reaching the brain, DCs may function to locally 
regulate infiltrating activated T cells or carry antigens to CNS-
draining cervical lymph nodes. Furthermore, although an active 
research is addressed to specifically understand how adaptive 
immune response participates in this scenario (76), details about 
DC role in orchestrating the induction of immunity and tolerance 
in neurodegenerative diseases are so far unknown.

POteNtiAL tHerAPeUtic Uses OF 
DeNDritic ceLLs iN 
NeUrODeGeNerAtiON

Given the potential key role of DCs in regulating brain immune 
response during neurodegeneration, these cells should be con-
sidered as potentially useful target for therapeutic approach of 
neurodegenerative diseases. Nearly all studies in this direction 
regard the use of DCs as tools for vaccination purposes, rather 
than targets to modify the immune responses, since the latter issue 
is still far from being resolved. Several optimized immunization 

approaches addressed to eliminate accumulation of misfolded 
proteins have been considered in the last years as a promising 
therapeutic strategy for neurodegenerative diseases. DCs may be 
good candidates as potent antigen-presenting cells appropriately 
loaded in vitro with suitable peptides of misfolded proteins, and 
made able to preferentially elicit a non-inflammatory-specific 
immune response (77). Thus, in AD animals, Aβ-sensitized 
DCs have been used to reduce Aβ accumulation and attenuate 
cognitive deficits (78), and to prevent AD pathology when used 
in combination with other cells to reverse immunosenescence 
(79). A recent study addressed to investigate the molecular 
mechanisms allowing T cells to specifically target Aβ-loaded 
brain areas following Aβ immunization of AD mice proposes that 
DCs play a role in regulating Aβ-specific T-cell entry into the 
brain at leptomeningeal and perivascular spaces (80). Similarly 
to the AD state, the removal of α-Syn has been assumed to have 
the potential to modify the course of PD, and α-Syn-stimulated 
DCs injected into PD transgenic mice induce the production of 
anti-α-Syn antibodies and improve the animal locomotor func-
tions (81). The proposed therapeutic use of DCs, as suggested 
by animal studies, is illustrated in Figure 1B (right hand side). 
However, in order to translate into clinic, further studies are 
needed to verify in humans the potential ability of this approach 
to both provide an effective adaptive immune response against 
misfolded proteins and counteract the putative pathological role 
of endogenously dysregulated DCs.

cONcLUDiNG reMArKs

Within an evolving picture of the immune-to-brain crosstalk, 
the systemic immune response appears integral to the function 
of brain-resident immune cells during neurodegeneration, with 
myeloid immune cells holding a pivotal role. Among those, 
blood-derived DCs may participate, though their involvement 
in neurodegeneration awaits experimental verification, espe-
cially in humans. The advent of new potent technological tools, 
including microarray technology, next generation sequencing 
transcriptome, and epigenetic analysis, may help in identifying 
the function of DCs in the initiation and/or regulation of the 
brain-specific immune response.
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FiGUre 1 | Hypothetical model showing the role of myeloid Dcs in neurodegenerative diseases. The cartoon recapitulates our view of the potential role of 
myeloid DCs in neurodegenerative diseases, as both possible participants in promoting inflammatory neuroimmune processes, and supposed tools to perform 
vaccine therapy. (A) Given their nature as key controllers of the immune response and inflammation, mDCs may participate in maintaining brain immune surveillance 
and controlling the delicate homeostatic balance between protective and inflammatory neuroimmune processes in normal healthy conditions. (B) As suggested by 
human in vitro data, during neurodegeneration, mDCs may be involved in promoting imbalance between protective and inflammatory neuroimmune processes. The 
decline of DC precursors observed in vivo in peripheral blood of patients with neurodegenerative diseases may be a consequence of cell recruitment to the diseased 
brain (illustrated as a dotted arrow), where DCs may acquire a dysregulated phenotype and contribute to the inflammatory milieu. The potential therapeutic use of 
DC vaccination in neurodegeneration is depicted [right hand side of (B)] on the basis of animal models’ results. Myeloid DCs differentiated and expanded from 
peripheral precursors, and specifically targeted in vitro against misfolded proteins, may trigger an immune response that promotes the clearance of brain aggregates 
and attenuates symptoms, possibly even restoring the neuroinflammatory homeostasis (illustrated as a dotted line).
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In conclusion, answering the questions about DC infiltration 
in AD/PD brain and DC function in human disease progres-
sion might be essential for neurologists to better understand 
the neurodegeneration pathophysiology, develop biomarkers, 
and improve therapeutic approaches for the most common and 
devastating neurodegenerative diseases of the modern society.
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