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Tumor microenvironment is characterized by a consistent reduction in oxygen and blood-
borne nutrients that significantly affects the metabolism of distinct cell subsets. Immune 
cells populating malignant lesions need to activate alternative pathways to overcome 
tumor-prolonged nutrient deprivation. In particular, the metabolic switch occurring in 
transforming tissues dramatically impacts on tumor-infiltrating T cell biology. Remarkably, 
the recruitment and activation of T cell within cancers are instrumental for effective 
antitumor response. Therefore, T cell metabolic adaptation acts as crucial checkpoint 
hijacked by tumors to dampen antitumor immunity.

Keywords: tumor microenvironment, T lymphocyte activation, immune escape, reactive nitrogen species, 
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inTRODUCTiOn

Cancers are not mere collections of relatively homogenous tumor cells, but they rather form a 
sort of crowded organ composed of different cell populations supporting malignant nourishment 
and progression. To ensure tumor growth and immune evasion, the stromal component of tumor 
mass undergoes numerous metabolic adaptations, reprograming the mode of energy generation 
(1). Metabolic reprograming of cancer and stromal cells fulfils the urgent need for energy supply 
to support tumor cell proliferation and progression, thus representing one additional hallmark of 
cancers (2). Notwithstanding, the first observations of metabolic alterations in cancer cells date back 
to the early 90s, when Otto Warburg found that cancer cells, regardless of oxygen tension, prefer to 
metabolize glucose by glycolysis.

Albeit more rapid than oxidative phosphorylation, anaerobic glycolysis (fermentation) is less 
efficient in ATP generation and, reducing lactate, contributes to the accumulation of metabolites 
that promote immunosuppression (3). The glycolytic switch of tumor cells, also known as “Warburg 
effect” offers a valuable tool for diagnosis, staging, and monitoring therapy response in many cancers, 
and it accounts for the physiological basis for positron emission tomography (PET) in clinical oncol-
ogy (4). In addition to the Warburg effect, both tumor and stromal cells exploit other catabolic routes 
aimed at amino acid conversion into more affordable energetic products, as well as change in lipid 
metabolism (5).

This metabolic adaptation works indeed as crucial checkpoint hijacked by tumors to dampen 
antitumor immunity. Solid tumors build up a forbidding environment characterized by a consistent 
reduction in O2 and blood-borne nutrients. The paucity of appropriate nutrients represents, so far, a 
limiting step for the effectiveness of antitumor immune responses since T cells infiltrating malignant 
tissues need to face the tumor hostile environment to exert their functions.

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00020&domain=pdf&date_stamp=2016-02-01
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2016.00020
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:antonella.viola@unipd.it
http://dx.doi.org/10.3389/fimmu.2016.00020
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00020/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00020/abstract
http://loop.frontiersin.org/people/163891/overview
http://loop.frontiersin.org/people/304389/overview


February 2016 | Volume 7 | Article 202

Molon et al. T Cell Metabolism in Cancer

Frontiers in Immunology | www.frontiersin.org

MeTABOLiC ADAPTATiOnS OF T CeLLS 
wiTHin THe TUMOR

Tumor-infiltrating immune cells include cell subsets belonging 
to both the innate and the adaptive arms of the immune system. 
The immune setting within the locoregional tumor microenvi-
ronment significantly dictates cancer fate. A strong lymphocytic 
infiltration, so far, has been reported to be associated with good 
clinical outcome in different human tumors (6). The intratumoral 
activation of T cell responses may result in the control of tumor 
growth and spreading in some cancers, such as in melanoma (7). 
In fact, recent advances in cancer immunotherapy based on the 
clinical exploitation of monoclonal antibodies targeting T cell-
immune checkpoints, such as PD-1 (8) and CTLA4 (9), clearly 
confirmed the requirement of an efficient T cell activation for an 
effective antitumor response. CD4+ and CD8+ T lymphocytes are 
fundamentally able to recognize tumor antigens and to activate 
their effector programs even within transformed tissues.

T cells, experiencing the metabolic framework of growing 
tumors, need to activate distinct pathways to accomplish their 
functional requirements. Nonetheless, tumors impose several 
limitations to dampen T cell immunity, and among these, the 
control of nutrient availability and handling represents one cru-
cial process. In growing tumors, where neoplastic cells proliferate 
at a very high rate, the deprivation of particular nutrients, such 
as glucose or amino acids, from the environment dramatically 
hinders T cell functions. Basically, T cell metabolic reprograming 
relies upon the activation of distinct transcriptional and signaling 
pathways that are now beginning to be elucidated.

Metabolic reprograming accounting for the increasing energy 
demand is crucial for the triggering of T cell effector functions. The 
transition from the “energy-saving” oxidative metabolism – typi-
cal of naïve/memory T cells – to the primarily biosynthetic and 
anabolic metabolism of effector T cells requires a substantial 
uptake of nutrients from the environment (10, 11). This is clearly 
connected to the urgency of an activated T cell to support its 
own duties, such as cell proliferation, cytotoxicity, and adaptive 
cytokine production. To do that, with respect to quiescent cells, 
effector T lymphocytes switch the metabolism toward aerobic 
glycolysis increasing the uptake of glucose and glutamine from 
the outside and the consumption of oxygen (12). In particular, 
the engagement/disengagement of aerobic glycolysis represents 
a crucial mechanism controlling T cell effector status by means 
of the posttranscriptional regulation of IFN-γ production (13). 
Furthermore, the activation of PD-1 signal, which is linked to 
T cell exhaustion, inhibits the uptake and utilization of glucose 
and glutamine increasing the rate of fatty acid β-oxidation (FAO) 
in T cells (14). A drop of glucose level within tissues leads T 
cells to enter a dormant “anergy” state to spare energy (15) or to 
preferentially activate autophagy as survival mechanism (16) to 
counteract nutrient insufficiency. Activated T cells upregulate the 
surface expression of key nutrients receptors, such as the amino 
acid and glucose transporters, triggering the hypoxia-inducible 
factor-α (HIF1-α), c-Myc, and the PI3K/Akt/mTOR (the mam-
malian target of rapamycin) (17, 18), which play a pivotal role in 
energetic adaptations of both cancer and immune cells (19).

HIF1-α is a transcriptional factor that is upregulated when 
oxygen tension decreases. In normoxic conditions, HIF1-α is 
constantly degraded by the proteasome complex; conversely, 
during hypoxia, it is stabilized and regulates the expression of 
angiogenic and tissue remodeling factors (20), together with 
enzymes involved in the commitment to glycolysis. Upon activa-
tion, HIF1-α promotes the expression of lactate dehydrogenase, 
pyruvate dehydrogenase kinase PDK1 (21), and several glycol-
ysis-related genes, such as GLUT1 and PFKFB3 (22), with the 
consequence of increasing glucose uptake and glycolysis, reduc-
ing pyruvate flux into the TCA cycle, oxidative phosphorylation, 
and oxygen consumption (20). Interestingly, it has been recently 
reported that HIF-1α represents a crucial metabolic checkpoint 
for the differentiation of either Treg or Th17 cells (23). Commonly 
associated with Tregs, the CD4 Th17 cell subset has increasingly 
gained attention in cancer immunity.

In combination with HIF1-α, the oncogene c-Myc also activates 
the expression of glucose transporters, PDK1 and lactate dehy-
drogenase A (LDHA), which is responsible for enhancing glucose 
influx and glycolysis. Moreover, c-Myc induces the expression of 
glutamine transporters and glutaminase1 for glutaminolysis (24). 
It has been reported that activated T cells exploit a non-canonical 
Myc-dependent pathway coupling glutaminolysis to polyamine 
biosynthesis in order to sustain cell growth and proliferation in 
both pathological and physiological situations (25).
mTOR is a downstream target of the PI3K–AKT signaling and 
has been demonstrated to enhance the expression of HIF1-α in 
immune cells recruited at the tumor lesion (26).

In tumours, mTOR activation promotes glycolysis by enhanc-
ing (HIF1) activity; additionally it sustains fatty acid and protein 
synthesis thus supporting the survival and functions of both 
malignant and pro-tumoural immune cells of (27, 28). Within 
solid tumors, mTOR activation tunes the balance between effec-
tor versus memory CD8 T cells by regulating the expression of the 
transcription factor T-bet (29).

An increased AMP:ATP ratio induces the activation of the 
energy sensor AMPK, which plays a key, but still controversial, 
role in T cell antitumor immunity. AMPK activation in T cells may 
resemble its role in tumor cells, where it controls cell viability and 
proliferation under poor nutrient conditions (30). Additionally, 
T cells may exploit this nutrient sensor to rapidly face glucose 
limitation in the environment. In this regard, it has been recently 
reported that in vivo the AMPK signaling pathway regulates Ifng 
mRNA translation and the glutamine-dependent mitochondrial 
metabolism in T cells (31). Moreover, recent findings showed 
that the selective deletion of AMPK in T cells decreases IFNγ 
and Granzyme B production in intratumoral CD8+ T cells (32).

In main contrast to effector T cells that metabolically suffer the 
tumor nutrient landscape, other T cell subsets, such as T regula-
tory cells (Tregs), feel comfortable with the very same environment. 
This is probably due to the abundance of growth factors (such 
as transforming growth factor-β) (33) and chemokines (such as 
CCL22) (34) promoting Treg differentiation and recruitment. The 
presence of Tregs in solid tumors essentially correlates with poor 
prognosis (35). In particular, in ovarian cancer, a higher CD8+ T 
cells/Treg cells ratio associates with a particularly favorable clinical 
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outcome (34). Nonetheless, Treg contribution in the context of 
chronically inflamed tissues, such as in colorectal cancer (CRC), 
remains controversial. Discordant evidence in patients with CRC 
support, so far, the notion that Treg infiltration and accumulation 
in cancerous tissues may play either a negative (36, 37) or positive 
(38, 39) predictive role for patient survival. Metabolically, Tregs do 
not require high rate of glucose consumption and usually express 
low level of the Glut1 transporter (40). Natural and Inducible 
Tregs are primarily oxidative and metabolize pyruvate through the 
TCA cycle. They preferentially utilize lipid beta-oxidation and 
present high levels of activated AMPK, which is usually active 
in starved-fed conditions (41, 42). Furthermore, it has been 
reported that several intratumoral metabolic leftover as lactate 
and kynurenine support Treg differentiation while suppressing T 
cell cytotoxic activity (43). The generation of Treg cells in vivo is 
dependent on the aryl hydrocarbon receptor (AHR)-mediated 
induction of IDO1 and kynurenine. AHR is ligand-activated 
transcription factor, which is chronically activated in aggressive 
tumors. Therefore, in contrast to T effector cells, Tregs feel com-
fortable in the nutrient-restrictive tumor microenvironment, 
where they can efficiently active immunosuppressive pathways. 
Additionally, tumor-derived lactate polarizes immune responses 
toward a Th17/Th23 phenotype (3, 44).

TUMOR MeTABOLiSM DRiveS T CeLL 
DYSFUnCTiOn

Tumor progression is characterized by a tangled network 
of relationships among different cell types that collectively 
exploit a metabolic reprograming and mutually influence their 
functionality and, in particular, T cell functions. Because of 
the Warburg effect and high glucose consumption by cancer 
cells, tumor microenvironment shows reduced extracellular 
concentration of glucose (45). As a consequence of glucose dep-
rivation, tumor-infiltrating T cells decrease aerobic glycolysis 
and generation of the phosphoenolpyruvate (PEP) metabolite 
involved in TCR-dependent activation of Ca2+ and NFAT 
signaling, thus losing their antitumoral effector functions (46). 
Moreover, lactate accumulation in the microenvironment has 
been shown to affect T cell activation by impairing lactic acid 
secretion and disturbing metabolism. In detail, tumor acidosis 
is accompanied by the suppression of proliferation and cytokine 
production in cytotoxic T cells (CTLs) and finally inhibits CTL 
cytotoxic activity (47). Acidification of tumor microenviron-
ment dramatically impairs cytotoxic T cell proliferation and 
function (48), though it does not affect Tregs (41), inhibits 
monocyte-derived DC differentiation and activation, and is 
positively correlated with radioresistance (49). Accelerated fer-
mentation, generating high level of lactate, constitutes indeed 
a marker for metastases and correlates with poor prognosis 
(50). Also hypoxia represents a hindrance to T cell antitumor 
responses. HIF-1α has been shown to upregulate the expression 
of PD-1 ligand on cancer cells, thus inhibiting T cell-mediated 
cytotoxicity (51). Beyond glycolysis, amino acid metabolism 
represents a crucial process in tumor progression. In particular, 

l-arginine and tryptophan catabolism have been demonstrated 
to be dysregulated in cancers (5, 52).

l-Arginine metabolism is strictly dependent on the activity of 
the enzymes, nitric oxide synthase (NOS) and arginase (ARG). 
While NOS oxidizes arginine to citrulline and nitric oxide (NO), 
arginase hydrolyzes arginine into ornithine and urea. Several 
reports have showed the expression of the inducible isoform 
of NOS enzyme (iNOS) in human colon cancers, ovarian and 
prostate cancers, melanoma, and other malignant lesions, 
including the hematological ones (53). Similarly, ARG activity 
is upregulated in colon, breast, lung, and prostate cancer (54), 
and ARG1 is associated with M2 polarized, protumoral TAMs 
(55). The activation of both enzymes generates high levels of NO 
capable of either promoting or inhibiting tumor progression or 
metastasis, depending on the local concentration and duration 
of exposure, cellular sensitivity and hypoxia/re-oxygenation 
process within tumor microenvironment (48). Additionally, 
NO produced by iNOS may rapidly react with reactive oxygen 
species within the tumor lesion and produce reactive nitrogen 
species (RNS) such as peroxynitrite, which is very toxic for many 
cells, and in particular for T cells. Peroxynitrite induces apoptotic 
cell death in lymphocytes by interfering with protein tyrosine 
phosphorylation via nitration of tyrosine residues (56) or by 
nitrating the voltage-dependent anion channel, a component of 
the mitochondrial permeability transition pore (57). Although 
solid tumors are characterized by lymphocyte infiltration, tumor-
infiltrating lymphocytes frequently are unable to kill autologous 
tumor cells, experiencing an anergic/tolerant state (58, 59). 
Importantly, we have previously shown the presence of high levels 
of nitrotyrosines in both cancer specimens and tumor-infiltrating 
lymphocytes (60). As a consequence of high rate of RNS produc-
tion, the tumor microenvironment is not suitable for T cell func-
tions, and indeed a number of reports indicate that peroxynitrite 
negatively affects T-cell-mediated immunity within the tumor 
(61) and that tumor-infiltrating lymphocytes have defects in both 
signal transduction and effector killing capacity (62).

Unlike normally responsive lymphocytes in healthy tissue and 
peripheral blood, tumor-infiltrating lymphocytes are not activated 
locally by powerful signals acting either on TCR or downstream 
signaling pathways. We have previously reported that this dormant 
state is dependent on the enhanced intratumoral metabolism of 
l-arginine, because the simple addition of arginase and NOS-
specific inhibitors was sufficient to rouse CTLs, activate them, 
and start a number of events leading to cytolytic granule polariza-
tion and killing of cognate targets (60). Furthermore, high and 
prolonged exposure to RNS has been demonstrated to modulate 
tyrosine phosphorylation of several proteins, such as the CD3ζ 
chain of the TCR complex, and release of Ca2+ from intracellular 
stores, thus promoting downregulation of membrane receptors, 
such as CD4, CD8, and chemokine receptors from T cells (63). 
Moreover, RNS dampen antitumor immunity by generating post-
translational modifications – nitration and nitrosylation – of key 
proteins for T cell activation (61) and recruitment to the tumor 
site (64). Post-translational modifications of chemokines and 
chemokine receptors constitute, in fact, another mechanism cho-
sen by tumor to promote local immune dysfunction and prevent 
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effective response. We previously demonstrated that intratumoral 
nitration/nitrosylation of the chemokine CCL2 plays a crucial 
role in antitumor immunity, since RNS-modified CCL2 restrains 

T lymphocytes to the stroma at the border of neoplastic lesions, 
preventing their infiltration to the tumor core (64). According 
to this, preconditioning of tumor microenvironment with drugs 

FiGURe 1 | Tumor microenvironment shapes T cell immunity. (1) Activated T lymphocytes switch the metabolism toward aerobic glycolysis, increasing the 
uptake of glucose and glutamine from the outside and the consumption of oxygen. T cells, once reached the tumor site, need to face a hostile environment, which is 
characterized by hypoxia and nutrient deprivation. Distinct pathways regulate T cell metabolism within the tumor microenvironment. In particular, the drop of glucose 
level leads T cells to enter an (2) anergy state or to activate autophagy. Moreover, (3) c-Myc and the PI3K/Akt/mTOR pathways play a pivotal role in the energetic 
adaptation of T cells within transforming tissues. Tumor hypoxia sustains the activation of the transcription factor HIF-1α. HIF-1α represents a crucial metabolic 
checkpoint for (4) the differentiation of either Treg or Th17 cells, and (5) it has been shown to upregulate the expression of PD-1 ligand on cancer cells. Remarkably, 
amino acid metabolism in tumors significantly impacts on T cell functions. Indeed, (6) the activation of both NOS and arginase enzymes in transforming tissues 
generates high levels of NO that rapidly react with ROS to generate RNS. (7) High and prolonged exposure to RNS promotes the downregulation of key proteins for 
T cell activation, such as the CD3ζ chain, CD25, CD28, and CD62L. Additionally, RNS induces the release of Ca2+ from intracellular stores, thus provoking a 
reduction in the expression of membrane receptors, such as CD4, CD8, and CXCR4. Moreover, (8) RNS-modified CCL2 restrains T lymphocytes to the stroma at 
the border of neoplastic lesions, preventing their infiltration to the tumor core. Tryptophan deprivation within the tumor microenvironment is mainly caused by the 
accelerated activity of the IDO enzyme. (9) The drop in tryptophan availability synergizes with the local accumulation of kynurenine and its derivatives to efficiently 
inhibit the proliferation and activation of T cells.
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impairing nitration induces massive T cell recruitment to tumor 
core and thus increases the efficacy of a T cell-based immuno-
therapy approach (64). Beyond this, alteration of l-arginine 
catabolism within tumors concomitantly causes local depletion 
of the amino acid (65). Deficiency in arginine availability affects 
protein synthesis in activated T cells, provoking a reduction in 
the expression of CD3ζ chain (66), activation markers, such as 
CD25, CD28, and CD62L, and has been shown to impair T cell 
proliferation and cytokine production (67).

Importantly, local depletion of another amino acid, trypto-
phan, alters T cell activity causing their anergy (68). Tryptophan 
deprivation within the tumor microenvironment is the result 
of the accelerated catabolism of the amino acid by the enzyme 
indoleamine 2,3-dioxygenase (IDO), which converts tryptophan 
to kynurenine and generates NAD. Although IDO enzymes are 
intracellular and not secreted, the metabolic effects of IDO are 
not locally confined to the IDO-expressing cells, but they rather 
involve neighboring cells that may sense and respond to the 
reduced availability of tryptophan and to secreted kynurenine 
metabolites (68). Importantly, although IDO activity may cause 
a significant decrease in tryptophan availability in vitro, a similar 
effect in  vivo, where tryptophan concentration is 50–100  mM 
and a rapid diffusion from neighboring tissues is reasonably 
expected, has not been demonstrated so far (69). Therefore, even 
though the drop in tryptophan availability may not be sufficient 
to induce strong immunosuppressive effects, it may synergize 
with local accumulation of kynurenine and its derivatives to 
efficiently inhibit the proliferation and activation of immune cells 
(70). Based on studies examining serum levels of tryptophan and 
kynurenine, IDO appears to be chronically activated in patients 
with cancer, and IDO activation correlates with more extensive 
disease (71). IDO positivity has been indeed demonstrated in 
human tumors of different histology, such as colon and ovarian 
cancers, melanoma, and leukemia (72), and it is expressed by 
tumor cells (73), endothelial cells (74), and infiltrating immune 
cells, mainly APCs, DCs, and TAMs contributing to immune 
suppression (68, 75). Further, IDO-positive tumors have been 
demonstrated an impairment of T cell functions, since trypto-
phan shortage in the extracellular space induces T cell anergy 
and apoptosis (76). It has also been reported that antigen-specific 
cytotoxic T cells do not accumulate in the presence of IDO 
expressing tumor cells, but this tolerogenic process may be 
overcome, in mice, by the administration of the competitive IDO 
inhibitor 1MT, which is a tryptophan analog (77). Additionally, 
the administration of the small molecule, INCB024360, 
blocking IDO enzymatic activity in murine pancreatic ductal  

adenocarcinoma significantly inhibits tumor growth in a 
lymphocyte-dependent manner (78).

COnCLUDinG ReMARKS

Metabolic reprograming of cancer and stromal cells in the 
tumor microenvironment is instrumental to meet the urgent 
need for energy supply to support tumor cell proliferation 
and progression, as well as immune evasion. The paucity of 
appropriate nutrients represents a limiting step for the effec-
tiveness of antitumor T cell responses since T cells infiltrating 
malignant tissues need to face the tumor hostile environment 
to exert their functions (Figure 1). The deprivation of glucose 
and amino acids from the environment dramatically hinders 
T cell functions since it concomitantly induces the accumula-
tion of toxic catabolic by-products. In this context, amino 
acid metabolism, and in particular l-arginine and tryptophan 
catabolism, represents a crucial process in tumor progression 
and immunity. The accumulation of RNS, dependent on the 
enhanced intratumoral metabolism of l-arginine within the 
tumor microenvironment, negatively affects T-cell-mediated 
immunity since it induces a dormant state in tumor-infiltrating 
lymphocytes, which have defects in signal transduction, migra-
tion, and effector killing capacity. Nonetheless, the adminis-
tration of drugs impairing nitration positively influences T 
cell activation and cytotoxic activity and induces a massive 
T cell recruitment to tumor, thus increasing the efficacy of 
a T cell-based immunotherapy approach (64). Furthermore, 
pharmacological blockade of tryptophan catabolism results 
in the control of tumor growth in a lymphocyte-dependent 
manner. Collectively, interfering with amino acid metabolism 
within tumors represents a very promising option to develop 
novel combination therapy in order to rouse dormant T cells 
and prompt them to efficiently sustain tumor eradication.

AUTHOR COnTRiBUTiOnS

BM, BC, and AV conceived and wrote the manuscript. BM and 
BC conceived and realized the figure.

FUnDinG

The authors wish to thank the European Union’s Seventh 
Framework Programme for research, technological development, 
and demonstration under grant agreement no. 602363 and the 
ERC Advance Grant under grant agreement no. 322823 to AV.

ReFeRenCeS

1. Biswas SK. Metabolic reprogramming of immune cells in cancer progression. 
Immunity (2015) 43(3):435–49. doi:10.1016/j.immuni.2015.09.001 

2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 
(2011) 144(5):646–74. doi:10.1016/j.cell.2011.02.013 

3. Hirschhaeuser F, Sattler UG, Mueller-Klieser W. Lactate: a metabolic key 
player in cancer. Cancer Res (2011) 71(22):6921–5. doi:10.1158/0008-5472.
CAN-11-1457 

4. Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, et  al. 
Progress and promise of FDG-PET imaging for cancer patient management 
and oncologic drug development. Clin Cancer Res (2005) 11(8):2785–808. 
doi:10.1158/1078-0432.CCR-04-2626 

5. Villalba M, Rathore MG, Lopez-Royuela N, Krzywinska E, Garaude J, 
Allende-Vega N. From tumor cell metabolism to tumor immune escape. Int 
J Biochem Cell Biol (2013) 45(1):106–13. doi:10.1016/j.biocel.2012.04.024 

6. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-
Pagès C, et  al. Type, density, and location of immune cells within human 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1016/j.immuni.2015.09.001
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1158/0008-5472.CAN-11-1457
http://dx.doi.org/10.1158/0008-5472.CAN-11-1457
http://dx.doi.org/10.1158/1078-0432.CCR-04-2626
http://dx.doi.org/10.1016/j.biocel.2012.04.024


February 2016 | Volume 7 | Article 206

Molon et al. T Cell Metabolism in Cancer

Frontiers in Immunology | www.frontiersin.org

colorectal tumors predict clinical outcome. Science (2006) 313(5795):1960–4. 
doi:10.1126/science.1129139 

7. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, et al. Adoptive T cell 
therapy using antigen-specific CD8+ T cell clones for the treatment of patients 
with metastatic melanoma: in  vivo persistence, migration, and antitumor 
effect of transferred T cells. Proc Natl Acad Sci U S A (2002) 99(25):16168–73. 
doi:10.1073/pnas.242600099 

8. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, 
et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. 
N Engl J Med (2012) 366(26):2443–54. doi:10.1056/NEJMoa1200690 

9. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. 
Improved survival with ipilimumab in patients with metastatic melanoma. N 
Engl J Med (2010) 363(8):711–23. doi:10.1056/NEJMoa1003466 

10. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, et al. 
The CD28 signaling pathway regulates glucose metabolism. Immunity (2002) 
16(6):769–77. doi:10.1016/S1074-7613(02)00323-0 

11. Maciver NJ, Jacobs SR, Wieman HL, Wofford JA, Coloff JL, Rathmell JC. 
Glucose metabolism in lymphocytes is a regulated process with significant 
effects on immune cell function and survival. J Leukoc Biol (2008) 84(4):949–
57. doi:10.1189/jlb.0108024 

12. MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T 
lymphocytes. Annu Rev Immunol (2013) 31:259–83. doi:10.1146/
annurev-immunol-032712-095956 

13. Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’Sullivan D, et al. 
Posttranscriptional control of T cell effector function by aerobic glycolysis. 
Cell (2013) 153(6):1239–51. doi:10.1016/j.cell.2013.05.016 

14. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 alters 
T-cell metabolic reprogramming by inhibiting glycolysis and promoting 
lipolysis and fatty acid oxidation. Nat Commun (2015) 6:6692. doi:10.1038/
ncomms7692 

15. Zheng Y, Delgoffe GM, Meyer CF, Chan W, Powell JD. Anergic T cells are 
metabolically anergic. J Immunol (2009) 183(10):6095–101. doi:10.4049/
jimmunol.0803510 

16. Rabinowitz JD, White E. Autophagy and metabolism. Science (2010) 
330(6009):1344–8. doi:10.1126/science.1193497 

17. Kolev M, Dimeloe S, Le Friec G, Navarini A, Arbore G, Povoleri GA, et al. 
Complement regulates nutrient influx and metabolic reprogramming 
during Th1 cell responses. Immunity (2015) 42(6):1033–47. doi:10.1016/j.
immuni.2015.05.024 

18. Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose 
uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and 
trafficking. Mol Biol Cell (2007) 18(4):1437–46. doi:10.1091/mbc.E06-07-0593 

19. Ghesquière B, Wong BW, Kuchnio A, Carmeliet P. Metabolism of stromal 
and immune cells in health and disease. Nature (2014) 511(7508):167–76. 
doi:10.1038/nature13312 

20. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human 
cancer. Nat Rev Cancer (2008) 8(12):967–75. doi:10.1038/nrc2540 

21. Imtiyaz HZ, Simon MC. Hypoxia-inducible factors as essential regula-
tors of inflammation. Curr Top Microbiol Immunol (2010) 345:105–20. 
doi:10.1007/82_2010_74 

22. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer (2003) 
3(10):721–32. doi:10.1038/nrc1187 

23. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et  al. HIF1alpha-
dependent glycolytic pathway orchestrates a metabolic checkpoint for the 
differentiation of TH17 and Treg cells. J Exp Med (2011) 208(7):1367–76. 
doi:10.1084/jem.20110278 

24. Dang CV. Glutaminolysis: supplying carbon or nitrogen or both for cancer 
cells? Cell Cycle (2010) 9(19):3884–6. doi:10.4161/cc.9.19.13302 

25. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The tran-
scription factor Myc controls metabolic reprogramming upon T lymphocyte 
activation. Immunity (2011) 35(6):871–82. doi:10.1016/j.immuni.2011.09.021 

26. Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, et al. 
mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis 
for trained immunity. Science (2014) 345(6204):1250684. doi:10.1126/
science.1250684 

27. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 
(2012) 149(2):274–93. doi:10.1016/j.cell.2012.03.017 

28. Siska PJ, Rathmell JC. T cell metabolic fitness in antitumor immunity. Trends 
Immunol (2015) 36(4):257–64. doi:10.1016/j.it.2015.02.007 

29. Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector 
versus memory CD8+ T cell fate by regulating the expression of transcription 
factors T-bet and Eomesodermin. Immunity (2010) 32(1):67–78. doi:10.1016/j.
immuni.2009.10.010 

30. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMP-activated pro-
tein kinase induces a p53-dependent metabolic checkpoint. Mol Cell (2005) 
18(3):283–93. doi:10.1016/j.molcel.2005.03.027 

31. Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vázquez G, Yurchenko 
E, et  al. The energy sensor AMPK regulates T cell metabolic adaptation 
and effector responses in vivo. Immunity (2015) 42(1):41–54. doi:10.1016/j.
immuni.2014.12.030 

32. Rao E, Zhang Y, Zhu G, Hao J, Persson XM, Egilmez NK, et al. Deficiency 
of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing 
protein phosphatase-mediated cell death. Oncotarget (2015) 6(10):7944–58. 
doi:10.18632/oncotarget.3501 

33. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. Conversion of 
peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells 
by TGF-beta induction of transcription factor Foxp3. J Exp Med (2003) 
198(12):1875–86. doi:10.1084/jem.20030152 

34. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific 
recruitment of regulatory T cells in ovarian carcinoma fosters immune privi-
lege and predicts reduced survival. Nat Med (2004) 10(9):942–9. doi:10.1038/
nm1093 

35. Wilke CM, Wu K, Zhao E, Wang G, Zou W. Prognostic significance of regula-
tory T cells in tumor. Int J Cancer (2010) 127(4):748–58. doi:10.1002/ijc.25464 

36. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, et  al. Tumor-
infiltrating FOXP3+ T regulatory cells show strong prognostic significance 
in colorectal cancer. J Clin Oncol (2009) 27(2):186–92. doi:10.1200/
JCO.2008.18.7229 

37. Zhuo C, Li Z, Xu Y, Wang Y, Li Q, Peng J, et  al. Higher FOXP3-TSDR 
demethylation rates in adjacent normal tissues in patients with colon 
cancer were associated with worse survival. Mol Cancer (2014) 13:153. 
doi:10.1186/1476-4598-13-153 

38. Correale P, Rotundo MS, Del Vecchio MT, Remondo C, Migali C, Ginanneschi 
C, et  al. Regulatory (FoxP3+) T-cell tumor infiltration is a favorable 
prognostic factor in advanced colon cancer patients undergoing chemo or 
chemoimmunotherapy. J Immunother (2010) 33(4):435–41. doi:10.1097/
CJI.0b013e3181d32f01 

39. Frey DM, Droeser RA, Viehl CT, Zlobec I, Lugli A, Zingg U, et al. High fre-
quency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved 
survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer 
(2010) 126(11):2635–43. doi:10.1002/ijc.24989 

40. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, 
Deoliveira D, et al. The glucose transporter Glut1 is selectively essential for 
CD4 T cell activation and effector function. Cell Metab (2014) 20(1):61–72. 
doi:10.1016/j.cmet.2014.05.004 

41. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, 
et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs 
are essential for effector and regulatory CD4+ T cell subsets. J Immunol (2011) 
186(6):3299–303. doi:10.4049/jimmunol.1003613 

42. Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and 
growth control in tumour suppression. Nat Rev Cancer (2009) 9(8):563–75. 
doi:10.1038/nrc2676 

43. Murray IA, Patterson AD, Perdew GH. Aryl hydrocarbon receptor ligands in can-
cer: friend and foe. Nat Rev Cancer (2014) 14(12):801–14. doi:10.1038/nrc3846 

44. Shime H, Yabu M, Akazawa T, Kodama K, Matsumoto M, Seya T, et  al. 
Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. 
J Immunol (2008) 180(11):7175–83. doi:10.4049/jimmunol.180.11.7175 

45. Gullino PM, Grantham FH. The vascular space of growing tumors. Cancer 
Res (1964) 24:1727–32. 

46. Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, et  al. 
Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. 
Cell (2015) 162(6):1217–28. doi:10.1016/j.cell.2015.08.012 

47. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. 
Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 
(2007) 109(9):3812–9. doi:10.1182/blood-2006-07-035972 

48. Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK. Hypoxia and acidosis 
independently up-regulate vascular endothelial growth factor transcription in 
brain tumors in vivo. Cancer Res (2001) 61(16):6020–4. 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1126/science.1129139
http://dx.doi.org/10.1073/pnas.242600099
http://dx.doi.org/10.1056/NEJMoa1200690
http://dx.doi.org/10.1056/NEJMoa1003466
http://dx.doi.org/10.1016/S1074-7613(02)00323-0
http://dx.doi.org/10.1189/jlb.0108024
http://dx.doi.org/10.1146/annurev-immunol-032712-095956
http://dx.doi.org/10.1146/annurev-immunol-032712-095956
http://dx.doi.org/10.1016/j.cell.2013.05.016
http://dx.doi.org/10.1038/ncomms7692
http://dx.doi.org/10.1038/ncomms7692
http://dx.doi.org/10.4049/jimmunol.0803510
http://dx.doi.org/10.4049/jimmunol.0803510
http://dx.doi.org/10.1126/science.1193497
http://dx.doi.org/10.1016/j.immuni.2015.05.024
http://dx.doi.org/10.1016/j.immuni.2015.05.024
http://dx.doi.org/10.1091/mbc.E06-07-0593
http://dx.doi.org/10.1038/nature13312
http://dx.doi.org/10.1038/nrc2540
http://dx.doi.org/10.1007/82_2010_74
http://dx.doi.org/10.1038/nrc1187
http://dx.doi.org/10.1084/jem.20110278
http://dx.doi.org/10.4161/cc.9.19.13302
http://dx.doi.org/10.1016/j.immuni.2011.09.021
http://dx.doi.org/10.1126/science.1250684
http://dx.doi.org/10.1126/science.1250684
http://dx.doi.org/10.1016/j.cell.2012.03.017
http://dx.doi.org/10.1016/j.it.2015.02.007
http://dx.doi.org/10.1016/j.immuni.2009.10.010
http://dx.doi.org/10.1016/j.immuni.2009.10.010
http://dx.doi.org/10.1016/j.molcel.2005.03.027
http://dx.doi.org/10.1016/j.immuni.2014.12.030
http://dx.doi.org/10.1016/j.immuni.2014.12.030
http://dx.doi.org/10.18632/oncotarget.3501
http://dx.doi.org/10.1084/jem.20030152
http://dx.doi.org/10.1038/nm1093
http://dx.doi.org/10.1038/nm1093
http://dx.doi.org/10.1002/ijc.25464
http://dx.doi.org/10.1200/JCO.2008.18.7229
http://dx.doi.org/10.1200/JCO.2008.18.7229
http://dx.doi.org/10.1186/1476-4598-13-153
http://dx.doi.org/10.1097/CJI.0b013e3181d32f01
http://dx.doi.org/10.1097/CJI.0b013e3181d32f01
http://dx.doi.org/10.1002/ijc.24989
http://dx.doi.org/10.1016/j.cmet.2014.05.004
http://dx.doi.org/10.4049/jimmunol.1003613
http://dx.doi.org/10.1038/nrc2676
http://dx.doi.org/10.1038/nrc3846
http://dx.doi.org/10.4049/jimmunol.180.11.7175
http://dx.doi.org/10.1016/j.cell.2015.08.012
http://dx.doi.org/10.1182/blood-2006-07-035972


February 2016 | Volume 7 | Article 207

Molon et al. T Cell Metabolism in Cancer

Frontiers in Immunology | www.frontiersin.org

49. Sattler UG, Meyer SS, Quennet V, Hoerner C, Knoerzer H, Fabian C, et al. 
Glycolytic metabolism and tumour response to fractionated irradiation. 
Radiother Oncol (2010) 94(1):102–9. doi:10.1016/j.radonc.2009.11.007 

50. Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfør K, Rofstad EK, 
et al. High lactate levels predict likelihood of metastases, tumor recurrence, 
and restricted patient survival in human cervical cancers. Cancer Res (2000) 
60(4):916–21. 

51. Barsoum IB, Smallwood CA, Siemens DR, Graham CH. A mechanism of 
hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 
(2014) 74(3):665–74. doi:10.1158/0008-5472.CAN-13-0992 

52. Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, 
physiology, and clinical opportunities. J Clin Invest (2013) 123(9):3678–84. 
doi:10.1172/JCI69600 

53. Mocellin S, Bronte V, Nitti D. Nitric oxide, a double edged sword in cancer 
biology: searching for therapeutic opportunities. Med Res Rev (2007) 
27(3):317–52. doi:10.1002/med.20092 

54. Cederbaum SD, Yu H, Grody WW, Kern RM, Yoo P, Iyer RK. Arginases I and 
II: do their functions overlap? Mol Genet Metab (2004) 81(Suppl 1):S38–44. 
doi:10.1016/j.ymgme.2003.10.012 

55. Tham M, Tan KW, Keeble J, Wang X, Hubert S, Barron L, et al. Melanoma-
initiating cells exploit M2 macrophage TGFbeta and arginase pathway for 
survival and proliferation. Oncotarget (2014) 5(23):12027–42. doi:10.18632/
oncotarget.2482 

56. Brito C, Naviliat M, Tiscornia AC, Vuillier F, Gualco G, Dighiero G, et  al. 
Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting 
impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic 
death. J Immunol (1999) 162(6):3356–66. 

57. Aulak KS, Miyagi M, Yan L, West KA, Massillon D, Crabb JW, et al. Proteomic 
method identifies proteins nitrated in  vivo during inflammatory challenge. 
Proc Natl Acad Sci U S A (2001) 98(21):12056–61. doi:10.1073/pnas.221269198 

58. Radoja S, Frey AB. Cancer-induced defective cytotoxic T lymphocyte effector 
function: another mechanism how antigenic tumors escape immune-medi-
ated killing. Mol Med (2000) 6(6):465–79. 

59. Zippelius A, Batard P, Rubio-Godoy V, Bioley G, Liénard D, Lejeune F, 
et  al. Effector function of human tumor-specific CD8 T cells in melanoma 
lesions: a state of local functional tolerance. Cancer Res (2004) 64(8):2865–73. 
doi:10.1158/0008-5472.CAN-03-3066 

60. Bronte V, Kasic T, Gri G, Gallana K, Borsellino G, Marigo I, et al. Boosting 
antitumor responses of T lymphocytes infiltrating human prostate cancers. J 
Exp Med (2005) 201(8):1257–68. doi:10.1084/jem.20042028 

61. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, et al. Altered 
recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat 
Med (2007) 13(7):828–35. doi:10.1038/nm1609 

62. Whiteside TL. Signaling defects in T lymphocytes of patients with malig-
nancy. Cancer Immunol Immunother (1999) 48(7):346–52. doi:10.1007/
s002620050585 

63. Kasic T, Colombo P, Soldani C, Wang CM, Miranda E, Roncalli M, et  al. 
Modulation of human T-cell functions by reactive nitrogen species. Eur 
J Immunol (2011) 41(7):1843–9. doi:10.1002/eji.201040868 

64. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, et al. Chemokine 
nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp 
Med (2011) 208(10):1949–62. doi:10.1084/jem.20101956 

65. Predonzani A, Calì B, Agnellini AH, Molon B. Spotlights on immunological 
effects of reactive nitrogen species: when inflammation says nitric oxide. 
World J Exp Med (2015) 5(2):64–76. doi:10.5493/wjem.v5.i2.64 

66. Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, 
et  al. Arginase I production in the tumor microenvironment by mature 
myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell 
responses. Cancer Res (2004) 64(16):5839–49. doi:10.1158/0008-5472.
CAN-04-0465 

67. Bronte V, Zanovello P. Regulation of immune responses by L-arginine metab-
olism. Nat Rev Immunol (2005) 5(8):641–54. doi:10.1038/nri1668 

68. Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control 
of immune responses. Trends Immunol (2013) 34(3):137–43. doi:10.1016/j.
it.2012.10.001 

69. Löb S, Königsrainer A, Rammensee HG, Opelz G, Terness P. Inhibitors of 
indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the 
trees? Nat Rev Cancer (2009) 9(6):445–52. doi:10.1038/nrc2639 

70. Vacchelli E, Aranda F, Eggermont A, Sautès-Fridman C, Tartour E, Kennedy 
EP, et  al. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 
(2014) 3(10):e957994. doi:10.4161/21624011.2014.957994 

71. Weinlich G, Murr C, Richardsen L, Winkler C, Fuchs D. Decreased serum 
tryptophan concentration predicts poor prognosis in malignant melanoma 
patients. Dermatology (2007) 214(1):8–14. doi:10.1159/000096906 

72. Godin-Ethier J, Hanafi LA, Piccirillo CA, Lapointe R. Indoleamine 
2,3-dioxygenase expression in human cancers: clinical and immunologic 
perspectives. Clin Cancer Res (2011) 17(22):6985–91. doi:10.1158/1078-
0432.CCR-11-1331 

73. van Baren N, Van den Eynde BJ. Tryptophan-degrading enzymes in 
tumoral immune resistance. Front Immunol (2015) 6:34. doi:10.3389/
fimmu.2015.00034 

74. Riesenberg R, Weiler C, Spring O, Eder M, Buchner A, Popp T, et al. Expression 
of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with 
long-term survival of patients with renal cell carcinoma. Clin Cancer Res 
(2007) 13(23):6993–7002. doi:10.1158/1078-0432.CCR-07-0942 

75. Gottfried E, Kreutz M, Mackensen A. Tumor metabolism as modulator 
of immune response and tumor progression. Semin Cancer Biol (2012) 
22(4):335–41. doi:10.1016/j.semcancer.2012.02.009 

76. Platten M, Wick W, Van den Eynde BJ. Tryptophan catabolism in cancer: 
beyond IDO and tryptophan depletion. Cancer Res (2012) 72(21):5435–40. 
doi:10.1158/0008-5472.CAN-12-0569 

77. Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, et al. 
Evidence for a tumoral immune resistance mechanism based on tryptophan 
degradation by indoleamine 2,3-dioxygenase. Nat Med (2003) 9(10):1269–74. 
doi:10.1038/nm934 

78. Liu X, Shin N, Koblish HK, Yang G, Wang Q, Wang K, et al. Selective inhibition 
of IDO1 effectively regulates mediators of antitumor immunity. Blood (2010) 
115(17):3520–30. doi:10.1182/blood-2009-09-246124 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Molon, Calì and Viola. This is an open-access article distrib-
uted under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) or licensor are credited and that the original publication 
in this journal is cited, in accordance with accepted academic practice. No use, 
distribution or reproduction is permitted which does not comply with these 
terms.

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1016/j.radonc.2009.11.007
http://dx.doi.org/10.1158/0008-5472.CAN-13-0992
http://dx.doi.org/10.1172/JCI69600
http://dx.doi.org/10.1002/med.20092
http://dx.doi.org/10.1016/j.ymgme.2003.10.012
http://dx.doi.org/10.18632/oncotarget.2482
http://dx.doi.org/10.18632/oncotarget.2482
http://dx.doi.org/10.1073/pnas.221269198
http://dx.doi.org/10.1158/0008-5472.CAN-03-3066
http://dx.doi.org/10.1084/jem.20042028
http://dx.doi.org/10.1038/nm1609
http://dx.doi.org/10.1007/s002620050585
http://dx.doi.org/10.1007/s002620050585
http://dx.doi.org/10.1002/eji.201040868
http://dx.doi.org/10.1084/jem.20101956
http://dx.doi.org/10.5493/wjem.v5.i2.64
http://dx.doi.org/10.1158/0008-5472.CAN-04-0465
http://dx.doi.org/10.1158/0008-5472.CAN-04-0465
http://dx.doi.org/10.1038/nri1668
http://dx.doi.org/10.1016/j.it.2012.10.001
http://dx.doi.org/10.1016/j.it.2012.10.001
http://dx.doi.org/10.1038/nrc2639
http://dx.doi.org/10.4161/21624011.2014.957994
http://dx.doi.org/10.1159/000096906
http://dx.doi.org/10.1158/1078-0432.CCR-11-1331
http://dx.doi.org/10.1158/1078-0432.CCR-11-1331
http://dx.doi.org/10.3389/fimmu.2015.00034
http://dx.doi.org/10.3389/fimmu.2015.00034
http://dx.doi.org/10.1158/1078-0432.CCR-07-0942
http://dx.doi.org/10.1016/j.semcancer.2012.02.009
http://dx.doi.org/10.1158/0008-5472.CAN-12-0569
http://dx.doi.org/10.1038/nm934
http://dx.doi.org/10.1182/blood-2009-09-246124
http://creativecommons.org/licenses/by/4.0/

	T Cells and Cancer: How Metabolism Shapes Immunity
	Introduction
	Metabolic Adaptations of T Cells Within the Tumor
	Tumor Metabolism Drives T Cell Dysfunction
	Concluding Remarks
	Author Contributions
	Funding
	References


