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The importance of host and parasite genetic factors in malaria resistance or susceptibil-
ity has been investigated since the middle of the last century. Nowadays, of all diseases 
that affect man, malaria still plays one of the highest levels of selective pressure on 
human genome. Susceptibility to malaria depends on exposure profile, epidemiological 
characteristics, and several components of the innate and adaptive immune system that 
influences the quality of the immune response generated during the Plasmodium lifecy-
cle in the vertebrate host. But it is well known that the parasite’s enormous capacity of 
genetic variation in conjunction with the host genetics polymorphism is also associated 
with a wide spectrum of susceptibility degrees to complicated or severe forms of the dis-
ease. In this scenario, variations in genes of the major histocompatibility complex (MHC) 
associated with host resistance or susceptibility to malaria have been identified and used 
as markers in host–pathogen interaction studies, mainly those evaluating the impact on 
the immune response, acquisition of resistance, or increased susceptibility to infection 
or vulnerability to disease. However, due to the intense selective pressure, number of 
cases, and mortality rates, the majority of the reported associations reported concerned 
Plasmodium falciparum malaria. Studies on the MHC polymorphism and its associa-
tion with Plasmodium vivax, which is the most widespread Plasmodium and the most 
prevalent species outside the African continent, are less frequent but equally important. 
Despite punctual contributions, there are accumulated evidences of human genetic 
control in P. vivax infection and disease. Herein, we review the current knowledge in the 
field of MHC and derived molecules (HLA Class I, Class II, TNF-α, LTA, BAT1, and CTL4) 
regarding P. vivax malaria. We discuss particularly the results of P. vivax studies on HLA 
class I and II polymorphisms in relation to host susceptibility, naturally acquired immune 
response against specific antigens and the implication of this knowledge to overcome 
the parasite immune evasion. Finally, the potential impact of such polymorphisms on the 
development of vaccine candidate antigens against P. vivax will be studied.
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iNTRODUCTiON

Caused by blood-borne apicomplexan parasites of the genus 
Plasmodium, malaria remains a major public health problem. 
Malaria transmission occurs in 96 countries and territories, 
and according to the latest estimates, 3.3 billion people are at 
risk of infection. Approximately 214 million cases and 438,000 
deaths due to malaria occur worldwide, mainly of children under 
5  years. The great majority of cases (88%) and deaths (90%) 
occurs in Africa, followed by Southeast Asia (10%) and Eastern 
Mediterranean region (2%) (1). Of the five Plasmodium species 
that affect humans, Plasmodium vivax is responsible for about 
6% of the world estimated cases. However, outside sub-Saharan 
Africa, P. vivax accounts for 51% of all malaria cases, being the 
most widespread Plasmodium species (1).

Plasmodium parasites have a complex lifecycle, which includes 
the development of a sexual cycle in the invertebrate vector, the 
female of the Anopheles mosquitos, and an asexual cycle in the 
vertebrate hosts. Infection with Plasmodium parasites presents an 
asymptomatic stage, pre-erythrocytic, which occurs in the liver 
followed by a symptomatic erythrocytic stage, when merozoites 
arisen during pre-erythrocytic stage invade red blood cells. The 
rupture of the erythrocytic schizont is typically accompanied 
by clinical symptoms, because of the release of parasite derived 
toxins, such as phospholipids, that can activate immune cells 
leading to the production of inflammatory cytokines that can, 
directly or indirectly, contribute to the elimination of the parasite 
and complications associated with infection.

At first, humans are susceptible to malaria, even those who 
have already contracted the disease several times. However, 
young children, pregnant women, and adults from non-endemic 
areas are particularly susceptible to develop severe malaria. In 
high endemic malaria areas, with repeated exposure, older chil-
dren and adults develop considerable degree of protection from 
death and severe malaria, and thus, the clinical manifestations 
are milder, or even absent, although sterile immunity is probably 
never achieved and the infected immune individuals continue 
to present parasites in the blood for long periods, probably in 
the presence of very mild symptomatology (2, 3). It has been 
proposed that these changes reflect the parasitological and 
clinical immunity collectively referred to as naturally acquired 
immunity, which generally determines not only the age-specific 
incidence and prevalence of infections but also the expression of 
pathological processes that underlie the clinical manifestations 
of infection.

The spectrum of malaria clinical manifestations generally dif-
fers between adults and children and from person to person, rang-
ing from asymptomatic infection to clinical symptoms as fever, 
nausea, headache, and muscle pain, chills and vomiting and, in 
1–2% of the cases, to severe malaria, leading to multiorgan system 
involvement, severe anemia, and death (4–6). Plasmodium falci-
parum is the most virulent agent and responsible for the majority 
of severe malaria deaths (1). Severe malaria due to P. falciparum 
may present as confusion, drowsiness, excitement, convulsions, 
delirium, and coma. The differences observed in the clinical 
forms of the disease as well as the underlying pathophysiological 
processes are still under investigation, but it is now clear that the 

genetic factors influence the spectrum of clinical manifestations 
and the evolution and severity of the disease (7, 8).

The classical framework of the influence of genetic factors in 
malaria evolution and severity is the protective effect of certain 
hemoglobinopathies. The first observations were postulated in 
the late 40s by Haldane, known as one of the three founders of 
population genetics and acknowledged as the first person to 
suggest that disease could be an important evolutionary force 
in humans (9). Based on the distribution of thalassemia in the 
Mediterranean, Haldane proposed that certain hemoglobinopa-
thies are highly prevalent in regions where malaria is endemic 
due to the protection against the severe disease (10). According to 
the Haldane’s malaria hypothesis, this could result in a “balanced 
polymorphism” where the homozygote disadvantage for inherited 
erythrocyte disease is compensated through the resistance of the 
heterozygote where malaria is endemic (11–14). Thus, it has been 
proposed that malaria is associated to gene selective pressure in 
the human genome, and it has been associated with some genetic 
diseases. After that, several reports have shown that genetic disor-
ders, such as thalassemias, sickle-cell trait, glucose-6-phosphate 
dehydrogenase (G6PD) deficiency, ovalocytosis, Hemoglobin 
(Hb) S, HbC, HbE, and complement receptor-1 (CR1) deficiency, 
are associated with malaria susceptibility or resistance. Case–
control studies have shown that these polymorphisms reduce the 
risk of severe and complicated malaria. Among the mechanisms 
involved in the protection against P. falciparum severe malaria are 
reduced invasion of erythrocyte by the parasite, decreased intra-
cellular parasite growth, increased phagocytosis, and enhanced 
immune response against parasite-infected erythrocyte (14–17). 
Besides these genetic disorders, other polymorphisms in genes 
encoding the immune system molecules may also be involved in 
malaria outcome (Table 1).

Considering the intense selective pressure, the number of 
cases and the mortality rates associated with P. falciparum infec-
tion, specific studies of association between genetic factors and 
P. vivax are less frequent, even though this species is the most 
widespread Plasmodium, the most prevalent species outside the 
African continent, and with increasing evidences of associated 
death (57, 58). The observation that P. vivax malaria is rare in 
West Africa and that most sub-Saharan Africans are negative to 
blood group Duffy was the first evidence regarding P. vivax natu-
ral resistance. It led to the discovery that P. vivax uses the Duffy 
blood group antigen as a receptor to invade erythrocytes (59). 
Populations with the null phenotype of Duffy, although suscep-
tible to the hepatic malaria stage, are less susceptible to P. vivax 
merozoite invasion. Moreover, there are accumulated evidences 
of the relationship between immune response to P. vivax antigens 
and major histocompatibility complex (MHC) genes. Therefore, 
in the present study, we review the current knowledge in the field 
of MHC molecules regarding P. vivax malaria.

P. vivax MALARiA AND THe iMMUNe 
SYSTeM

Like in other species of the Plasmodium genus, P. vivax life-
cycle is a complex process and requires an invertebrate and 
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TABLe 1 | Genetic polymorphisms of the vertebrate host and associations with the natural resistance to malaria.

Genetically based resistance mechanisms Gene/locus Function Phenotype Reference

Hemoglobinophaties α-Thalassemia HBA (16p13.3) Hemoglobin composition Protection against severe malaria (18–20)
β-Thalassemia HBB (11p15.5) Hemoglobin composition Protection against severe malaria (11, 21)
Sickle cell disease HBB (11p15.5) Hemoglobin composition Protection against severe malaria (19, 22, 23)
Hemoglobin C (HbC) HBB (11p15.5) Hemoglobin composition Reduced risk of severe and non-severe P. falciparum 

infections
(24, 25)

Hemoglobin E (HbE) HBB (11p15.5) Hemoglobin composition Protection against severe malaria and high 
parasitemia

(26, 27)

Enzymes Glucose-6-phosphate 
dehydrogenase (G6PD)

G6PD (Xq28) Protection of erythrocyte 
against oxidative stress

Resistance against P. falciparum infection and severe 
malaria

(16, 28–30)

Pyruvate kinase (PK) PKLR (1q21) Erythrocyte metabolism Protection against P. falciparum infection (31)

Erythrocyte Ovalocytosis SLC4A1 
(17q21-22)

Anion exchanger Protection against severe malaria by P. falciparum and 
reduced risk of P. vivax infection

(32–34)

Duffy antigen ACKR1/FY 
(1q21-q22)

Chemokine receptor Decreased risk/resistance of P. vivax infection (35–38)

Immunogenetic 
variants

Human leukocyte 
antigens (HLA)

HLA (6p21.3) Component of the immune 
system

Protection against severe malaria and antiplasmodial 
immune response

(39–44)

Complement component 
(3b/4b) receptor 1 (CR1)

CR1 (1q32) Removing immune 
complexes/cytoadherence

Protection against severe malaria (45)

Nitric oxide synthase 2 r NOS2A 
(17q11.2)

Nitric oxide production Protection against severe malaria (46, 47)

Tumor necrosis factor 
(TNF)

TNF (6p21.3) Proinflamatory activities Severe malaria (48–51)

Interferon gamma (IFN) IFNG (12q14) Proinflamatory activities Reduced risk to develop severe malaria (52)
Interleukin 4 (IL4) IL4 (5q31.1) Anti-inflammatory activities Antimalarial antibody levels and reduced risk to 

develop severe malaria
(53, 54)

Interleukin 10 (IL10) IL10 
(1q31-q32)

Regulation of the immune 
response

Reduced risk to develop severe malaria and anemia (55, 56)
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a vertebrate host for survival and perpetuation (Figure  1). 
Therefore, during its entire life cycle in humans, P. vivax 
undergoes multiple morphological and antigenically distinct 
stages and can be attacked by different immune mechanisms, 
depending on the stage and whether the parasite is within 
or outside the host cell. During the migration through the 
bloodstream to the liver, antibodies can block sporozoite 
migration and/or invasion of hepatocytes, repressing lifecycle 
progression (60–63). In the liver stage, infected hepatocytes 
are potential targets of CD4+ and CD8+ T cells, although the 
immune response mediated by NK cells and T gamma-delta 
T cells also participates in the immune response against pre-
erythrocytic forms stimulating other cell populations secret-
ing cytokines or acting directly on the infected hepatocyte 
(64–66). After being released from merosomes, free merozoites 
are susceptible to host immune responses. Merozoites can be 
the target of opsonizing antibodies, triggering cell-mediated 
merozoite killing or blocking merozoite proteins responsible 
for the initial interaction with the molecules on the surface of 
erythrocytes, preventing invasion (67, 68). Considering that 
the MHCs Class I and II antigens are absent on the surface 
of the erythrocytes, the immune response against blood stage 
forms involves mainly antibodies. During the intraerythrocytic 
stage, antibodies may coalesce merozoites at or just before the 
rupture of erythrocytes, preventing their release and spread 
into the bloodstream, essential for the clearance of parasitemia 
in the later stages of the infection (2, 67, 68). Although antibod-
ies have a critical role in the development of immunity against 

erythrocytic forms, studies indicate that the development of 
the immune response also involves monocytes, neutrophils, 
CD4+ T cells, NK cells, and NKT cells (68).

Overall, one may say that the cellular immune response is 
more important in the control of the hepatic forms of the para-
site, whereas the humoral immune response seems to be more 
important to the control of its erythrocytic stage. Since P. vivax 
stimulates various components of the immune system, the bal-
ance of this activation can represent a fine line between inhibition 
of the parasite growth and immunopathology. Thus, it is accept-
able to consider that polymorphisms in genes encoding immune 
system molecules, especially those located at MHC locus, could 
be involved in P. vivax malaria outcome.

HLA GeNeTiC ReGiON

The MHC, referred as human leukocyte antigen (HLA) system 
in humans, is an extremely polymorphic region encoding for the 
major molecules in charge of antigen presentation on the cell 
surface, and it has been one of the most intensively studied areas 
in the human genome (69, 70). Located in the short arm of the 
chromosome 6, HLA complex consists of more than 200 genes 
categorized into three basic groups: class I, class II, and class III 
(Figure 2). Class I molecule is a heterodimer consisting of a heavy 
chain and a light chain, the beta-2 microglobulin. HLA Class I 
genetic region encodes the heavy chain of the classics HLA-A, 
-B, and -C molecules, besides HLA-E, -F, -G, and the MHC class 
I polypeptide-related sequence A (MICA) and MICB. Class 
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FiGURe 1 | Plasmodium vivax lifecycle in human host: P. vivax is transmitted to humans by the bite of an infected female of the Anopheles mosquito, 
releasing the salivary fluid carrying sporozoites into the tissues or directly into the bloodstream. From the tissues, the motile sporozoites can penetrate 
small blood vessels. In hepatic sinusoids, they penetrate through Kupffer cells into Space of Disse and invade hepatocytes to begin the exo-erythrocytic or 
liver-stage cycle. The sporozoite differentiates into mature liver-stage schizont with thousands of uninucleated merozoites surrounded by a parasitophorous 
membrane. The hepatocyte containing mature liver schizonts ruptures releasing merosomes. These merosomes are transported into the general blood circulation 
and break, releasing merozoites which invade young red blood cells (reticulocytes), beginning the erythrocytic or blood-stage cycle. P. vivax has dormant liver 
hypnozoite stages, which can reactivate and lead to blood-stage relapses. Within the erythrocyte, the merozoite differentiates in erythrocytic trophozoite. When fully 
mature, the infected erythrocyte ruptures, releasing the merozoites, which then invade new erythrocytes, initiating the entire intraerythrocytic-stage cycle, rupture, 
and reinvasion. Alternatively, some merozoites can develop gametocytes. During blood feeding, female mosquito of a susceptible Anopheles species can ingest the 
gametocytes, beginning the sexual stage of the life cycle. In the midgut of the mosquito, gametocytes escape from erythrocytes and become sexually stimulated. 
The male gamete fuses with the female, forming a diploid zygote. Therefore, the zygote is transformed into an invasive parasite stage ookinete. The ookinete 
traverses the midgut wall by passing through epithelial cells and comes to rest adjacent to the basal lamina where it transforms into an oocyst that undergoes 
multiple nuclear divisions producing several thousand sporozoites. At maturity, the oocyst breaks open and the sporozoites are released into the hemocele of the 
mosquito, migrating and penetrating the salivary glands. In the salivary glands, the sporozoites become infectious to humans, completing the life cycle.
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I molecules are expressed in nearly all cells and play a central 
role in the immune system by presenting peptides derived from 
the endoplasmic reticulum lumen. Class II molecules are heter-
odimers formed by α and β chains. HLA class II genetic region, 
initially called Immune response (Ir) genes due to its role in 
controlling the immune response, encodes the α and β chains of 
the HLA-DR, -DQ, -DP, -DM, and -DO molecules and peptide 
transporter proteins (TAP) 1 and (TAP) 2 (69–71). Class II mol-
ecules are predominantly expressed on antigen-presenting cells 
(APC), such as macrophages, dendritic cells, B cells, Langerhans 
cells, and Kupffer cells, although some cells may express class II 
molecules during inflammatory process (70, 72, 73). The proteins 
produced from HLA class III genes have somewhat different 
functions, some of which involve participation in inflammation 
processes and other immune system activities. HLA-Class III 
genetic region encodes C2 and C4 complement components and 
tumor necrosis factor (TNF) superfamily (70). The functions of 
some HLA genes are unknown.

The polymorphism of HLA has been useful in the search of 
donors with compatible grafts in tracing population migration 

as well as in its potential relationship to pathogen-mediated 
selection. Further, assessing and comparing the polymorphism 
of HLA allows to better define the extent of the genetic vari-
ability in humans as well as the reasons of this diversity. The 
HLA region is associated with more diseases (mainly autoim-
mune and infectious diseases) than any other region of the 
genome (74–78).

HLA CLASS i AND ii GeNeS AND P. vivax 
ANTiGeNS

The importance of HLA genes influencing malaria outcome has 
been demonstrated since studies conducted by Hill and colleagues 
who elegantly illustrated the influence of HLA genes in the protec-
tion against an intracellular pathogen and how the polymorphism 
of HLA genes may have evolved through selection of molecules 
induced by the pathogen. In a study of over 2000 children in West 
Africa, Hill et al. showed that carriers of HLA Class I Bw53 and 
HLA class II DRB1*1302-DQB1*0501, frequently occurring in 
sub-Saharan Africa, were protected against severe malaria (39). 
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TABLe 2 | Associations between HLA-DRB1 and HLA-DQB1 allelic 
groups and antibody response to P. vivax antigens.

Antigen/protein HLA Association Reference

CSP VK247 variant DRB1*16 + (83)

CSP VK210 variant DRB1*07 − (83)

CSP peptide N DRB1*03 − (84)

CSP peptide N DRB1*11, *12 (DR5) − (84)

MSP3-NT DRB1*04 + (85)

MSP3-CT DRB1*04 + (85)

MSP3-CT DQB1*03 + (85)

MSP3-CT DQB1*06 − (85)

MSP3-FL DRB1*16 − (85)

MSP9-RIRII DRB1*01 − (85)

MSP9-RIRII DRB1*04 + (85)

MSP9-RII DRB1*01 − (85)

MSP9-RII DRB1*04 + (85)

MSP9-CT DRB1*04 + (85)

AMA-1 DRB1*03 + (84)

RBP-1 DRB1 and DQB1 alleles Not found (86)

MSP1-19 DRB1 and DQB1 alleles Not found (84, 85)

DBP DRB1 alleles Not found (87)

FiGURe 2 | Schematic representation of the human Chromosome 6 including the main MHC genes (69).
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Later studies showed that HLA-B53 restricted cytotoxic T cells 
recognize peptides corresponding to regions of P. falciparum 
Liver Stage Antigen-1 (79). Thus, HLA molecules have been 
used as genetic markers in an attempt to determine the presence 
of genetic modulation of the immune response during malaria 
infection. Considering the increasing focus on the development 
of subunit malaria vaccines, studies on the influence of HLA mol-
ecules in the immune response in ethnically diverse populations 
are important before the implementation of vaccine trials. This is 
particularly relevant for P. vivax, which affects populations with 
high diversity of genetic backgrounds.

In this scenario, the circumsporozoite surface protein (CSP) 
is the most abundant polypeptide present in the sporozoite 
covering. This protein is involved in the motility and invasion 
of the sporozoite during its entrance in the hepatocyte (80). The 
csp gene encodes a protein, which has in its central portion, a 
highly immunogenic repetitive region. Based on the csp gene, 
two variants, VK247 and P. vivax-like, have been described. They 
differ from the classical form (VK210) by sequence variations 
in the central region of the gene (81, 82). A study performed 
by Oliveira-Ferreira and others with 108 individuals living in 
Rondonia State, in the Southwestern part of the Brazilian Amazon, 
observed a significant association between the antibody response 
to the CSP repeats of VK247and the presence of HLA-DRB1*16 
and between the presence of HLA-DRB1*07 and the absence 
of antibody responses to the CSP repeats of VK210 (83). More 
recently, Storti-Mello and co-workers described a significant 
association between the absence of antibody response to the CSP 
amino-terminal region and the presence of HLA-DRB1*03 and 

DR5 in a study with 55 individuals from different regions of the 
Brazilian Amazon (84) (Table 2).

Merozoite surface proteins (MSPs) have been reported as 
abundantly expressed on the surface of merozoites and can con-
tribute to the initial recognition of erythrocytes. MSP-1, MSP-3, 
and MSP-9 have been considered important vaccine candidates 
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based on their location, on their recognition by antibodies from 
individuals naturally exposed to P. vivax, their immunogenic 
properties in animal models, and evidence of the induction of 
antibodies able to inhibit parasite-growth (88–95). Therefore, 
considering the importance of the antibodies against MSPs in 
the development of anti-parasite immunity, studies have also 
focused the evaluation of the genetic restriction of the anti-MSP 
humoral response. Storti-Melo et al. analyzed the influence of the 
HLA-DRB1 alleles on antibody levels against the amino-terminal 
region of the MSP-1 in individuals from the Brazilian Amazon and 
observed significant association between high levels of antibodies 
for MSP-1 and the presence of HLA-DRB1*03 (84). In contrast, 
no evidence of a specific HLA-DR or HLA-DQ restriction for 
the antibody response to MSP-1 was observed in a study carried 
out by Lima-Junior et al. in 276 individuals living in Rondonia 
State in the Brazilian Amazon (85). However, in that paper, the 
authors showed HLA associations with IgG antibody response 
against different regions of MSP-3 and MSP-9 proteins. A high 
frequency of responders to carboxy-terminal (CT) and amino-
terminal (NT) regions of MSP-3 were defined in HLA-DRB1*04 
carriers and to MSP-3CT also defined in HLA-DQB1*03 carriers. 
Additionally, a high frequency of non-responders to MSP-3CT 
and the presence of HLA-DQB1*06 and to a recombinant protein 
representing the full length (FL) of MSP-3 with the presence of 
the HLA-DRB1*16 allele were observed. Regarding MSP-9, the 
presence of HLA-DRB1*04 was positively associated with the 
IgG immune response against all constructions used in the study, 
the amino-terminal domain (NT) and the C-terminal blocks 
of tandem repeats (RII and RIRII), while the presence of the 
HLA-DRB1*01 was associated with the high frequency of non-
responders only to the repeated region (Table 2).

However, other studies did not find associations between 
HLA-DR or HLA-DQ alleles and antibody response to P. vivax 
antigens. In a study performed by Ferreira and co-workers, no 
genetic restriction mediated by HLA-DRB1* and HLA-DQB1* 
against two constructions of P. vivax Reticulocyte Binding 
Protein-1 (PvRBP1) was verified in more than 500 HLA alleles 
from different individuals from communities in the Amazon 
region of Brazil (86). Moreover, regarding the cellular response, 
Arevalo-Herrera et al. also did not observe association between 
HLA and cellular immune response of healthy volunteers vac-
cinated with CSP derived long synthetic peptides (96) and Lima-
junior et  al. describe five promiscuous peptides from MSP-9 
which also presented no association between HLA-DRB1 alleles 
and the cellular immune response (97).

HLA CLASS iii GeNeS AND P. vivax

Several genes of the immune system have proved to be important 
in relation to the susceptibility or resistance to malaria, especially 
those associated with severe malaria. Therefore, a common strat-
egy is to identify the mutations in such genes and observe their 
possible association with the disease outcome. Since Kwiatkowski 
et al. showed that the TNF was associated with the susceptibility 
to cerebral malaria (98), numerous mutations have already been 
identified in the promoter of this gene, which can influence on 
TNF production rate. In one of those vanguard studies, McGuire 

and colleagues showed that mutation at position -308 of the TNF 
promoter region is associated with increased risk of death from 
cerebral malaria in Africa (51). Analysis of other clinical compli-
cations experienced in African children with severe malaria also 
showed that severe anemia due to malaria is associated with the 
mutation at position -238 suggesting that the clinical manifesta-
tions could also be influenced by genetic determinants located 
near the TNF gene. In fact, the guanine-to-adenine transition 
at position -308 in the TNF promoter, which defines the rare 
allele TNF2 is strongly associated with the MHC haplotypes 
HLA-A1, B8, DR3 and was also reported to influence the TNF 
promoter activity, enhancing TNF-α production (99). In patients 
with cerebral, severe malaria and mucocutaneous leishmaniasis, 
the TNF-α -308G/A polymorphism has been shown to be 
associated with the outcome and clinical course of the disease 
(100). However, only in the last years, the influence of these poly-
morphisms on P. vivax infection began to be investigated. On 
the one hand, in patients with P. vivax malaria from India, two 
single nucleotide polymorphisms (SNP) in the TNF promoter 
(–308G  >  A and –1031C  >  T) were associated with cytokine 
levels and temperature, but no association related to susceptibil-
ity were reported (101). On the other hand, there was neither 
association between six different TNF SNP polymorphisms and 
P. vivax malaria in Thailand nor differences in allelic distribution 
among the three distinct ethnic groups assessed by the study: 
Thai, Burmese, and Karen (102). In Brazil, even TNF-308 GA 
genotype or A allele carriers presented higher levels of TNF than 
those with the GG genotype or G allele, no association related 
to susceptibility was observed in P. vivax infected individuals 
(103, 104). In fact, we tend to reinforce the idea that a SNP is 
often not sufficient for predicting the susceptibility or resistance 
of individuals to P. vivax malaria. Therefore, the usual approach 
when investigating the differences in response to malaria infec-
tion should be the haplotype analysis. For example, Sortica et al. 
reported the association of TNF haplotype with a lower suscepti-
bility to P. vivax infections, since an uninfected group presented 
a significantly higher frequency of a specific haplotype (T1031/
A863/C857/G308/G238) when compared to P. vivax infected 
individuals (104). However, despite these several evidences of 
polymorphism in TNF gene in relation to malaria susceptibility 
in the studies, a larger number of samples and different clini-
cal and epidemiological scenarios are necessary to confirm the 
associations.

Aside the TNF association studies, the associations between 
malaria and polymorphisms in other genes located at HLA locus 
were also the focus of investigations. For example, the nuclear 
protein HLA-B-associated transcript 1 (BAT1), which is an RNA 
helicase encoded by the DDX39B gene, has been described as a 
negative regulator of inflammation by modulating expression of 
proinflammatory cytokines (such as TNF) (105). Therefore, using 
mutations in two MHC genes located approximately at 150 kb 
from each other (TNF and DDX39B) Mendonça et al. reported 
associations between DDX39B haplotypes and complicated P. 
vivax malaria. Participants with DDX39B-22/DDX39B-348/TNF-
308/IL6-176 genotype combinations GC/CC/GG/GG and GG/
CT/GG/GG had reduced and increased risk, respectively, of 
developing malaria symptoms (103).
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Lastly, other HLA-Class III host candidate gene polymorphisms 
were also associated with susceptibility/resistance to Plasmodium 
infection. However, the absence of studies using only P. vivax 
infected/exposed individuals makes the definition of genetic pol-
ymorphism of HLA-class III genes associated specifically to this 
species particularly difficult. In P. falciparum studies conducted 
in Africa, a trend of association between LTA polymorphism with 
antimalarial IgG subclass levels was found but not confirmed by 
statistical tests (106). Moreover, no LTA polymorphisms were 
associated with severe malaria in cohorts in Kenya and Malawi 
in a large study involving >10,000 individuals from three African 
populations. In Brazilian endemic areas, recently, a study with a 
large number of candidate gene polymorphisms was performed 
and the association with susceptibility/resistance to Plasmodium 
infection with clinical (mild) malaria in a population infected 
with P. falciparum or P. vivax was investigated. Although no 
differences between species were found, the results showed, for 
the first time, an association between alleles of CTL4 gene with 
malaria, which displayed a significant association with reduced 
risk for clinical malaria. In addition, two other associations with 
cytokines were identified, both within MHC class III region, that 
included TNF and the lymphotoxin alpha (LT-α/LTA) and beta 
(LT-β/LTB) genes, which are closely related (107).

HLA AND BiOiNFORMATiCS APPLieD TO 
P. vivax ANTiGeN DiSCOveRY

The ultimate goal of MHC binding antigenic peptide prediction 
is to identify epitopes that activate T-cells and mediate cell-
mediated immunity without HLA genotype/haplotype restric-
tion. Recognition of peptide bound to an MHC molecule by a 
T-cell receptor is a critical step and for T-cell activation binding 
of peptide to the MHC molecule is a necessary requirement 
(108). The association of immunogenic fragments (epitopes) 
to the HLA molecules of class I or II determines what type of 
cell is to be stimulated and, consequently, what kind of response 
will be generated. Conventional vaccinology approaches accu-
mulate successes and failures aiming at experimental screening 
methods to evaluate the presence of HLA restriction in immune 
response to vaccine candidates. But this conventional process is 
still laborious, expensive, and time-consuming. Computational 
prediction methods complement experimental studies, minimize 
the number of validation experiments, and significantly speed 
up the epitope mapping process (109). The bioinformatics tools 
have already e helped identifying promiscuous epitopes within 
Leishmania (110), Mycobacterium tuberculosis (111) and HIV 
(112) antigens. In malaria, epitope identification is particularly 
challenging, as more than 5000 proteins are encoded by the 
genome (113, 114), which could generate hundreds of thousands 
of possible CD4+ T cell epitopes. On the other hand, the iden-
tification of CD4+ and CD8+ epitopes from malaria is urgently 
required to track various vaccine approaches, mainly to evaluate 
candidates for compositions of subunit vaccines. For example, in 
P. falciparum vaccine research, Doolan et al. first used proteomic 
approaches to identify 27 highly expressed candidate antigens, 
and then used HLA-DR binding predictions to identify 723 

predicted HLA-DR binders. Of these, 39 peptides binding tightly 
to HLA-DR variants derived from four newly identified antigenic 
targets were identified (115). Beyond antigen identification, this 
application of proteomics and bioinformatics was confirmed as 
particularly powerful and is likely to prove useful in other appli-
cations, particularly as consensus motif prediction approaches.

Despite several T-cell epitopes from pre-erythrocytic 
(116–118), asexual blood stage (119–121), and gametocyte (122) 
antigens have been predicted and/or experimentally confirmed 
for P. falciparum, the use of bioinformatics strategies to identify 
potentially important epitopes in P. vivax is still restricted. The 
majority of the studies focusing on the detection of B or T-cell 
epitopes have used conventional screening methods (94, 123–
125). Only few studies have already used prediction servers to 
trial the most promising epitopes to be used in validation assays 
(Table 3). One of the first prediction studies on P. vivax reported 
the results of in silico analysis of PvMSP-1 vaccine candidates in 
relation to potential HLA restricted or promiscuous CD4 and 
CD8 epitopes (126). More recently, Kumar et  al. using several 
computational screening methods analyzed 10 protein sequences 
of P. vivax proteins, including vaccine candidates, such as MSP-1, 
MSP-9, Pvs25, and PvS28 in relation to potential antigenicity, 
promiscuity and binding to several HLA class I and II alleles. The 
best scored T-CD4 and T-CD8 epitopes for each antigen were 
also identified (127). Even with promising results, these bioin-
formatics approach reported is still dependent on experimental 
validation. In this scenario, our previous studies reported that 
along all PvMSP-9 N-terminal 11 peptides were highly predicted 
by the ProPred algorithm to be promiscuous, of which only five 
of them were recognized at high frequency by PBMCs from 
individuals living in malaria endemic areas presenting a large 
variety of HLA class II allelic groups (97). If the conventional 
screening methods had been applied, at least 40 overlapping 
peptides should have been synthetized and tested individually in 
order to select these promiscuous epitopes; on the other hand, if 
we had used only prediction approaches, five non-immunogenic 
peptides could have been selected. Although bioinformatics 
approach has lately accumulated more successes than failures, the 
confidence level (approximately 50%) for predicting epitopes to 
MHC class II molecules is far from perfection and in some cases 
can cause mismatches between predicted versus experimental 
results. This can happen mainly because these molecules accept 
a wider range of peptides in size and binding registers (16). 
For example, two universal epitopes were described in PvDBP 
sequence using conventional vaccinology experiments; however, 
the SYFPEITHI-binding prediction for the HLA-DRB1*0101 
molecule was not in accordance with the experimental results 
(128). This comparison between experimental and theoretical 
data sets suggests that class II binding prediction tools are useful, 
but they have to be used with caution. Therefore, by different ways, 
both PvMSP-9 and PvDBP studies highlighted the combination 
of in silico analysis and the experimental confirmation as the ideal 
method. Therefore, actually there are accumulated evidences of 
successful use of bioinformatics on P. vivax vaccine research. For 
example, peptide sequences of PvRBP1 promiscuous for binding 
to HLA class II molecules were selected by ProPred algorithm 
and the IEDB server (http://www.iedb.org/) for allele binding 
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TABLe 3 | Bioinformatics approaches applied to epitope selection in relation to MHC alleles.

Program/database Approach HLA P. vivax research aplication Reference

SYFPEITHI Database comprising more than 7000 
endogenous peptide sequences known to bind 
class I and class II MHC molecules (131)

Class I and 
Class II

Comparative analysis of epitopes of P. vivax 
and P. falciparum lactate dehydrogenase (LDH) 
protein, based on LDH sequences

(128, 130)

Comparison of immunologically identified 
universal epitopes in Plasmodium vivax Duffy-
binding protein and in silico prediction results

TEPITOPE/ProPred Promiscuity evaluation based on virtual IC50 
assay of single amino acid variants of peptide 
sequences (132, 133)

Class II T-cell epitope mapping on the 33-kDa region of 
P. vivax MSP1 vaccine candidate
Identification and confirmation of promiscuous 
epitopes in PvMSP-9 

(86, 97, 134)

Selection of promiscuous epitopes in PvRBP-1 
for inclusion in a chimeric recombinant protein

RANKPEP Position-specific scoring matrices of known 
T cell epitopes (135)

Class I and 
Class II

Not found –

MULTIPRED Evaluation of potential promiscuous T cell 
epitopes using neural network and hidden 
Markov model algorithms (136)

Class I and 
Class II

Not found –

NetMHC Neural network approach to associate binding 
preferences and MHC sequences known T cell 
epitopes, MHC structures, and sequences (137)

Class I and 
Class II

In silico analysis of PvMSP-1 sequence to 
find potential promiscuous T CD4 and T CD8 
epitopes

(126, 138)

Identification, localization, and confirmation of 
MHC-restricted CD8+ T cell epitopes within the 
PfAMA1 protein and PvAMA1 domain III

EpiDOCK Converts the input sequence into a collection of 
overlapping non-amers and predicts binding to 
the 23 most frequent human MHC class II and a 
score is assigned (139)

Class II Not found –

IEDB Immune Epitope Database Consensus 
method consisting of NN-align, SMM-align, 
MetMHCPan, and/or Combinatory Library 
available for the sequence (140, 141)

Class I and 
Class II

Identification of allele binding score of predicted 
promiscuous epitopes and evaluation of 
population coverage selected PvRBP-1 
antigens

(86, 129)

Identification and selection of potential multi-
specie (P. vivax and P. falciparum) antigens 
by protein structure, binding predictions and 
protein motifs
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score and population coverage. The most promising peptide 
sequences were included in a PvRBP-1 chimeric antigen contain-
ing the predicted promiscuous T-cell epitopes and known B-cell 
epitopes and presented no HLA restriction in naturally acquired 
immune response of exposed individuals (86). Moreover, 
Cespedes et al. also used the identification and selection of novel 
antigens by structure, binding predictions and protein motifs.  
A total of 50 P. vivax antigens were selected based on proteome 
and transcriptome data of P. falciparum orthologs. After immu-
nological confirmation, four peptides were experimentally 
confirmed as truly immunogenic peptides and were preselected 
for further preclinical trials (129). Lastly, beyond the vaccine 
field, the prediction tools have also been used in a comparative 
analysis of epitopes from lactate dehydrogenase (LDH) protein 
(130). Based on P. vivax and P. falciparum LDH sequences, T-cell 
epitope prediction indicated that 28 HLA alleles could recognize 
pLDH antigen epitopes. Interestingly, despite a large number of 
potentially common or similar epitopes, specific Pv-LDH and 
Pf-LDH epitopes were also predicted and, if experimentally con-
firmed, could be involved in future specific diagnostic rapid tests.

In summary, with the concomitant advent of whole-genome 
sequencing and advances in bioinformatics, the vaccinology 
field changed in the last few decades, providing the opportunity 
of describing novel antigens and improving the already known. 
Consequently, the focus in vaccine design shifted to explore 
antigens susceptible to antibody recognition and T-cell induc-
tion through comparative pan genome reverse vaccinology. Even 
though, in most of cases, experimental confirmation is necessary, 
high-accuracy predictions are available for any HLA known, 
non-human primates, mouse strains, and other mammals. 
Therefore, those “reverse immunology” systems have become 
highly accessible, and they can be a fast and efficient alternative 
when some conventional vaccinology strategies are difficult, 
especially when dealing with non-culturable microorganisms, 
as P. vivax.

CONCLUDiNG ReMARKS

The number of studies involving MHC polymorphism and 
P. vivax specific immune response and clinical outcome are 
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still increasing, and there are several similarities and dispari-
ties among these association studies. Despite the variation of 
MHC genes, alleles and/or haplotypes in different clinical and 
epidemiological scenarios, the association between MHC genes 
and P. vivax has been demonstrated in the majority of stud-
ies presented. We believe that the inconsistency of some data 
may derive from the fact that a large number of potential risk 
factors, such as nutritional status, coinfections, and relapses, 
which could influence the specific immune response, are almost 
impossible to be controlled in malaria endemic areas. Other 
issues are the small sample size, the heterogeneity of human 
populations in different endemic areas, and of course, the 
complexity of MHC genes. Therefore, since population-based 
cohorts with a single P. vivax infection represent a valuable but 
uncommon resource for genetic studies, more sophisticated 
analytical approaches are needed to study the expression of 
MHC genes in such different exposure conditions to determine 
the precise role of such polymorphisms as determinant for 
P. vivax susceptibility, immune response, and its outcome in 
disease progression.
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