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The Editorial on the Research Topic 

Memory T Cells: Effectors, Regulators, and Implications for Transplant Tolerance 

Memory T-cells respond to previously encountered antigens more rapidly and vigorously than 
their naive counterparts. They are divided into three subsets: central memory, effector memory, 
and tissue-resident memory T-cells. They are somewhat resistant to immunosuppressive treat-
ments and are generally believed to be a threat to transplant survival. However, mounting evidence 
has demonstrated that memory CD8+CD122+ T-cells with central memory cell phenotypes 
(CD45RA−CD44highCD62LhighCCR7+) can regulate T-cell homeostasis and suppress both autoim-
mune and alloimmune responses. Therefore, memory T-cells, especially CD8+CD122+ T-cells, may 
respond as either aggressive memory or regulatory T-cells (Treg). This research topic may shed light 
on when they act as memory versus Treg cells, and how to target memory T-cells or otherwise utilize 
memory-like Tregs to promote long-term allograft survival.

Memory T-cells are considered to be a major barrier to long-term transplant survival or tolerance 
(1). Targeting allospecific T-cell memory appears to be required for transplant tolerance induction. 
Then, the question is whether blocking conventional T-cell costimulation would inhibit memory 
T-cell responses. Previous studies have shown that memory T-cells are resistant to CD40/CD154 
costimulatory blockade (2, 3). It is also generally accepted that B7-CD28 costimulation is not 
required for memory T-cell activation (4). They are either less dependent on or totally independ-
ent of CD28 costimulation (5, 6). Therefore, it is likely that blocking B7–CD28 is insufficient for 
preventing allograft rejection in the face of memory T-cells. Perhaps that is why a high incidence 
of acute rejection of renal allografts, despite CTLA4-Ig treatments, has occurred in clinic due to 
the cross-reactivity of memory T-cells, derived from pathogen-specific immune responses, with an 
alloantigen (7). However, recent studies using animal models have shown that optimal elaboration of 
secondary T-cell responses is dependent on B7–CD28 interactions in the context of anti-infectious 
immunity (Ville et al.). Interestingly, selectively targeting CD28 with FR104 is more potent in sup-
pression of allograft rejection than targeting CD80/86 with CTLA4-Ig (Ville et al.), suggesting that 
selective blockade of CD28 signaling alone presents an advantage of allowing immunoregulatory 
signals mediated by CTLA4. Furthermore, blocking OX-40 costimulatory signal prolongs secondary 
heart allograft survival in the presence of CD40/CD40L and LFA-1/ICAM-1 blockade (8), indicating 
that additional blockade of OX-40 signaling is required for abrogating memory T cell responses.

Memory T-cells can rapidly trigger alloimmune responses (9). It has been known that early 
infiltration of CD8+ memory T-cells into allografts facilitates allograft rejection and presents 
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a hurdle to achieving long-term allograft survival (10–12). 
Signaling pathways for memory T-cell migration to an inflamed 
graft include G protein-coupled chemokine receptor signaling 
and cognate antigen-engaged TCR signaling as both signals 
trigger downstream integrin activation (Zhang and Lakkis). 
Interestingly, cognate antigen presence is necessary for driving 
antigen-specific memory T-cell migration into the peripheral 
tissue even without acute inflammation (13). Blocking integrin 
with anti-LFA-1 or anti-VLA-4 mAb prevents memory T-cell 
migration to a graft, attenuates alloreactive memory T-cell 
recall responses, and suppresses allograft rejection (14, 15). 
However, indiscriminately blocking LFA-1, though preventing 
memory and effector T-cell migration, increases the chance of 
developing post-transplant EBV-associated lymphoproliferative 
diseases while targeting VLA-4 may result in reactivation of fatal 
infections (16). Therefore, it is important to seek new strategies, 
instead of the universal blockade of major chemokines, to prevent 
donor-specific memory T-cell migration without increasing the 
risk of infections. One potential strategy to do so is to target the 
inside-out signaling pathway downstream of the TCR but not 
chemokine receptors (Zhang and Lakkis), such as SKAP1, leading 
to the suppression of antigen-driven but not chemokine-driven 
memory T-cell migration to a graft.

Recently, there has been a renewed interest in immune metabo-
lism in CD8+ T-cells. Their proliferation and function require a 
metabolic adaptation to meet their needs for energy and biosyn-
thesis (Yap et al.). Activated CD8+ T-cells reprogram their metabo-
lism from OXPHOS to aerobic glycolysis and glutaminolysis (17), 
supporting their rapid growth with sufficient energy as well as 
metabolic intermediates. Since glycolysis and glutaminolysis are 
two major metabolic pathways that are essential for CD8+ effector 
cell function, blocking metabolic pathways could lead to the dis-
covery of new immunosuppressive drugs for preventing allograft 
rejection, although these approaches likely cause significant side 
effects. For instance, 2-Deoxy-d-glucose (2-DG) inhibits glycolysis 
by blocking hexokinase function and hence suppresses cytotoxic 
function of effector CD8 T-cells while blocking glutaminolysis 

with a glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) 
inhibits T-cell proliferation (Yap et al.). More studies are urgently 
needed to seek metabolic antagonists that are effective in immu-
nosuppression but result in less severe side effects.

Previous studies have shown that CD8+CD122+ T-cells 
with central memory phenotypes regulate T-cell homeostasis 
(18) while more recent data have suggested that they suppress 
conventional T-cell responses (18–24) and control autoimmune 
diseases (25, 26). We have found that memory CD8+CD122+ 
T-cells and bystander central memory CD8+ T-cells inhibit 
murine allograft rejection (27, 28). Moreover, others have shown 
that central memory CD8+ T-cells mediate lung allograft accept-
ance (29). Importantly, we have demonstrated that memory-like 
CD8+CD122+ Tregs are more potent in their suppression of allo-
graft rejection than their CD4+CD25+ counterparts (30). Hence, 
not only are memory CD8+CD122+ T-cells regulatory cells, they 
can also boost the strength of Treg-mediated suppression. The 
exact mechanisms underlying their suppression are still not well 
understood, although CD8+CD122+ Tregs may restrict immune 
responsiveness by production of IL-10, TGFβ1, and IFNγ. In order 
to utilize them in clinic transplantation, more extensive studies 
are required to fully understand their mechanisms of action and 
their safety. Furthermore, we have revealed that PD-1 expression 
on CD8+CD122+ T-cells is critical for their regulatory function. 
Therefore, memory-like CD8+CD122+PD-1+ T-cells could be one 
of the best Treg subsets for the induction of long-term allograft 
survival or tolerance. It remains to be determined whether this 
subset of Tregs can be expanded in vitro.
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