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Multiple sclerosis (MS) is a severe disease of the central nervous system (CNS) charac-
terized by autoimmune inflammation and neurodegeneration. Historically, damage to the 
CNS was thought to be mediated predominantly by activated pro-inflammatory T cells. 
B cell involvement in the pathogenesis of MS was solely attributed to autoantibody pro-
duction. The first clues for the involvement of antibody-independent B cell functions in 
MS pathology came from positive results in clinical trials of the B cell-depleting treatment 
rituximab in patients with relapsing-remitting (RR) MS. The survival of antibody-secreting 
plasma cells and decrease in T cell numbers indicated the importance of other B cell 
functions in MS such as antigen presentation, costimulation, and cytokine production. 
Rituximab provided us with an example of how clinical trials can lead to new research 
opportunities concerning B cell biology. Moreover, analysis of the antibody-independent  
B cell functions in MS has gained interest since these trials. Limited information is 
present on the effects of current immunomodulatory therapies on B cell functions, 
although effects of both first-line (interferon, glatiramer acetate, dimethyl fumarate, and 
teriflunomide), second-line (fingolimod, natalizumab), and even third-line (monoclonal 
antibody therapies) treatments on B cell subtype distribution, expression of functional 
surface markers, and secretion of different cytokines by B cells have been studied to 
some extent. In this review, we summarize the effects of different MS-related treatments 
on B cell functions that have been described up to now in order to find new research 
opportunities and contribute to the understanding of the pathogenesis of MS.
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iNTRODUCTiON

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), 
characterized by demyelination in white and gray matter regions, axonal degeneration, and gliosis 
(1). MS is the most common chronic neurological disease in young adults affecting more women 
than men (three to one) with an incidence of 7/100,000 and a prevalence of 120/100,000 in Northern 
Europe (1). The diagnosis of MS is mostly preceded by a clinically isolated syndrome (CIS), which 
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is the first clinical manifestation of a demyelinating disease that 
has not met the criteria of MS yet (2). Different clinical subtypes 
of MS are described. About 80% of the patients present with 
relapsing-remitting (RR) MS, which is characterized by disease 
exacerbations with periods of functional improvement (3). Over 
time, about 60% of the RRMS patients develop secondary pro-
gressive (SP) MS (4). About 10–20% of MS patients show progres-
sive accumulation of disability from onset, referred to as primary 
progressive (PP) MS (2). According to the revised definitions of 
MS, above mentioned MS subtypes can present themselves in an 
inactive and active form (2). The underlying process of disease 
progression is not completely understood (5). Most MS therapies 
are primarily designed as treatment for RRMS patients, where 
there is marked inflammation.

Current data support the conceptual idea of MS as a com-
plex heterogeneous disease caused by interactions between the 
environment, genetic susceptibility, and a dysbalanced immune 
system (6–8). Traditionally, T cells were considered as critical 
immune components required for the induction of MS patho-
genesis. Recently, compelling evidence is present highlighting 
B cells as central components of the disease as well (9, 10). 
Autoreactive T cells are activated in the periphery most likely via 
molecular mimicry or bystander activation and home through a 
disrupted blood–brain barrier (BBB) to the CNS, where they are 
reactivated by antigen-presenting cells. This triggers the produc-
tion of different mediators, such as chemokines and cytokines, 
by T cells, microglia, and other cells of the CNS. This will in turn 
initiate the recruitment of other inflammatory cells, including B 
cells and macrophages. B cells have the ability to cross the BBB 
and undergo stimulation, antigen-driven affinity maturation, and 
clonal expansion (11). The inflammatory reaction of T, B, and 
other immune cells leads to demyelinated lesions throughout the 
CNS (3).

As B cell involvement in MS has become more evident in 
recent years, more data have been collected concerning the effects 
of B cells in MS pathogenesis. Proof of B cell involvement in MS 
is described thoroughly further on in the review. Both B cell 
subtype distribution and B cell effector functions are important 
contributors to the disease. These processes are first described in 
more detail in order to fully understand how these processes are 
affected in MS patients and modulated by different MS treatments.

B Cell Subtype Distribution in MS
B cell development starts in the bone marrow where a hematopoi-
etic stem cell evolves into an immature CD19+ B cell (Figure 1) 
(12). Transitional B cells (CD19+CD38++CD24++ or CD19+CD27− 
IgD+CD38+) enter the circulation and mature into naive B cells 
(CD19+IgD+CD27−). Upon antigen recognition, naive B cells 
proliferate into short-lived plasma blasts (CD19+CD138++ or 
CD19+CD27+CD38++) or plasma cells (CD38+CD138+) that 
produce low-affinity antibodies for a few days or further mature 
into memory B cells (CD19+CD27+) in a germinal center (GC) 
reaction. A proportion of memory B cells remains non-class-
switched memory cells (CD19+IgD+CD27+), while others lose 
their immunoglobulin (Ig)D expression following isotype 
switching (CD19+IgD−CD27+). This classically results in the sur-
face expression of IgG, IgA, or IgE, although a small proportion 

of memory B cells preserve IgM surface expression, namely 
IgM only memory B cells (CD19+IgD−CD27+IgM++) (13–17).  
A proportion of the memory B cells further matures into plasma 
blasts and long-lived plasma cells.

T cell subtypes important for providing help in the GC reac-
tions are follicular helper T cells (TFH), follicular regulatory 
T cells (TFR), but also Th17 cells that can all induce or regulate 
GC formation and isotype switching (18–21). Regulatory B cells 
(Bregs) have been identified more recently by their function in 
immune regulation via the production of IL-10 (22, 23). Bregs 
could be enriched from transitional B cells, CD27+ memory B 
cells and plasma cells. Surface markers to characterize Bregs are 
still not clearly defined, although in humans CD24, CD38, CD5, 
and CD1d are mostly used (24–26).

Compositional changes of B cell subtypes in the peripheral 
blood (PB) are evidenced, shifting the balance toward more pro-
inflammatory responses and less regulation. It is thought that 
memory B cells, plasma blasts and plasma cells preferentially 
cross the disrupted BBB and migrate into the CNS of MS patients, 
where they dominate the B cell pool and exert different effector 
functions (11, 27–35). During MS relapses, the percentage of PB 
memory B cells is increased (36). As TFH and TFR cells contrib-
ute to a normal GC response wherein potential autoantibodies 
are eliminated, the altered TFH and TFR function observed in 
MS patients can result in an inadequate GC response and the 
production of autoantibodies in the PB (18, 19).

In contrast to an increased percentage of memory B cells in 
PB, the proportion of Bregs was decreased in MS patients, while 
unchanged compared to healthy donors in other studies (37–40). 
Breg function was shown to be preserved as no differences were 
observed between MS patients and healthy donors in the ability 
of Bregs to inhibit proliferation of CD4+CD25− T  responder 
cells (40).

B Cell effector Functions
B cells exert multiple effector functions, which are relevant to the 
pathogenesis and therapy of MS (9). First, B cells differentiate into 
antibody-secreting plasma blasts and plasma cells and produce 
antigen-specific antibodies (Figure  2). IgG from MS patients 
caused demyelination and axonal damage in a complement-
dependent manner when using both in vivo and in vitro models (41, 
42). Plasmapheresis and immunoadsorption in order to remove 
antibodies and complement factors already showed promising 
results as treatment for MS patients with steroid-resistant relapses 
(43, 44). In MS, different antibody targets have been described, 
including myelin basic protein (MBP), myelin oligodendrocyte 
glycoprotein (MOG), neurofilament, sperm-associated antigen 
16 (SPAG16), coronin-1a, heat shock proteins, and other com-
ponents of the CNS, emphasizing the diversity and complexity of 
the antibody response (45–54). An extensive review on different 
antibody targets is found in Ref. (45).

Second, B cells form GC-like structures, ectopic lymphoid 
follicles, outside of secondary lymphoid organs at sites of 
inflammation (Figure 2). These follicles harbor a local source 
of class-switched Igs that contribute to the immune response 
and are detected as oligoclonal bands (OCB) in the cerebro-
spinal fluid (CSF) of MS patients (55–57). These OCB in the 
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FiGURe 2 | B cell effector functions. B cells exert different effector functions. B cells evolve into plasma blasts or plasma cells and produce antibodies (1). B cells 
produce different pro-inflammatory cytokines (lymphotoxin (LT)-α, tumor necrosis factor (TNF)-α, interleukin (IL)-6 or regulatory cytokines (IL-10, IL-35)) that influence 
other immune cells (2). B cells present antigens to T cells and provide costimulatory signals in order to induce appropriate T cell responses (3). B cells form ectopic 
lymphoid follicles that support the inflammatory responses (4). CD, cluster of differentiation; CD40L, CD40 ligand; APRIL, a proliferation-inducing ligand; BAFF, B cell 
activating factor; TCR, T cell receptor; BCR, B cell receptor.

FiGURe 1 | B cell development. B cells develop in the bone marrow and enter the circulation as transitional B cells. B cells remain naive until they encounter an 
antigen after which they differentiate into plasma blasts, short-lived plasma cells, or further mature into class-switched or non-class-switched memory B cells in a 
GC response. However, non-class-switched memory B cells can also be formed independent of a GC. A proportion of the memory B cells further develops into 
plasma blasts and/or plasma cells. Regulatory B cells are characterized within the transitional, naive, memory, and plasma blast or plasma cell population. Potential 
developmental routes are indicated with the dotted lines.
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CSF of MS patients were one of the first findings for B cell 
involvement in MS (58, 59). Intrathecal B cells are the local 
source for these OCB in the CSF, contributing to inflamma-
tion, and the destruction of the myelin sheet in the CNS (60). B 
cells migrate to the CNS using surface markers such as C–X–C 
motif receptor (CXCR)3, CXCR5, and CC chemokine receptor 
(CCR)5. The CNS has a fostering environment in which the 
production of CXCL10 and CXCL13 attracts B cells (61). In the 

meninges of MS patients, these migrated B cells form ectopic 
GC structures (57).

Third, B cells serve as highly effective and selective antigen-
presenting cells leading to optimal antigen-specific T cell expan-
sion, memory formation, and cytokine production (Figure  2) 
(62–64). After antigen binding by the B cell receptor (BCR), the 
antigen is internalized, processed, and expressed on the surface 
of the B cells as a complex with major histocompatibility complex 
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(MHC)-I or II molecules. Additional to antigen-presentation 
molecules, costimulatory molecules, such as CD80, CD86, and 
CD40, are expressed on B cells and contribute to optimal T cell 
activation (65). Myelin reactive peripheral B cells can induce CD4+ 
T cell responses in a proportion of MS patients (66). Additionally, 
B cell expression of the costimulatory molecules CD80 and CD86 
is higher in MS patients than healthy controls (67, 68).

Finally, B cells support or regulate effector immune func-
tions via the secretion of different cytokines (Figure  2). B cell 
activation factor (BAFF) and A Proliferation-Inducing Ligand 
(APRIL) are important survival factors for B cells and plasma 
cells, thereby maintaining the B cell pool (69). BAFF expres-
sion is upregulated in active and inactive MS lesions (70, 71). 
Maintaining BAFF expression within certain limits in order to 
balance pro-inflammatory and regulatory B cell subtypes can 
be an important feature for MS therapies. B cells support pro-
inflammatory functions through secretion of tumor necrosis 
factor alpha (TNF-α), interleukin (IL)-6, and lymphotoxin alpha 
(LT-α) and exert regulatory functions via the production of IL-10 
and IL-35 (22, 23, 72–75). In healthy individuals, transitional B 
cells perform regulatory functions by producing IL-10, thereby 
suppressing antigen-mediated T cell activity (26). Within the 
CD27+ memory B cell and plasma cell population, IL-10 and 
IL-35 producing Bregs can be enriched, showing that more 
mature B cells can also have regulatory functions next to antibody 
production and T cell activation (23, 25, 76–78). B cells from MS 
patients showed an increased production of IL-6, an increased 
LT-α/IL-10 ratio and increased LT-α and TNF-α production after 
stimulation in vitro (70). In addition, B cells from untreated MS 
patients secreted more pro-inflammatory IL-6 and less regulatory 
IL-10 than those from healthy controls (37, 79, 80).

Additional Proof of B Cell involvement 
in MS
Additional proof of B cell involvement in MS came from analysis 
of BCR sequences and genetic and animal studies. Analysis of Ig 
heavy chain variable sequences (VH) of intrathecal B cells from 
MS patients showed a restricted usage of Ig VH gene segments, 
pointing to a chronic antigen-driven B cell response in MS 
patients (81–83). Genetic studies in MS identified susceptibility 
genes that show a strong association with B cell function, such as 
HLA-DRB1*1501, HLA-DRB5*0101, and HLA-DQB1*0602 (84). 
Also observations from clinical trials of the B cell-depleting anti-
CD20 monoclonal antibody rituximab indicated the importance 
of antibody-independent B cell functions in the pathogenesis of 
MS. These clinical studies showed an unchanged level of total Ig 
and a decrease in CSF T cell numbers, providing additional proof 
that B cells highly interact with T cells in MS (85–87).

Other information about the involvement of B cells in the 
pathogenesis of MS is available from experimental autoim-
mune encephalomyelitis (EAE), the animal model of MS. The 
role of B cells in EAE has long-time been neglected as B cells 
are not essential contributors to EAE models based on peptide 
immunization. More recent studies using recombinant MOG 
protein immunization have highlighted the role of B cells in EAE 
induction and pathology (88). The dual role of B cells in EAE was 

indicated by the use of anti-CD20 treatment, as disease exacerba-
tion was evident when depleting Bregs before EAE induction 
while disease severity decreased when depleting memory B cells 
after EAE induction (22, 89, 90). B cells were essential for the 
generation of optimal pathogenic CD4+ T cell responses and dif-
ferentiation of MOG specific T-helper (Th)1 and Th17 cells (91). 
In B cell deficient mice, EAE induction by adoptive transfer of 
activated T cells was reduced and reactivation of infiltrated T cells 
was impaired (92). Further, B cell-specific MHC class II-deficient 
mice were resistant to EAE induction and exhibited diminished 
Th1 and Th17 responses (93). Hence, B cells can promote EAE 
induction by acting as antigen-presenting cells. Moreover, B 
cell antigen presentation was proven to be crucial for maximal 
disease in EAE, further emphasizing the importance of B cells in 
MS pathogenesis (94).

Recently, a direct link between peripheral and intrathecal B 
cells was demonstrated. Clonally expanded autoreactive B cells 
with signs of affinity maturation were, next to the CSF, found in 
the PB of MS patients (82, 95). Further, expanded B cell clones 
were found both in the PB/draining cervical lymph nodes and 
the CSF, indicating a complex crosstalk between the periphery 
and the CNS in MS pathogenesis (27, 96). Exchange of B cells 
between the CSF and the PB may suggest that B cells carry 
antigen from the CNS to peripheral secondary lymphoid organs 
(11). Primed T cells then migrate to the CNS where residing B 
cells may further promote T cell activation. These data underline 
the importance of using therapeutics based on the inhibition of 
B cell transmigration into the CNS or that induce peripheral B 
cell depletion (11, 27, 96, 97). Additionally, autoreactive B cells 
can be removed from the B cell pool via both a central and a 
peripheral checkpoint. It seems that especially the peripheral 
tolerance checkpoint is defective, as shown by the equal propor-
tion of polyreactive and anti-nuclear transitional B cells in MS 
patients and healthy donors (normal central B cell tolerance) 
and the increased proportion of mature naive B cells from MS 
patients reactive toward peripheral and CNS self antigens (defec-
tive peripheral B cell tolerance) (98). This defect is probably due 
to impaired Treg function that leads to the accumulation of auto-
reactive B cells (99). All these observations strengthen the idea 
that PB B cells contribute to the pathogenic B cell pool present 
in the CNS of MS patients and are involved in MS pathogenesis 
both by antibody-dependent and -independent B cell functions. 
Thus, investigating PB B cells and the effects of treatment on 
peripheral B cell functions may contribute to our understanding 
of the pathogenesis of MS (80, 85–87).

This review summarizes how current MS treatments influ-
ence B cell functions. At the moment, numerous FDA approved 
MS treatments or drugs in clinical trials can be subdivided in 
first-, second- and third-line therapies (Tables 1–3). Generally 
established first-line therapies include interferon-beta (IFN-β) 
and glatiramer acetate (GA), while fingolimod and natalizumab 
are considered to be second-line treatments. The recently 
approved oral drugs teriflunomide and dimethyl fumarate 
(DMF) are oral treatments used as first-line treatment for 
MS (100–105). Second- and third-line antibody treatments 
are rituximab, alemtuzumab, ocrelizumab, ofatumumab, and 
antibodies that target BAFF and APRIL. Modulating B cell 
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TABLe 3 | Overview of third-line MS treatments.

Name Target Primary mode of action MS type important clinical observations References 

Monoclonal anti-
CD20 antibody 
rituximab rituxan®, 
mabThera®, zytux®

CD20 Depletes CD20+ B cells RRMS •   Reduction of new brain lesions and clinical relapses (85, 87, 
181–185)PPMS

SPMS

Monoclonal anti-
CD20 antibody 
ocrelizumab®

CD20 Depletes CD20+ B cells RRMS •   Reduction in gadolinium-enhancing (Gd) T1 lesions, 
in total number of new and persisting Gd-enhancing 
lesions and in annualized relapse rate

(181, 186, 
187)PPMS

•   Improved efficacy compared with rituximab with lesser 
infusion-related reactions

Monoclonal anti-
CD20 antibody 
ofatumumab®

CD20 Depletes CD20+ B cells / •   Reduction in cumulative number of new Gd-enhancing 
lesions and new and enlarging T2 lesions

(188–191)

Alemtuzumab 
campath®, lemtrada®

CD52 Depletes CD52+ B and T cells RRMS •   Reduction in rate of sustained accumulation of disability, 
disability progression, and the annualized rate of relapse

(120, 
192–194)

•   Improvement of disability scores

Anti-BAFF; anti-
APRIL atacicept®, 
belimumab benlysta®, 
tabalumab, 
blisibimod

BAFF and/or 
APRIL

Blocks activation of B cells via 
inhibition of BAFF and APRIL or the 
BAFF receptor

RRMS •   Increase in inflammatory disease activity and 
annualized relapse rate (atacicept®)

(70, 
149–151, 
195, 196)

TABLe 2 | Overview of second-line MS treatments.

Name Target Primary mode of action MS type important clinical observations References 

Natalizumab Tysabri® VLA-4 
(α4-integrin)

Inhibits migration of lymphocytes to 
the CNS

RRMS •   Reduction in exacerbation rate, annual relapse rate 
and disability rate

(169–171)

FTY720 Fingolimod® Sphingosine-
1-phosphate 
receptor (S1PR)

•   Downregulates S1PR on 
lymphocytes

RRMS •   Reduction in relapse rate, disability progression and 
total number of gadolinium-enhancing lesions

(172–180)

•   Inhibits egression from lymphoid 
organs into the circulation

TABLe 1 | Overview of first-line MS treatments.

Name Target Primary mode of action MS type important clinical observations Reference

IFN-β1a Avonex®, 
IFN-β1a Rebif®, IFN-
β1b Betaferon®

/ •   Increases the expression of 
anti-inflammatory agents while 
downregulating pro-inflammatory 
cytokines

RRMS •   Reduction in relapse rate, magnetic resonance 
imaging (MRI) lesion activity, brain atrophy, risk of 
sustained disability progression

(100, 107, 
152–157)

•   Shifts the immune response from 
a T-helper (Th) 1 phenotype to Th2

•   Increase in time to reach clinically definite MS after the 
onset of neurological symptoms

•   Reduces trafficking of 
inflammatory cells toward the BBB

Glatiramer acetate 
Copaxone®

/ Induces tolerogenic T cell immune 
responses and CD4+ and CD8+ 
regulatory T cells due to mimicry of MBP

RRMS •   Reduction in relapse rate (79, 105, 
158–162)•   Improvement of disability measured using Expanded 

Disability Status Scale (EDSS)

Teriflunomide 
Aubagio®

Dihydroorotate 
dehydrogenase

Inhibits de novo pyrimidine 
synthesis by blocking the enzyme 
dihydroorotate dehydrogenase

RRMS •   Reduction in exacerbation rate, annualized relapse 
rate, risk of sustained accumulation of disability

(163–168)

Dimethyl fumarate, 
BG-12 Tecfidera®

/ •   Interferes in the citric acid cycle RRMS •   Reduction in annual relapse rate (102, 108, 
109, 168)•   Activates the nuclear factor 

(erythroid-derived 2)-like 2 (Nrf2) 
pathway

•   Reduction in disability progression
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functions is an important tool for treating MS patients, although 
information on the effects of therapy on B cell functions is lim-
ited. Investigating the effects of treatment on B cell functions is 

of potential relevance to the efficacy of such treatments and it 
will help to increase our insight into the involvement of PB B 
cells in MS pathogenesis.
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FiGURe 3 | effects of immunomodulatory therapy on B cell subtype distribution and function. B cell development in the bone marrow and periphery (A), 
antigen presentation and costimulatory molecules expressed on the B cell surface (B) and B cell cytokine production (C) are shown together with the effects of 
treatment on the different B cell subtypes and functions. CD, cluster of differentiation; IFN-β, interferon-β; FTY, fingolimod; GA, glatiramer acetate; NA, natalizumab; 
DMF, dimethyl fumarate; TFL, teriflunomide; RTX, rituximab; IL, interleukin; TGF, transforming growth factor; TNF, tumor necrosis factor; Th, T helper.
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eFFeCTS OF TReATMeNT ON TOTAL B 
CeLL NUMBeRS

Total B cell numbers and percentages in the PB were changed 
during treatment, both in cross-sectional and longitudinal 
studies, with an increase in the frequency of CD19+ B cells in 

IFN-β-treated MS patients and a decrease in GA- and DMF-
treated MS patients (Figure 3) (79, 106–110). Different studies 
indicated that the percentage of B cells was increased in the PB 
and decreased in the CSF of natalizumab-treated MS patients, 
due to the inhibition of lymphocyte migration into the CNS 
(106, 111–118). This increase in PB B cells was observed up to 
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30 months after start of the treatment (112). Opposite effects were 
observed in fingolimod-treated MS patients where total B cell 
numbers in the PB were diminished because of the lymphocyte 
entrapment within secondary lymphoid organs. No changes were 
observed in CSF B cell numbers under fingolimod treatment (118, 
119). In a study with 69 RRMS patients treated with rituximab, a 
decrease of 95% in the percentage of CD20+ B cells was evidenced 
from 2 weeks after treatment until 24 weeks (87). By week 48, B 
cells returned to 31% of baseline values. Alemtuzumab treatment 
caused a general depletion of both T and B cells in the PB of 
treated patients (120).

eFFeCTS OF TReATMeNT ON B CeLL 
SUBTYPe DiSTRiBUTiON

Different effects on B cell subtype distribution were demon-
strated using different MS treatments. An increased frequency of 
immature and transitional B cells was generally evidenced under 
different treatments, including IFN-β, natalizumab, fingolimod, 
and during repopulation following rituximab or alemtuzumab 
treatment (106, 107, 111, 113, 120–124). These reports all point 
toward an increased output of B cells from the bone marrow 
under immunomodulatory treatment. In this regard, an increased 
release of lymphoid committed progenitor cells was shown during 
natalizumab therapy in MS (112). However, in a cross-sectional 
study with 8 natalizumab-treated RRMS patients, a significant 
decrease in the percentage of transitional B cells was evidenced 
(106). Also in fingolimod treated MS patients, the output of newly 
produced B cells or immature B cells from the bone marrow was 
decreased (121).

Therapeutic effects on frequencies of Bregs have only been 
described in relation to the use of fingolimod, rituximab and 
alemtuzumab therapy. In 48 fingolimod treated MS patients, a 
proportional increase of Bregs was recently described compared 
to 74 untreated MS patients and 70 healthy controls (125). During 
repopulation after B cell depletion by rituximab or alemtuzumab, 
naive B cells with an increased expression of CD38 and CD5, 
which are described as Bregs, were predominantly present, both 
in MS and other autoimmune diseases (31, 122, 126).

Peripheral blood naive B cells were increased in IFN-β, GA, 
natalizumab, and fingolimod-treated MS patients in comparison 
with treatment-naive MS patients in different cross-sectional and 
longitudinal studies (79, 106, 115, 119, 127). This indicates that 
the B cell population shifts toward a less disease promoting B 
cell pool after different MS treatments. For GA and natalizumab, 
this could not be reproduced in other studies where a decreased 
frequency of naive B cells was observed or no change in B cell 
subtype distribution at all (106, 107, 127). However, no informa-
tion was available about the treatment duration, which makes it 
difficult to compare the studies.

Also contributing to a less disease promoting B cell phenotype 
is the significant decrease in the frequency of non-class-switched, 
class-switched memory B cells, and plasma blasts in both cross-
sectional and longitudinal studies of IFN-β-, GA-, and fingolimod-
treated MS patients, even when using different B cell classifications 
(36, 79, 106, 107, 119, 125, 127–129). Although a decrease in the 
proportion of plasma blasts was observed in natalizumab-treated 

MS patients, a higher percentage of memory and marginal zone 
B cells was reported (112, 114, 115, 127, 130). This memory B 
cell increase is probably due to the reduced retention of memory 
B cells in the spleen (112). In the CSF, natalizumab treatment 
particularly depleted CD5+ B cells and plasma blasts (131).

Data on B cell subtype distribution are missing for DMF and 
teriflunomide-treated MS patients. In  vitro studies have shown 
that teriflunomide induces cell cycle arrest in B cells without 
inducing apoptotic cell death (101, 132, 133). Moreover, the effects 
of different third-line treatments on B cell subtype distribution is 
poorly investigated in MS as not all treatments are FDA approved 
and clinical trials are ongoing. To our knowledge, no data are 
available on the repopulation of B cells after discontinuation of 
the B cell-depleting therapies ocrelizumab and ofatumumab. 
Further research is warranted to increase the understanding of 
the exact mechanism of action and to investigate restoration of 
the immune balance following depletion therapies.

From this overview, we can conclude that immunomodulatory 
treatment of MS patients induces a shift in the distribution of B 
cell subtypes toward a more regulatory or anti-inflammatory 
phenotype. This is of high clinical importance as a disturbed bal-
ance between the different B cell subtypes is observed in MS. For 
different MS treatments, the effects on B cell subtype distribution 
have already been investigated to some extent, still conflicting 
data are present. This is probably due to variation in measurement 
time points and B cell characterization strategies. Furthermore, as 
each treatment requires a different time to reach a steady state of 
immunological parameters and treatment efficiency, it is difficult to 
compare study results. Therefore, it is essential to use a longitudinal 
design of the study and take into account the pharmacodynamical 
properties of the treatment, since some treatment effects could 
get lost when only measuring in a cross-sectional manner. B cell 
subtype analysis can also be highly relevant in the search for new 
markers for progressive multifocal leukoencephalopathy (PML) in 
natalizumab-treated patients, as B cells were described as potential 
carriers of the John Cunningham (JC) virus into the CNS (134). 
Other research is focused on finding risk factors for the develop-
ment of PML during natalizumab treatment (112, 130, 135, 136).

eFFeCTS OF TReATMeNT ON B CeLL 
eFFeCTOR FUNCTiON

Here, we present the available data on the effect of immunomodu-
latory treatment on antibody-dependent and -independent 
B cell functions. These include antibody production, antigen 
presentation, costimulation, migration, and cytokine production 
(Figure 3).

effects of Treatment on Antibody 
Production
Glatiramer acetate treatment did not change serum levels of total 
IgG and IgM in MS patients, but in vitro levels of IgG and IgM 
antibodies were increased after stimulation of PB B cells from these 
patients (79). Natalizumab-treated MS patients showed lower lev-
els of IgM in both serum and CSF and lower anti-neurofilament 
light antibodies in the serum than non-natalizumab-treated 
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MS patients (116, 137). Longitudinal data of 24 MS patients 
confirmed these results with a decrease in neurofilament light 
antibody levels, a decline in total IgG levels in the PB and CSF, 
and a decline in total IgM in the PB (116, 137). Further, the IgG 
index, which reflects intrathecal IgG production, was decreased 
during natalizumab treatment, resulting in the disappearance of 
OCB in some of the treated MS patients (138). Whether a decline 
in the anti-neurofilament light antibodies is a consequence of 
a decrease in total antibody levels is not stated. Additionally, 
vaccination studies in fingolimod-treated healthy volunteers 
have demonstrated a mild to moderate decrease in IgG and IgM 
antibody levels toward some antigens, suggesting that fingolimod 
could reduce autoantibody production in MS as well (139). 
Teriflunomide, in contrast, did not influence immune responses 
toward influenza vaccines, indicating that the protective immune 
responses are preserved in these patients (140).

The anti-BAFF antibody atacicept® did not show beneficial 
results in clinical trials for MS and even led to worsening of the 
disease. More patients with optic neuritis who received atacicept® 
progressed to clinical definite MS (141). The efficacy of this 
therapy was proven in a clinical trial for RA wherein circulating 
IgG and IgA rheumatoid factor (RF) and total IgM, IgA, and IgG 
levels were reduced (142, 143). These observations indicate that, 
although MS and RA are both autoimmune diseases in which 
B cells are involved, different effector mechanisms of B cells 
are involved in both diseases. Since atacicept® affects antibody-
producing plasma cells and clinical efficacy of atacicept® is shown 
in RA, one can speculate that in RA pathogenesis autoantibody 
production is more important than in MS pathogenesis. This 
underlines the multifactorial functions of B cells in autoimmunity.

effects of Treatment on B Cell Antigen 
Presentation, Costimulation, Migration
Most information on effects of treatment on B cell antigen pres-
entation, costimulation, and migration is available for IFN-β. 
Ex vivo analysis of PB B cells from 15 IFN-β-treated MS patients 
showed a decreased percentage of CD80, CD86, and CCR5 
positive total and CD27− naive B cells compared to untreated MS 
patients (36). This pointed toward a less migratory and costimula-
tory phenotype of these B cells in the PB under treatment, which 
was confirmed in vitro (36, 144, 145). Furthermore, the increase 
in CD80 positive cells during relapses in MS patients was shown 
to be counteracted by IFN-β treatment (68). Since CD80 expres-
sion is associated with a Th1 phenotype and CD86 expression is 
associated with a Th2 response, these findings could indicate a 
shift from Th1 to Th2 in IFN-β treated MS patients (146). Within 
the CD27+ memory B cell compartment, the percentage of CD86 
positive B cells was increased while the percentage of CXCR3 
positive cells was decreased in the IFN-β group compared to 
healthy controls, indicating that memory B cells were less able to 
migrate to the CNS (36). IFN-β pretreated B cells were less able to 
induce proliferation of anti-CD3 and anti-CD28 stimulated CD4+ 
T cells than untreated B cells, further proving the immunomodu-
latory capacity of IFN-β therapy (144).

In a longitudinal study, B cell expression of the adhesion marker 
intracellular adhesion molecule (ICAM)-3 was reduced during 

GA treatment, indicating a potential role for GA in controlling 
the migration of B cells toward the CNS (147). Other longitudinal 
data showed a decrease in B cell expression of the antigen-
presenting molecule human leukocyte antigen (HLA)-DR/DP/
DQ and an increase in CD80 and CD86 costimulatory molecules 
on PB B cells in fingolimod treated MS patients (119). In contrast, 
a decreased expression of CD80 and stable CD86 expression was 
evidenced on B cells from fingolimod treated MS patients when 
compared to untreated MS patients in another study (128).

No data are present, to our knowledge, concerning the effects 
of DMF, teriflunomide, natalizumab and the CD20-depleting 
antibodies like rituximab, ocrelizumab, and ofatumumab on B 
cell surface expression of antigen presentation, costimulation, 
and migration markers. Natalizumab treatment could indirectly 
have an effect on these B cell functions due to the observed B cell 
subtype redistribution and general immune modulation. Because 
DMF and teriflunomide are recent FDA approved drugs, more 
research is warranted to investigate the effects of these treatments 
on B cell functions. Still, it can be concluded that different MS 
therapies can influence the interaction of B cells with T cells or 
other immune cells. As a consequence, inflammatory responses 
that are detrimental for the CNS are tempered, which is reflected 
in the clinical outcome of the treated MS patients.

effects of Treatment on Cytokine 
Production by B Cells
In a cross-sectional study of IFN-β treated RRMS patients, 
increased serum levels of BAFF were observed compared to 
healthy controls, untreated, and GA-treated RRMS patients (107, 
148). Twelve months after discontinuation of alemtuzumab treat-
ment, increased serum BAFF levels were also observed (122). 
The BAFF-depleting antibody atacicept® exacerbated MS, which 
could be due to the decreased functionality of Bregs, as BAFF and 
APRIL signaling is highly implicated in the survival of Bregs. Still, 
the exact reason for the observed increased disease activity needs 
to be elucidated (149–151).

In terms of changes in cytokine production, IFN-β treatment 
caused induction of IL-10 production by B cells in vitro (144). 
Although GA did not directly modulate B cell proliferation or 
cytokine secretion in vitro (9), ex vivo analysis showed an increased 
secretion of IL-10 by B cells of 22 RRMS patients treated with GA 
(79). Intracellular flow cytometric analysis of B cells isolated from 
GA treated MS patients showed no increased frequency of IL-10 
positive B cells in the PB of MS patients, indicating that GA does 
not influence the number of cytokine producing cells but rather 
the secretion of the cytokines (79). Further, a decreased capacity 
to secrete LT-α and IL-6 was indicated after B cell stimulation via 
CD40 and CD40L interaction or via Toll-like receptor triggering 
(79). An elevated IL-10 production was also evidenced for PB B 
cells from fingolimod-treated MS patients and repopulated B cells 
after rituximab treatment (31, 80, 125, 128). In fingolimod treated 
MS patients, the increased IL-10 production was accompanied by 
a decreased TNF-α production, while B cells following rituximab 
treatment secreted less pro-inflammatory cytokines IL-6, LT-α, 
and TNF-α (31, 80, 125, 128). Limited data is present of the 
effects of DMF and teriflunomide on the immune function in 
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MS patients. In psoriasis patients, it was shown that DMF altered 
the immune and T cell cytokine profile (102, 110). Teriflunomide 
limits the secretion of pro-inflammatory molecules by immune 
cells, including IL-6 and IL-8 (101).

Thus, similar effects have been observed for all studied treat-
ments on the cytokine production by B cells, correcting the imbal-
ance between regulatory and disease promoting B cell functions in 
MS. We have to keep in mind that since different B cell subtypes 
produce different cytokines, by changing B cell subtype distribution, 
cytokine balances are changed as a secondary effect of the treatment. 
Data are missing on the effects of treatment on cytokine production 
by B cells for some FDA approved treatments such as natalizumab 
and for some treatments in clinical trials such as anti-CD20 
monoclonal antibodies. It can be speculated that a potential mode 
of action by which these treatments contribute to the improvement 
of MS pathogenesis can be by influencing B cell cytokine produc-
tion from a pro-inflammatory phenotype toward a more regulatory 
phenotype, still this needs to be further investigated.

CONCLUSiON

It is eminent that B cells are major players in MS pathogenesis and 
contribute to the disease via both antibody-dependent and -inde-
pendent mechanisms. B cells are essential for antigen presentation 
and costimulation of T cells, for the production of cytokines and 
to produce antibodies that will target components of the CNS. 
Thus, focusing on effects of treatment on these cells will help in 
our understanding of MS pathogenesis. Although initially not 
designed for that purpose, many MS modifying treatments influ-
ence both antibody-dependent and -independent B cell functions. 

Research on effects of therapy on B cell phenotype and function 
has demonstrated a shift from pro-inflammatory B cell functions 
toward more anti-inflammatory and regulatory functions. Still, 
each treatment influences this balance in its own manner. IFN-β, 
natalizumab, fingolimod, BAFF and APRIL targeting monoclonal 
antibodies, rituximab and alemtuzumab, induce compositional 
changes of the B cells, resulting in a less disease promoting 
distribution of B cells in both the PB and CSF of MS patients. 
GA, DMF, and teriflunomide work primarily via modulating B 
cell cytokine production. Still, all these effector mechanisms of B 
cells are interconnected and cannot be separated from each other. 
Investigating the mechanism of action of different treatments in 
different autoimmune diseases leads to new insights into that spe-
cific disease. For example, atacicept® has different clinical effects in 
RA and MS, indicating different roles of B cells in these diseases. 
More research is needed since inconsistencies between studies are 
present due to differences in B cell subtype definition and time 
point of measurement. Consensus in B cell subtype characteriza-
tion will have added value in future research. Further, researchers 
should take into account pharmacodynamics of the compounds 
in order to decide on the specific time point for measuring B cell 
characteristics. Analysis of treatment effects on B cell subtype 
distribution and function can alternatively lead to prognostic 
knowledge for determining therapy efficiency. Finally, research 
should focus on finding specific therapies for the treatment of 
SPMS although initial efforts have been made. Further analysis of 
B cell functions in MS pathogenesis and the effects of treatment 
on these functions is hereby important in order to increase insight 
into the role of B cells in the disease process. This could lead to the 
development of novel and more specific therapies.
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