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Tetraspanin-enriched microdomains (TEMs) are specialized membrane platforms 
driven by protein–protein interactions that integrate membrane receptors and adhesion 
molecules. Tetraspanins participate in antigen recognition and presentation by antigen- 
presenting cells (APCs) through the organization of pattern-recognition receptors (PRRs) 
and their downstream-induced signaling, as well as the regulation of MHC-II–peptide 
trafficking. T lymphocyte activation is triggered upon specific recognition of antigens 
present on the APC surface during immunological synapse (IS) formation. This dynamic 
process is characterized by a defined spatial organization involving the compartmen-
talization of receptors and adhesion molecules in specialized membrane domains that 
are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins 
contribute to the spatial organization and maturation of the IS by controlling receptor 
clustering and local accumulation of adhesion receptors and integrins, their downstream 
signaling, and linkage to the actin cytoskeleton. This review offers a perspective on the 
important role of TEMs in the regulation of antigen recognition and presentation and in 
the dynamics of IS architectural organization.

Keywords: tetraspanins, tetraspanin-enriched microdomains, adhesion receptors, immunological synapse, T-cell 
activation

TeTRASPANiN-eNRiCHeD MiCRODOMAiNS

Tetraspanins comprise a family of small proteins with four transmembrane domains and are present 
on the plasma membrane and intracellular vesicles of virtually all mammalian cells. The tetraspanins 
CD9, CD63, CD81, CD82, and CD151 have a broad tissue distribution, whereas others are restricted 
to particular tissues, such as TSSC6, CD37, and CD53, in hematopoietic cells (1). Tetraspanins have 
small and large extracellular loops (SEL and LEL, respectively) and short N- and C-terminal intracel-
lular tails (2). The LEL domain mediates specific protein–protein interactions with laterally associ-
ated proteins and a few known ligands, while the cytoplasmic regions provide links to cytoskeletal 
and signaling molecules (3). Tetraspanins organize a type of cell surface membrane microdomain, 
known as tetraspanin-enriched microdomains (TEMs) (2, 4), based on their exceptional ability to 
form multimolecular complexes. Studies using novel advanced microscopy techniques in the intact 
membranes of living cells have provided a more complete picture of the supramolecular organization 
of these microdomains (5). The diversity of TEM composition is reflected by different interaction 
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levels, in which each tetraspanin recruits one or more partner 
proteins forming direct and stable primary complexes, which are 
assembled through tetraspanin–tetraspanin interactions to form 
larger complexes that can vary depending on the cell type (6). 
However, this classical view of TEMs has recently been challenged. 
Super-resolution microscopy has shown that, in B cells and den-
dritic cells (DCs), CD53 and CD37 single clusters overlap only 
to a minor extent with CD81 or CD82 clusters. Moreover, CD53 
and CD81 nanoclusters are in closer proximity to their partners 
MHC class II (MHC-II) and CD19 than to other tetraspanins (7). 
Additional research using super-resolution microscopy is neces-
sary to dissect the spatial and temporal organization of TEMs in 
different systems.

In the context of the immune system, TEMs regulate important 
processes including antigen (Ag) recognition and presentation, 
protein trafficking, cell proliferation, and leukocyte extravasa-
tion (1). All cells of the immune system express tetraspanins, 
although the tetraspanin repertoire differs between cell types (3). 
Several receptors responsible for immune cell functions, like the 
Ag receptors T-cell receptor (TCR) and B-cell receptor (BCR), 
pathogen receptors, and MHC molecules, are included in TEMs; 
furthermore, both ubiquitously expressed tetraspanins such 
as CD81 and immune cell-specific tetraspanins such as CD37 
have been shown to be important for immunity (1). In human T 
lymphocytes, tetraspanins CD9, CD53, CD81, and CD82 act as 
costimulatory molecules (8–13), and this activity is independent 
of the classic CD28 costimulatory pathway (12–16). T cells from 
mice lacking tetraspanins CD81, CD151, CD37, or Tssc6 are 
hyperproliferative (17–20), and CD37- and CD81-deficient mice 
have impaired T-cell-dependent immune responses (17, 21–23). 
Moreover, CD81 expression in both T and B cells is essential for 
T-cell activation and proper Th2 responses (24–26).

Tetraspanins are also involved in the process of leukocyte 
extravasation. CD81 controls integrin α4β1 avidity, being essential 
for monocyte and B cell adhesion under shear flow (27), and CD9 
regulates LFA-1-mediated T cell adhesion under flow conditions 
(28). Moreover, monocyte and T cell transmigration across brain 
endothelial cell monolayers is significantly reduced by monoclo-
nal antibodies against CD81 in rodent and human in vitro models 
(29). This inhibitory effect was driven by CD81 expressed in both 
leukocytes and endothelial cells (29). Transmigrated eosinophils 
exhibit reduced CD9 expression levels, and their adhesion 
properties are inhibited by antibodies against CD9 (30, 31). In 
endothelial cells, various adhesion receptors are included in 
preassembled tetraspanin-based endothelial adhesive platforms; 
these platforms coalesce at docking structures for adherent leu-
kocytes during the transmigration process (32, 33).

Immune cells, such as T cells, B cells, and DCs, can release 
extracellular vesicles that are an important vehicle for intercel-
lular communication and have a role in the regulation of the 
immune response by different mechanisms (34). Tetraspanins, 
especially CD9, CD63, and CD81, are highly enriched in extracel-
lular vesicles and have been widely used as exosomal markers. 
Importantly, growing evidence suggests a functional role for 
tetraspanins in the biogenesis, targeting, and function of extra-
cellular vesicles (35). In particular, high throughput quantitative 
proteomic approaches have demonstrated that exosomes from 

CD81−/− mouse T lymphoblasts show an impaired inclusion of 
CD81 partners, including MHC molecules, BCR, ICAM-1, and 
Rac (36).

Together, all these observations indicate that tetraspanins 
influence many aspects of cellular immunity, sometimes exerting 
antagonistic roles, and may provide a means of manipulating the 
immune response for potential therapeutic applications.

THe iMMUNOLOGiCAL ReLevANCe OF 
TeTRASPANiNS iN ANTiGeN-
PReSeNTiNG CeLLS

TeMs and Antigen Recognition: 
interaction with Pattern-Recognition 
Receptors
The plasma membrane of antigen-presenting cells (APCs) 
contains specialized membrane microdomains that organ-
ize the spatial distribution of MHC and associated proteins, 
pattern-recognition receptors (PRRs), and integrins, which are 
essential for efficient Ag recognition, presentation, and ultimately 
the activation of the T cell. APCs express a broad repertoire of 
specific receptors involved in the recognition and uptake of Ags 
from pathogens, damaged tissues, or tumor cells. In particular, 
pathogen-derived Ags are recognized by different PRRs that bind 
to conserved microbial structures called pathogen-associated 
molecular patterns (PAMPs) (37). The recent identification 
of specific PRR interactions with tetraspanins has provided 
new insights into the organization of Ag receptors at the APC 
membrane and their subsequent downstream signaling (38). In 
this part, we will revise the recent data that have demonstrated 
tetraspanin interactions with different receptors involved in Ag 
recognition (Figure 1).

Dectin-1 is a C-type lectin receptor (CLR) that recognizes 
β-glucans in fungal cell walls, triggering phagocytosis, and the 
antifungal immune response. Dectin-1 signaling is only activated 
by particulate β-glucans, which cluster the receptor in synapse-
like structures from which regulatory tyrosine phosphatases are 
excluded (39). Two independent studies have demonstrated that 
CD63 and CD37 interact with dectin-1 on the APC membrane 
(Figure 1A; Table 1). CD63 associates with dectin-1 in immature 
DCs and promotes yeast phagocytosis (40) (Table  1). CD37 
stabilizes dectin-1 at the APC surface, and this interaction has 
functional consequences since CD37 inhibits dectin-1-mediated 
IL-6 production in response to zymosan cell wall preparations 
(41) (Table 1). Moreover, CD37−/− mice are protected against sys-
temic infection with Candida albicans (42). CD63 has also been 
reported to be selectively recruited to yeast-containing phago-
somes (43) (Table  1), and this observation was subsequently 
extended to CD82 (44) (Figure  1B; Table  1). After pathogen 
uptake, CD82 is rapidly recruited to the membrane of nascent 
pathogen-containing phagosomes prior to fusion with lysosomes 
(44) (Figure 1B).

In addition to the reported recruitment of TLR2 and TLR4 to 
lipid rafts (59–61), other studies demonstrate that TLR4 associ-
ates with TEMs. In macrophages, CD9 partly colocalizes with 
CD14 regulating its expression, its association with TLR4, and 
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FiGURe 1 | Tetraspanins in the function of APCs. (A) Tetraspanin interactions with pathogen-recognition receptors (PRRs) in APCs. Tetraspanins interact with 
specific PRRs at the plasma membrane of macrophages and DCs. CD37 associates with dectin-1 and inhibits dectin-1 mediated IL-6 production triggered by the 
recognition of fungal cell walls. CD9 forms a complex with CD14 and TLR4 and negatively regulates TLR4 signaling in response to LPS. CD81–Rac interaction 
inhibits TLR2- and IFNAR-signaling pathways and prevents the subsequent activation of STAT1 in response to Listeria monocytogenes. CD36 associates with β1 
and β2 integrins and tetraspanins CD9 and CD81 forming a complex that facilitates CD36-signaling and its interaction with FcγRs. Interaction between CD9 and 
FcγRs promotes phagocytosis and macrophage activation. (B) Tetraspanin interactions during Ag processing and MHC-II biosynthesis. CD63 interacts with dectin-1 
in immature DCs and promotes yeast phagocytosis. Both CD63 and CD82 are selectively recruited to yeast-containing phagosomes. CD82 and CD63 are highly 
enriched in MIIC compartments that contain newly synthesized MHC-II and accessory proteins. (C) Tetraspanin interactions during Ag presentation. Several 
tetraspanins associate with MHC-I and MHC-II molecules on APCs. Tetraspanins CD9, CD53, CD81, and CD37 associate with MHC-II molecules preferentially at 
the plasma membrane. MHC-II molecules loaded with a restricted antigenic peptide repertoire are included in TEMs together with accessory molecules and 
costimulatory molecules. CD9 facilitates MHC-II clustering, and CD151 is involved in the clustering of costimulatory molecules.
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the formation of the CD14–TLR4 complex necessary for LPS-
induced signaling (45) (Figure 1A; Table 1). Using the Listeria 
monocytogenes infection model, we recently demonstrated that 
CD81 is able to interfere with TLR2- and interferon-α/β receptor 
(IFNAR)-mediated bacterial recognition in DCs, modulating 
the subsequent CD8+ T cell response (53) (Figure 1A; Table 1). 
Importantly, CD81−/− mice are protected against lethal systemic 
Listeria infection. CD81−/− DCs show increased production of 
proinflammatory mediators and a more efficient activation of 
protective cytotoxic T cells. This effect is mediated specifically 
through direct interaction between CD81 and Rac. Indeed, inhi-
bition of CD81–Rac interaction in wild-type DCs using CD81 
C-terminal peptides, which block CD81-mediated signaling (62), 
promotes the same phenotype observed in CD81−/− DCs (53).

In macrophages, CD9 interacts with CD36, a scavenger 
receptor involved in the recognition of microbes or self-ligands, 
regulating CD36-mediated uptake of oxidized low-density 

lipoproteins (46) (Figure 1A; Table 1). CD36 clustering is nec-
essary for the initiation of signal transduction and internaliza-
tion of receptor–ligand complexes. CD36 was recently shown 
to form a heteromeric complex containing β1 and β2 integrins 
and the tetraspanins CD9 and CD81. CD36 inclusion in this 
complex facilitates its association with ITAM-bearing adaptor 
Fcγ receptors (FcγR), allowing CD36-dependent Syk activation 
and the internalization of ligand-bound CD36 (47) (Figure 1A; 
Table 1). In addition, CD9 functionally associates with FcγRs, 
modulating signals for phagocytosis, and FcγR-mediated 
immune responses (Table  1). Cross-linking of CD9-FcγRIII 
induces colocalization of CD9, αMβ2 integrin and F-actin, 
promoting macrophage activation (48) (Figure 1A). In human 
monocytes and skin-derived DCs, CD9 and CD81 are molecular 
partners of the trimeric form of FcϵRI (Figure 1; Table 1), the 
high-affinity receptor for IgE, and are overexpressed in patients 
with atopic dermatitis (49).
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TABLe 1 | Tetraspanin associations in pathogen-recognition receptors and APC functions.

Tetraspanin interacting 
molecule

Cell type Function Reference

CD9 TLR4–CD14 complex Macrophages Regulates LPS-induced signaling (45)
CD36 Macrophages Mediates CD36–integrin complex formation and ligand-bound internalization and 

signaling
(46, 47)

FcγR Macrophages Interacts with and regulates FcγR-mediated immune responses (47, 48)
FcϵRI Monocytes and DCs Association at the membrane (49)
MHC-II DCs Association at the membrane (50–52)

CD81 Rac1 DCs Controls TLR2- and IFNAR-mediated bacterial recognition (53)
CD36 Macrophages Regulates CD36–integrin complex formation, ligand-bound internalization and signaling (46, 47)
FcϵRI Monocytes and DCs Association at the membrane (49)
BCR B cells Controls CD19 surface expression and BCR complex downstream signaling (3, 54)
MHC-II DCs Association at the membrane (50, 51)

CD37 Dectin-1 Macrophages Controls dectin-1 stabilization at the membrane and signaling triggered by dectin-1 
recognition of yeast cell walls

(41)

MHC-II B cells and DCs Associates with and regulates MHC-II-dependent antigen presentation (55, 56)

CD63 Dectin-1 DCs Associates with dectin-1 and regulates yeast phagocytosis (40, 43)
MHC-II DCs Associates with peptide-loaded MHC-II and controls its surface expression (50, 51, 57, 58)

CD82 MHC-II Macrophages and DCs Association at MHC-II-enriched compartments, and fungal and bacterial phagosomes (44, 50, 51, 57)

CD53 MHC-II B cells, DCs Association at the membrane (50, 55)

CD151 CD80, CD86 DCs Regulates costimulation during Ag presentation (56)
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The tetraspanin CD81 plays an important role in Ag-induced 
B cell activation, B cell development, and survival. It associates 
functionally with CD19 and CD21, which are members of the 
BCR complex (3, 54) (Table 1). CD81 deficiency in humans and 
mice leads to antibody deficiency syndrome by preventing CD19 
surface expression (21, 63). Moreover, visualization of primary B 
cells by super-resolution microscopy shows that CD81-enriched 
microdomains and the actin cytoskeleton regulate CD19 mobil-
ity and organize CD19 and BCR interactions, controlling BCR 
downstream signaling (64).

In the context of viral infection, CD81 was identified as a recep-
tor for hepatitis C virus (HCV) (65), not only in hepatocytes but 
also in B cells, T cells, NK cells, and DCs (66). The dynamic prop-
erties of CD81 at the membrane are essential for HCV infection 
(67). Anti-CD81-specific antibodies mediate protection against 
HCV infection in  vivo, further demonstrating the functional 
consequences of this recognition (68). Tetraspanin dynamics at 
the membrane are also exploited by other viruses. For example, 
CD9 and CD81 negatively regulate human immunodeficiency 
virus 1 (HIV-1)-induced membrane fusion (69).

TeMs during Antigen Processing  
and Presentation
T cell recognition of specific antigenic peptides bound to MHC-I 
and MHC-II molecules on DCs leads to T cell activation and 
subsequent initiation of T cell-mediated immune responses. In 
DCs, mechanisms regulating MHC-II intracellular transport 
are well known (70), and tetraspanins have a role in this pro-
cess since several tetraspanin family members associate with 
MHC-II molecules. Interactions between MHC-I molecules 
and tetraspanins CD53, CD81, and CD82 have been described 
(71) (Figure  1C). Moreover, tetraspanins CD9, CD81, CD82, 
CD63, CD53, and CD37 interact with MCH-II molecules (50, 

55, 57, 72) (Figures 1C and 2; Table 1). These interactions might 
lead to the regulation of MHC-II subcellular distribution. CD9, 
CD53, and CD81 associate with MHC-II at the plasma mem-
brane (50) (Figure  1C; Table  1). In contrast, CD82 and CD63 
are highly enriched in MHC-II-enriched compartments (MIIC) 
(Figure 1B; Table 1), particularly in intraluminal vesicles, where 
they associate with each other and with the chaperone HLA-DM, 
playing an important role in the late stages of MHC-II matura-
tion (50, 57) (Table 1). Analysis of protein dynamics by Föster 
resonance energy transfer (FRET) in MIIC shows that CD63 
stably associates with MHC-II and regulates MHC-II surface 
expression, whereas CD82 associates with HLA-DM without 
affecting MHC-II expression (58). Knockdown of CD63, CD82, 
CD9, or CD81 did not prevent MHC-II peptide loading (58). In 
addition, live cell imaging studies have shown differential CD63 
and CD82 subcellular localization in the context of DC phago-
cytosis. Whereas CD63 and MHC-II are specifically recruited 
to yeast-containing phagosomes after phagosomal acidification 
(43), CD82 and MHC-II molecules are recruited to fungal and 
bacterial phagosomes before fusion with lysosomes and phagoso-
mal acidification (44) (Figure 1B; Table 1). These results support 
a role for CD63 and CD82 in the dynamic intracellular trafficking 
of MHC-II after pathogen uptake, playing non-redundant roles 
in these processes.

Tetraspanins are also involved in the clustering of MHC 
molecules (Figure  1C). APCs express very small amounts of 
relevant MHC-II–peptide complexes on the plasma membrane. 
These MHC-II–peptide complexes are organized and clustered 
on the cell surface, allowing efficient cross-linking of TCRs and 
promoting Ag-specific T cell activation (73). It is widely accepted 
that MHC-II molecules are concentrated into two types of mem-
brane microdomains, TEMs, and lipid rafts (74). The composi-
tion and dynamics of these microdomains are essential factors 
in the outcome of T cell activation. Evidence from a model of 
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FiGURe 2 | Tetraspanins organize the T-cell immunological synapse. Tetraspanin CD81 regulates the organization of the immunological synapse (IS) in CD4+ 
T lymphocytes through the association with CD3ζ at the central SMAC (cSMAC). CD81 controls the localization of the TCR complex and its downstream signaling, 
positively modulating the phosphorylation of ZAP-70, LAT, and ERK1/2 (dashed line). At the peripheral area of the cell–cell contact (pSMAC), tetraspanins CD9, and 
CD151 are important for integrin VLA-4 relocalization and activation, positively regulating the integrin downstream phosphorylation of FAK and ERK1/2 (lines with 
small dashes). At this location, CD81 also interacts with the adhesion receptor ICAM-1, regulating its segregation during IS maturation. Tetraspanin CD82 
accumulates at the pSMAC and triggers actin polymerization and the activation of the Rho GTPase pathway (RhoA, Rac1, and Cdc42). The activation of this 
pathway induces the phosphorylation and the association of Vav1 and SLP76 (dotted lines), potentiating the phosphorylation of the TCR signaling molecules LAT 
and ZAP-70. In APCs, CD81 is enriched at the IS and several tetraspanins are described to associate with MHC-II. Moreover, CD151, CD37, and Tssc6 were 
described to regulate antigen presentation by DCs.
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raft disruption in B cells suggests that MHC-II association with 
lipid rafts is important for presentation of Ag at low concentra-
tions (75). Other studies report that TEMs contain MHC-II 
molecules loaded with a restricted antigenic peptide repertoire, 
together with HLA-DM and the costimulatory molecule CD86. 
In contrast, raft-associated MHC-II molecules display a highly 
diverse set of peptides (51) (Table 1). However, these results are 
controversial, since the MHC-II determinant CDw78, which is 
used to identify selectively tetraspanin-associated MHC-II, also 
defines a conformation of peptide-bound MHC-II acquired 
through the trafficking to lysosomal compartments (76). 
Moreover, TEM-induced MHC-II clustering is also supported 
by evidence that CD9 is required to facilitate the formation of 
I-A/I-E MHC-II multimers, which are responsible for enhancing 
the T cell stimulatory capacity of DCs (52) (Table 1). However, 

a subsequent study showed that cholesterol depletion disrupts 
MHC-II I-A/I-E interactions, whereas the absence of CD9 or 
CD81 has no effect (77). This controversy might be due to the 
differential sensitivity of microdomains to cholesterol depletion. 
Although TEMs are more resistant to cholesterol depletion than 
lipid rafts, partial disruption is also observed under certain 
conditions. Therefore, it is possible that rafts and TEMs both 
contribute to MHC clustering.

Studies derived from tetraspanin-deficient mice have shown 
that certain tetraspanin members do not promote MHC multi-
merization, being rather involved in Ag presentation. DCs from 
CD37−/− or CD151−/− mice induce hyperstimulation of T cells 
(56), and similar results were obtained with DCs from Tssc6−/− 
mice and CD37−/− Tssc6−/− double knockout mice (78). CD37−/− 
DCs induce T cell hyperstimulation through a mechanism 
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TABLe 2 | Tetraspanin associations in T cells and their role at the immunological synapse.

Tetraspanin Associated proteins Signaling pathway Function Reference

CD81 CD3ζ ZAP-70, LAT, ERK1/2 Controls TCR relocalization to the IS and subsequent downstream signaling (81)
CD3δ, CD4, CD8 Association at the membrane (82–84)
VLA-4 Association at the membrane (85)
ICAM-1 Regulates ICAM-1 distribution at the IS (81)

CD9 VLA-4 FAK, ERK1/2 Mediates VLA-4 accumulation at the IS and integrin downstream signaling (86)
LFA-1 Controls LFA-1-dependent adhesion (28)

CD151 VLA-4 FAK, ERK1/2 Regulates VLA-4 accumulation at the IS and integrin downstream signaling (86)

CD82 Actin Rho GTPases, Vav1, and SLP76 Is enriched at the IS, regulating actin polymerization and TCR downstream 
signaling

(87–89)

VLA-4 Association at the membrane (85)

CD4, CD8 Association at the membrane (82–84)

CD53 VLA-4 Association at the membrane (85)
CD2 Association at the membrane (90)

CD63 VLA-4 Association at the membrane (85)
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that regulates MHC-dependent Ag presentation, whereas 
CD151 in DCs regulates T cell costimulation (56) (Figures 1C 
and 2; Table  2). DC maturation is required for effective T-cell 
costimulation and involves the upregulation of costimulatory and 
adhesion molecules (79, 80). In contrast to conventional DCs, 
plasmacytoid DCs lack CD9 surface expression, which could 
be responsible for their significant low expression of MHC-II 
and limited T cell stimulatory potential (80). TEMs thus play 
a well-documented role in the regulation of different aspects of 
the MHC-II lifecycle in APCs, including MHC-II clustering and 
intracellular trafficking of peptide–MHC-II complexes to the 
APC plasma membrane.

ROLe OF TeTRASPANiNS iN THe 
ORGANiZATiON OF T-CeLL 
iMMUNOLOGiCAL SYNAPSeS

The immunological Synapse
The initiation of T cell activation mediated by APCs, mainly 
DCs, requires the establishment of a dynamic structure formed 
at the cell–cell contact called the immunological synapse (IS) 
(Figure  2). This structure is characterized by a dynamic spati-
otemporal recruitment of Ag receptors, costimulatory molecules, 
and adhesion proteins to specific zones at the T cell–APC 
interface. At the T cell side of mature IS, TCR microclusters are 
clustered together with costimulatory proteins, signaling mol-
ecules, and other signaling adaptors at the central supramolecular 
activation complex (cSMAC) (91–96). More specifically, preex-
isting TCR nanoclusters (97) concatenate into microclusters, 
as demonstrated with high-resolution imaging techniques like 
photoactivated localization microscopy (PALM) and stimulated 
emission depletion (STED) (98–100). These microclusters form 
in the periphery of the IS and are translocated toward the cSMAC 
in a process dependent on the actin cytoskeleton (93, 94, 98, 
101, 102). The central area is surrounded by a peripheral SMAC 
(pSMAC), where integrins and adhesion receptors are local-
ized (81, 91, 102–104). The super-resolution optical techniques 
near-field scanning optical microscopy (NSOM) and single-dye 

tracking (SDT) revealed that, like the TCR, LFA-1 is preorgan-
ized into nanoclusters that coalesce into microclusters after 
ligand binding (105, 106). The stability of the IS depends on the 
binding of integrins, not only lymphocyte function-associated 
antigen 1 (LFA-1; αLβ2) but also very late antigen 4 (VLA-4; 
α4β1), to their ligands, the adhesion receptors intercellular adhe-
sion molecule-1, -3 (ICAM) in the case of LFA-1 (91, 103, 104, 
107–109). The VLA-4 ligand at the T-cell–APC interface remains 
unknown (104). In resting T lymphocytes, integrins are mostly 
in an inactive bent conformation, with low affinity and avidity 
for ligands. TCR stimulation triggers intracellular signaling that 
leads integrins to adopt an intermediate-affinity conformation, 
and then the extended high-affinity conformation (110). These 
conformational changes induced by TCR signaling modify inte-
grin avidity through a process called inside-out signaling (111), 
which ultimately regulates integrin affinity for their ligands (112, 
113). LFA-1 engagement by its ligand ICAM-1 triggers outside-in 
signaling, inducing cytoskeletal reorganization that recruits T cell 
signaling proteins to the IS (113–115).

Both the TCR and LFA-1 modulate cytoskeletal dynamics. 
TCR signaling triggers actin polymerization enabling the exten-
sion of the actin network downstream of LFA-1 (116). VLA-4 
costimulation regulates the cytoskeletal movements that drive 
TCR microclusters associated with signaling complexes to the 
central area of the IS (109). Moreover, it has been suggested that 
TCR microcluster formation is dependent on actin polymeriza-
tion (94, 101); however, other investigators claim that actin is nec-
essary only for microcluster maintenance (98). Continuous actin 
retrograde flow sustains T cell signaling and signal termination at 
the central area of the IS (94, 101, 102, 117). Actin filaments are 
also important for the segregation of adhesion molecules to the 
pSMAC (91, 102, 103), and actin centripetal flow is essential for 
the maintenance of LFA-1 in a high-affinity conformation at this 
location (118, 119).

The T cell cytoskeletal network thus plays an essential 
role in the spatial organization of the IS. However, the precise 
mechanisms by which molecules are specifically partitioned into 
central and peripheral areas of the IS remain an open question. 
It has been proposed that this segregation is supported by size 
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differences in the ectodomains of immune surface interacting 
proteins; e.g., LFA-1-ICAM-1 (40 nm) and CD2-CD58 (15 nm) 
(120–122). In agreement with this view, evidence suggests size-
dependent exclusion from the cSMAC of large phosphatases such 
as CD45, thus allowing the initiation of TCR signaling (94, 123). 
Recent data show that CD45 is already excluded from preexisting 
TCR microclusters (124). Given that the TCR in naïve T cells is 
already clustered with signaling molecules, and that numerous 
proteins that are translocated to, rearranged and accumulated at 
the IS are known to associate with tetraspanins, we postulate that 
protein–protein interactions driven by TEMs actively contribute 
to IS architectural organization.

Tetraspanins and the Distribution of 
Receptors at the T-cell iS
Tetraspanin CD81 accumulates at the IS in both T lymphocytes 
and APCs (125) (Figure  2), and we recently found that CD81 
is an important molecular organizer of the IS structure at the 
T cell side (81). Fluorescence recovery after photobleaching 
(FRAP) experiments indicate that CD81 is mostly confined to 
the cSMAC in the early IS (81), where it colocalizes with the 
CD3ζ component of the TCR complex (81, 125) (Figure  2). 
Analyses by phasor fluorescence-lifetime imaging microscopy 
(phasorFLIM)-FRET reveal that CD81 associates with CD3ζ at 
the cSMAC of the early IS (81) (Figure 2). In the late IS, CD81 
and CD3ζ spread throughout the cell–cell contact and CD81 dif-
fusion decreases, suggesting stable protein–protein interactions 
throughout the IS. In agreement with this view, CD81 and CD3ζ 
interaction increases with the IS maturation (81). As a molecular 
organizer, CD81 controls CD3ζ relocalization to the cSMAC, and 
the efficient maintenance of the CD3 signaling complex at the 
cell–cell contact (Figure  2). Hence, CD81 knockdown reduces 
the number of CD3ζ microclusters at the cSMAC, as detected by 
total internal reflection microscopy (TIRFM), and impairs TCR 
downstream signaling, reducing the phosphorylation of CD3ζ, 
ZAP-70, LAT, and ERK1/2 (81) (Figure 2; Table 2). Moreover, 
pretreatment of T cells with soluble GST-LEL-CD81 (81), which 
decreases membrane diffusion of the protein (33), increases T 
cell activation (81), further indicating that CD81 regulates T cell 
activation by controlling the duration of TCR signaling at the 
membrane. A direct CD81-mediated signaling does not seem to 
be involved in this process, since CD81 C-terminal peptides do 
not affect T cell activation (81). Thus, by organizing TEMs CD81 
regulates spatial molecular organization during the maturation 
of the IS.

In T lymphocytes, different tetraspanins associate with recep-
tors that are enriched at the IS. In addition to CD3ζ (81), CD81 
also interacts with the CD3δ subunit of the TCR complex (84) 
(Table 2). CD9 localizes with TCR signaling molecules in lipid 
microdomains (10), CD81 and CD82 associate with CD4 and 
CD8 coreceptors (82, 83) (Table 2), and CD53 interacts with the 
costimulatory receptor CD2 (90) (Table 2). It is therefore con-
ceivable that the IS architectural organization of these receptors 
depends on their inclusion in TEMs through interaction with 
different tetraspanins. Further research is required to address 
this notion.

Adhesion Molecules, Tetraspanins, and 
the Stabilization of the T-cell iS
Integrins and adhesion receptors are also included in TEMs. In 
T cells, CD9 interact with LFA-1 (28), CD81, CD82, and CD53 
with VLA-4 (85), and CD81 with ICAM-1 (81) (Table 2). In the 
immune system, tetraspanins regulate cell–cell adhesion through 
LFA-1 and ICAM-1: CD81 and CD82 promote T-APC cell–cell 
interaction (126, 127); CD81 induces thymocyte aggregation 
(128); and CD53 modulates NK and B cell aggregation (129, 130). 
Conversely, leukocyte LFA-1-dependent adhesion is negatively 
regulated by CD9 (28) (Table  2). Integrin adhesiveness can be 
regulated by several mechanisms, such as alterations in the affin-
ity of individual integrin molecules or changes in their clustering 
on the cell surface or their interactions with ligands. Tetraspanins 
can modulate integrin activity through various mechanisms. For 
example, CD81 modulates VLA-4 avidity for its ligand VCAM-1, 
and CD151 stabilizes α3β1 integrin in its active conformation 
and regulates α6 integrin diffusion at the plasma membrane (27, 
131, 132). CD9 promotes β1 activation, LFA-1 aggregation, and 
in leukocytes it seems to be essential for a balanced regulation of 
β1 and β2 integrin activity: it increases β1 adhesion to fibronectin 
but diminishes LFA-1-mediated adhesion (28, 133).

At the IS, CD81 regulates pSMAC organization through asso-
ciation with the adhesion receptor ICAM-1, controlling ICAM-1 
segregation at the cell–cell contact during IS maturation (81) 
(Figure 2; Table 2). CD81 knockdown decreases the proportion of 
early synapses, in which ICAM-1 is confined to the pSMAC, and 
increases the proportion of late synapses (81). During maturation 
of the IS, ICAM-1 redistributes throughout the entire cell–cell 
contact, with increasing colocalization and molecular interac-
tion with CD81 (81). T cell activation is also regulated by other 
tetraspanins. CD9 and CD151 modulate VLA-4  accumulation at 
the IS (86) (Figure 2; Table 2). Interestingly, the IS enrichment of 
β1 integrins in a high-affinity conformation is impaired in T cells 
knocked-down for CD9 and CD151, suggesting that integrin 
activation upon IS formation occurs within TEMs (86). The 
conformational changes of β integrin extracellular domains can 
be controlled by the actin linker protein talin (134), which accu-
mulates at the pSMAC (91) and is required for LFA-1 activation 
mediated by the TCR (135). However, CD9 and CD151 knock-
down does not alter talin relocalization to the IS, indicating that 
these tetraspanins are not involved in the regulation of integrin 
inside-out signaling (86). Integrins and adhesion molecules can 
act as signaling receptors. Integrin or ICAM-1 costimulation trig-
gers T cell activation (136–138), and LFA-1 coengagement with 
the TCR lowers the T cell activation threshold (139, 140). VLA-4 
ligation also costimulates T cells in a TCR-dependent manner 
(141), and polarizes T lymphocytes toward Th1 responses (104). 
LFA-1 and VLA-4 activation is controlled by the interaction with 
a cascade of adaptor and signaling proteins (142, 143), and these 
downstream signaling can be modulated by tetraspanins. CD151 
supports the phosphorylation of FAK, Src, and p130CAS (144) 
and promotes the activation of small GTPases and ERK1/2 in an 
integrin-dependent manner (145, 146). ERK1/2 signaling is also 
increased by CD9 (147). During T-APC cognate cell–cell inter-
actions, CD9 and CD151 knockdown reduces FAK and ERK1/2 
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phosphorylation, and impairs the enrichment of phosphorylated 
FAK at the IS (86) (Figure  2; Table  2). Tetraspanins CD9 and 
CD151 are therefore important for integrin enrichment at the IS, 
modulating integrin downstream signaling.

As previously mentioned, the actin cytoskeleton plays a 
crucial role in the regulation of the spatial organization of TCRs 
and adhesion molecules at the IS. The links between tetraspanins, 
membrane receptors, adhesion proteins, and the actin cytoskel-
eton suggest a possible regulation of this process by TEMs. 
CD81 and CD9 are connected to the actin cytoskeleton through 
α-actinin and ezrin-radixin-moesin (ERM) proteins (148, 
149). CD151, CD81, and CD82 regulate the actin cytoskeleton 
through RhoA and Rac1 signaling molecules (62, 150–152). In T 
lymphocytes, CD82 costimulation triggers actin polymerization 
and T-cell activation by stabilizing signaling downstream of TCR/
CD3 (87, 88) (Figure 2; Table 2). T cell morphological changes 
induced by CD82 engagement depend on the activity of Rho 
GTPases (RhoA, Rac1, and Cdc42), involving the association 
of Vav1 and the adapter molecule SLP76 with the Rho GTPase 
pathway (88). Importantly, CD82 is enriched at the IS in an actin-
dependent manner (89) (Figure  2; Table  2). CD82-dependent 
regulation of the actin cytoskeleton during T cell activation may 
involve its interaction with LFA-1. CD82 regulates T cell-APC 
adhesion-dependent signaling (153), through its interaction 
with LFA-1 (126), and like LFA-1, CD82 localizes at the pSMAC 
(89) (Figure 2). At the IS, CD82 seems to stabilize interactions 
with the actin cytoskeleton, favoring the formation of signaling 
complexes. It would be interesting to determine whether CD82 
dynamics depend on its association with LFA-1, and whether 
CD82 can modulate LFA-1 functions.

Thus, at the IS, tetraspanins CD9, CD81, CD82, and CD151 
mediate the connections between adhesion molecules, the actin 
cytoskeleton and signaling complexes. Increasing evidence 
highlights the importance of TEMs in the organization of the 
temporal and spatial molecular distribution at the IS, generating 
the context that allows full T cell activation.

CONCLUDiNG ReMARKS

In APCs, different receptors involved in pathogen recognition 
and Ag presentation are associated with tetraspanins. Further 
investigations are necessary to determine the spatial distribution 
and segregation of receptors within TEMs, as well as the impor-
tance of these microdomains in the regulatory mechanisms of 
receptor functions and downstream signaling. The establishment 

of long-lasting T cell–APC contacts, which lead to the formation 
of the IS and ultimately promote an efficient T cell activation, are 
required for the initiation of T cell-mediated immune responses. 
IS stability depends on the binding of integrins to adhesion 
receptors upon TCR ligation, triggering downstream signaling. 
The complex IS architectural organization depends on the inclu-
sion of the receptors concentrated at the IS into TEMs, through 
their dynamic and spatiotemporal interactions with different 
tetraspanins. The important role of TEMs in the regulation of the 
dynamic process of IS formation has been recently emphasized. 
These specialized membrane domains allow the compartmentali-
zation of receptors and adhesion molecules and connect them to 
the cytoskeleton and signaling complexes that induce T cell acti-
vation. The development of advanced microscopy techniques will 
provide further insight into IS dynamics and the contribution of 
TEMs and other microdomains to this process. Considering the 
plasticity of the interactions that take place in TEMs, strategies 
that regulate IS organization by targeting tetraspanins could allow 
therapeutic manipulation of the final outcome of T cell activation 
and the subsequent immune response.
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