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In recent years, studies on the mucosal immunity in fish species have shown much 
progress. Although there are some organs such as skin, gills, and gut are directly 
associated with the mucosal immunity of fish species, this mini review emphasizes 
the general knowledge on the role and production figures of skin mucus and factors 
affecting the secretion of skin mucus of fish species. As the skin mucus of fish species is 
the first defense line for protection against invading microorganisms such as pathogens 
(bacteria, virus), parasites, etc., the information for understanding the roles of the skin 
mucus is very important. Furthermore, the information in the review will shed light on the 
development of high quality aquafeeds for the sustainable aquaculture field as well.
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GeneRAL inTRODUCTiOn

In fish mucosal immunity, the innate components of the immune system are the first barrier by 
which the host fish are protected from the attack of microorganisms. Gut, skin, and gills in fish 
species are the major mucosal surfaces and immune barriers. The mucus is one of the most important 
components for fish mucosal immunity. In adaptive immunity, on the other hand, there are many 
important components such as immunoglobulins (Igs), B and T lymphocytes, etc. [see the review 
by Gomez et al. (1)]. In this review, recent knowledge and findings on fish skin mucus are focused.

The presence and importance of innate immune parameters in the epidermal mucus on fish is 
well documented in the past (2, 3). It has been found that the epidermal layer of the skin is important 
because it secretes the mucus in addition to providing physical protection. The skin mucus plays a 
key role as the first defense line for protection in aquatic animals (2–5), and fish epidermal mucus 
contains numerous innate immune components such as glycoproteins, lysozyme, complement pro-
teins, lectins, C-reactive proteins, flavoenzymes, proteolytic enzymes, and antimicrobial peptides as 
well as immunoglobulins (3, 6–9).

The external constituent of this barrier is a mucous gel that forms a layer of adherent mucus 
covering the epithelial cells (10) and is secreted by various epidermal or epithelial mucus cells 
(7). The fish skin mucus is mainly composed of water and glycoproteins (11), containing a large 
amount of high molecular weight oligosaccharides, namely mucins (12, 13). Mucin is one of the 
most important components in fish mucus. Previously, it was found that there are two structurally 
separate groups of mucins such as large secreted gel-forming mucins and membrane-bound forms 
(14). Recently, Perez-Sanchez et al. (15) challenged in the study of gilthead sea bream, Sparus aurata, 
to clarify mucin gene family, the tissue-specific expression pattern of mucins, and to determine 
whether mucins were altered by nutritional conditions and parasite infections. They identified six 
sequences, such as intestinal mucin (I-Muc), mucin2 (Muc2), mucin2-like (Muc2-like), mucin13 
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TABLe 1 | Mucus status of red sea bream fed diets containing different 
levels of heat-killed Lactobacillus plantarum (HK-LP) and β-glucan (BG).*

HK-LP 
(ppm)

BG (ppm) LA(unit/ml) BA  
(105 CFU/ml)

Total amounts  
(relative value)

0 0 31.6a 5.71 1.00a

250 0 37.0ab 5.69 1.07ab

500 0 37.9b 5.34 1.02ab

1000 0 38.7b 6.67 1.12ab

250 1000 42.3b 6.19 1.08ab

500 1000 42.8b 7.47 1.10ab

1000 1000 40.5b 6.70 1.15b

*Within a column, values with different letters are significantly different (P < 0.05).
LA, lysozyme activity; BA, bactericidal activity.
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(Muc13), mucin18 (Muc18), and mucin 19 (Muc19), in which 
I-Muc, Muc13, and Muc18 are the members of membrane-
bound-mucins, and Muc2, Muc2-like, and Muc19 are of secreted 
gel-forming mucins. Furthermore, the mucin gene expression 
pattern was tissue specific with a relatively low expression level 
in skin, gills, and stomach, respectively, but Muc18 is a major 
mucin in fish skin (15). According to the study of Van der Marel 
et  al. (16) on carp, the mucin5B was mostly expressed in the 
skin, and its expression was up-regulated when β-glucan was 
administered.

It has been demonstrated that fish skin mucus is involved in the 
respiration, osmoregulation, reproduction, locomotion, defense 
against microbial infections, disease resistance and protection, 
etc. (7, 17). Fish skin mucus is continuously produced, and the 
structure and/or functions prevent the pathogen adherence to 
the underlying tissues and provide a medium in which antibacte-
rial mechanisms may act (8). In a study on salmonids, Roberts 
and Powell (18) found that Atlantic salmon and brown trout 
responded to amoebic gill disease with a whole-body mucus, but 
rainbow trout did only with a gill mucus.

Recently, comparative studies on fish mucus for both fresh-
water and marine species were reported (8, 9). Five freshwater 
species such as mrigal, rohu, catla, rita, and spotted snakehead 
were used, and the components in mucus, namely lysozyme, pro-
teases, phosphatases, esterase, and sialic acid were investigated in 
the study (8). The study indicated that enzyme activity depended 
on the species and/or habitat environment. For example, the 
values were high in mrigal and snakehead, but low in rohu and 
catla, which are relatively distributed in clean water. On the other 
hand, the levels of all factors measured in rita was found to be low. 
Serine and metalloproteases were the major mucus proteases in 
all fish species in the study. In marine species, five species such as 
gilthead seabream, European sea bass, shi drum, common dentex, 
and dusky grouper were investigated (9). The study showed that 
skin mucus contains N-acetylneuraminic acid, glucose, N-acetyl-
glucosamine, N-acetyl-galactosamine, galactose, and fucose 
residues. It was also indicated that although IgM and lysozyme 
activity were very similar among species tested, protease, anti-
protease, alkaline phosphatase, esterase, and peroxidase activities 
varied depending on the fish species tested. The mucus of gilthead 
seabream revealed high bactericidal effects against pathogenic 
bacteria not for the non-pathogenic ones.

To characterize the mechanisms of mucus as the first-line 
defense against pathogens, the study of Guardiola et al. (19) dem-
onstrated that gilthead seabream skin mucus contained lower 
contents of IgM, similar level of lysozyme alkaline phosphatase 
and proteases, and higher level of esterase, peroxidase and 
antiprotease activities than those in serum. And the skin mucus 
revealed stronger bactericidal activity than the serum activity. 
Furthermore, a recent study on Atlantic salmon against salmon 
louse indicated difference in skin immune responses between the 
selected families (20) although increased mucus secretion by the 
Atlantic salmon when infected by salmon lice has been indicated 
(21). The study of Holm et al. (20) suggested that the ability to 
resistance against salmon lice depends on avoiding immunosup-
pression and not as much on the physical tissue barrier functions, 
but they assumed that increased mucous secretion by the Atlantic 

salmon might be important for parasite survival as nutritive ele-
ments for developing lice.

FACTORS AFFeCT THe MUCUS 
PRODUCTiOn in FiSH

To produce healthy cultured aquatic species is one of the 
most important and not so easy tasks for fish farmers with the 
sustainable operation. To achieve this, it is needed to promote 
the immunological responses of aquatic species under culture 
conditions. Therefore, it would be very important to know the 
role and efficient action of fish skin mucus. In recent years, 
there were several studies on the effects of functional sub-
stances and micronutrients with measuring mucus production 
and status.

Those like probiotic bacteria, oligosaccharide, β-glucan, etc. 
have been tested on mucus production (22–29). Epidermal mucus 
was enhanced by intake of lactic acid bacteria in Atlantic salmon 
(22) and mannan oligosaccharide in sea bass (24). Rodriguez-
Estrada et al. (25) showed that the mucus production increased 
in rainbow trout-fed diet-containing inactivated Enterococcus 
faecalis or mannan oligosaccharide or a combination of both. 
Hoseinifar et al. (26) indicated in a study on freshwater swordtail 
that Lactobacillus acidophilus as feed supplement was effective 
on enhancing antibacterial activity of skin mucus, and the skin 
mucus protein level and alkaline phosphatase activity were 
also higher in Lactobacillus fed groups. They suggested that the 
recommended inclusion level was 6 × 108 CFU/g. Recently, feed-
ing trials were conducted to determine the effects of heat-killed 
Lactobacillus plantarum (HK-LP), β-glucan, and inactivated 
Pediococcus pentosaceus on immunological responses as well as 
growth performances of marine fish (27–29). Mucus secretion of 
red sea bream fed with all diet-containing HK-LP was higher than 
that fed with a HK-LP-free diet, and the value from a diet with 
1000 ppm HK-LP concentration was significantly higher than that 
from a HK-LP-free diet (27). Dawood et  al. (28) demonstrated 
that mucus secretion of red sea bream was significantly affected 
by either HK-LP or β-glucan, but they did not affect mucus bac-
tericidal activity (Table 1). Relative amount of mucus of red sea 
ream fed with a diet containing 1000 ppm HK-LP together with 
1000  ppm β-glucan was significantly higher than that with the 
basal diet. It was also found in their study that the mucus lysozyme 
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TABLe 2 | Mucus status of red sea bream fed with diets containing 
different concentrations of inactivated Pediococcus pentosaceus.*

Concentration 
(cells/g)

LA (unit/ml) Total amounts  
(relative value)

0 32.5a 1.00a

1.6 × 1010 37.1ab 1.41b

1.6 × 1011 34.6a 1.42b

1.6 × 1012 51.3b 1.40b

3.2 × 1012 40.8ab 1.51b

*Within a column, values with different letters are significantly different (P < 0.05).
LA, lysozyme activity.
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activity significantly increased with increased HK-LP levels with-
out β-glucan supplement while with β-glucan it did not change.

In a Pediococcus study, Dawood et  al. (29) found that the 
lysozyme activity in mucus of red sea bream was affected by 
the concentrations of inactivated Pediococcus pentosaceus, and 
the lysozyme activity was significantly higher in fish fed with a 
diet containing 1.6 × 1012 concentration than in fish fed with the 
basal diet (Table 2). Furthermore, mucus was significantly more 
secreted in Pediococcus pentosaceus-fed groups.

Other than probiotic bacteria, some micronutrients like 
vitamins have been found to be effective for mucus secretion. 
When red sea bream was fed with a diet containing 325 ppm 
vitamin C, lysozyme activity of skin mucus seemed to increase 
compared to that fed a vitamin C-free diet (30). Ren et al. (31) 
indicated in a study on Japanese eel that fish fed with diets 
containing 762  ppm vitamin C showed significantly higher 
lysozyme activity and bactericidal activity of mucus than fish 
fed with a diet with 32 ppm vitamin C. Furthermore, the mucus 
bactericidal activity was further enhanced with supplementa-
tion of dietary lactoferrin. Furthermore, it was found in a 
study on Caspian roach that dietary vitamin C significantly 
elevated skin mucus alkaline phosphatase, protein levels, and 
antimicrobial activity compared to a vitamin C-free group 
(32). As a functional supplement, lactoferrin has been tested 
to improve the health status of aquatic animals. Yokoyama 
et  al. (33) demonstrated that mucus secretion significantly 
increased in spotted grouper when fed with diets containing 

lactoferrin from 400 to 1200 ppm compared to that of fish fed 
with a lactoferrin-free diet and concluded that oral lactoferrin 
administration could be an effective method to improve natural 
barriers of finfish.

In conclusion, since the skin mucus plays a key role as the 
first-defense line for protection of aquatic animals, controlled 
skin mucus secretion is very important for them to improve the 
survival, particularly for aquacultured species, leading to the fact 
that important components in mucus also increase. Although 
several dietary materials induce the increase of mucus secretion 
in aquatic animals, the effects against parasites are still under 
investigation. On the other hand, when aquatic animals are under 
stress conditions, the mucus secretion will also increase. Thus, 
the difference of mucus production between normal and stressed 
conditions should be carefully investigated.
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