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Allorecognition is the activation of the adaptive immune system to foreign human 
leukocyte antigen (HLA) resulting in the generation of alloantibodies. Due to a high 
polymorphism, foreign HLA is recognized by the immune system following transplant, 
transfusion, or pregnancy resulting in the formation of the germinal center and the gen-
eration of long-lived alloantibody-producing memory B cells. Alloantibodies recognize 
antigenic epitopes displayed by the HLA molecule on the transplanted allograft and 
contribute to graft damage through multiple mechanisms, including (1) activation of the 
complement cascade resulting in the formation of the MAC complex and inflammatory 
anaphylatoxins, (2) transduction of intracellular signals leading to cytoskeletal rearrange-
ment, growth, and proliferation of graft vasculature, and (3) immune cell infiltration into 
the allograft via FcγR interactions with the FC portion of the antibody. This review focuses 
on the generation of HLA alloantibody, routes of sensitization, alloantibody specificity, 
and mechanisms of antibody-mediated graft damage.

Keywords: human leukocyte antigen, allorecognition, HLA antibody, non-HLA antibody, transplant, Fc receptor, 
complement, endothelium

iNTRODUCTiON

The immune response is designed to recognize antigens that are distinct from self – termed “non-
self ” or “altered self ” – be they protein, lipid, or carbohydrate. Allorecognition is the activation of 
the transplant recipient’s adaptive immune response to foreign histocompatibility antigens following 
transplant (1, 2). This review focuses on the recognition of allogeneic human leukocyte antigen 
(HLA) and non-HLA molecules by the humoral immune response in the context of transplantation. 
We discuss the generation of alloantibodies, and how they mediate graft injury and rejection.

Human Leukocyte Antigen: Genomic Organization, Structure, 
Polymorphism, and Function
The human major histocompatibility complex (MHC), located on chromosome 6, is composed of 
highly polymorphic HLA class I genes (HLA-A, -B, and -C), HLA class II genes (HLA-DR, -DQ, 
and -DP), non-classical class I genes (HLA-E, -F, and -G), and class I-like genes (MICA and MICB) 
(3). The HLA class I molecules function to present peptide derived from intracellular antigens to 
CD8+ T lymphocytes and serve as ligands for receptors on natural killer (NK) cells. The HLA class 
II molecules present antigens from the extracellular space to CD4+ T cells.
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TABLe 1 | Typing of HLA molecules can be at low or high resolution.

Level of typing resolution Definition Nomenclature

Low Serologic/antigen A2
High Allele A*02:01

FiGURe 1 | HLA class i and ii are heterodimeric transmembrane 
proteins. HLA Class I is made up of a heavy chain with three globular 
domains (a1, a2, and a3) non-covalently bound to β2m. HLA Class II is made 
up of two heavy chains (a-chain and b-chain) each with two globular domains 
(a1 and a2 or b1 and b2). The a1and a2 domains of HLA class I, and the a1 
and b1 domains of HLA class II, make up the peptide-binding groove.
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Human leukocyte antigen molecules are heterodimers formed 
by polypeptides encoded by two distinct genetic loci (Figure 1) 
(3). The HLA class I molecule consists of one heavy β-chain that is 
non-covalently bound to a β2-microglobulin (β2m) light chain at 
the cell surface for stability. β2m is highly conserved and does not 
exhibit polymorphism. The HLA class II molecule is composed 
of two transmembrane glycoprotein chains  –  an α-chain and 
β-chain. The α-chain shared by all HLA-DR molecules (DRA1) 
has limited polymorphism (seven alleles identified to date, with 
only two different proteins/amino acid sequences; the amino 
acid polymorphism is V217L in the cytoplasmic domain) and is 
not a known target of humoral alloresponses. By contrast, both 
the α- and β-chains of HLA-DP and HLA-DQ are polymorphic 
(3, 4).

Globular domains of the HLA Class I and II molecules form 
the peptide-binding cleft that accommodates peptide antigens 
and interacts with the T cell receptor (TCR). The remarkable 
polymorphism of HLA Class I and II molecules allows for the 
presentation of a vast array of antigenic peptides within the 
human population. Each HLA molecule binds distinct peptides. 
At the protein level, HLA molecules are defined as antigens by 
either low-resolution (two digit, serologic level) or high resolu-
tion (four digit, allele level) nomenclature (Table 1). At the sero-
logic level, there are about 20 HLA-A, 50 HLA-B, 10 HLA-Cw, 18 
HLA-DR, and 7 HLA-DQ antigens. However, at the allele level of 
resolution, the number of HLA antigens in each serogroup is tre-
mendously expanded due to genetic polymorphism within each 
serogroup – ~2000–3000 distinct proteins for each of HLA-A, B, 
and C, ~500–2000 for each of DRB1, DQB1, DPB1, and ~10–50 
for each of DRB3 (DR52), DRB4 (DR53), DRB5 (DR51), and 
DQA1(4). Amino acid differences between HLA alleles enable 
presentation of a diverse array of peptides, and represent the basis 

for alloimmune recognition of non-self HLA by both T cells and 
antibodies (3).

Mechanisms of Allorecognition and 
Generation of Allospecific Antibodies
Three distinct pathways of allorecognition have been defined 
(Figure  2). The direct, indirect, and semidirect pathways can 
occur independently or simultaneously. Activation of the recipi-
ent’s CD4+ T lymphocytes is a pivotal step in the initiation of the 
immune response to alloantigen following transplantation lead-
ing to downstream activation of cytotoxic CD8+ T lymphocytes 
and antibody-producing B cells.

Indirect Allorecognition
Indirect allorecognition is the activation of the transplant recipi-
ent’s CD4+ T cells by alloantigen that is processed and presented 
in the context of the recipients HLA as occurs with the normal 
immune response to foreign pathogen (2). Donor antigens, shed 
by the grafted organ, are processed and presented in the context 
of self-restricted HLA class II by the recipient’s B cells. The recipi-
ent’s follicular helper CD4+ T cells are then activated to provide 
help leading to the generation of alloreactive CD8+ effector T 
cells and antibody-producing B cells (1, 5, 6). The immune 
response engendered by this pathway is credited with driving 
chronic rejection and due to lower frequency of T cells with 
indirect allospecificity, and requirement for antigen processing, 
is physio-dynamically slower than the response to presentation 
through the direct pathway (7–10).

Direct Allorecognition
Direct allorecognition is the activation of the transplant recipi-
ent’s CD4+ T cells by donor HLA:peptide complexes (2). Antigen 
presentation is mediated by the donor’s dendritic cells that are 
transplanted as passengers with the organ. In the context of 
inflammatory signals subsequent to the transplantation surgery, 
the donor’s DC, presenting intact donor allo-histocompatibility 
antigens, migrate to the secondary lymph nodes of the recipi-
ent and present antigen to the recipients CD4+ T cells (11, 
12). The strength of the immune response elicited by the direct 
allorecognition pathway correlates to the high frequency of 
recipient allogeneic T cells that become activated during the first 
few weeks following transplant (13, 14) mediating acute rejection. 
The immune response weakens as the passenger DC leave the 
graft (15, 16). CD4+ T cells activated through the direct pathway 
are capable of providing help to effector CD8+ T cells, therefore, 
promoting rejection of the transplanted organ (5). However, acti-
vation of B cells and production of alloantibody does not occur 
in the context of direct allorecognition as there is no cognate 
interaction between the T helper cell and B cell (5).

Semi-Direct Allorecognition
The semi-direct pathway of allorecognition is presented as a 
hypothesis to describe events of apparent overlap between the 
direct and indirect pathways. Evidence from animal models of 
transplant rejection indicate that indirect allospecific CD4+ 
T  cells can provide help to direct allospecific CD8+ T cells 
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FiGURe 2 | indirect, semidirect, and direct allorecognition. In the indirect pathway, (1) donor alloantigens are processed by recipient B cells and (2) presented 
to recipient T follicular helper (TFH) cells and CTL. Alloantibodies are generated when alloreactive B cells interact with CD4+ T cells. The semidirect pathway involves 
(3) intact donor HLA class I:peptide complexes that are presented on the DC of the recipient (through either membrane exchange or exosome uptake) to recipient 
CD8+ T cells (CTL). Simultaneously, (4) processed donor peptide is presented in the context of the recipient’s HLA class II to the recipient’s helper CD4+ T cells (Th). 
In the direct pathway, (5) allogeneic MHC class I and II antigens are presented to recipient CD4+ and cytotoxic CD8+ T cells (CTL) by donor APCs. Recipient cells, 
green. Donor Cells, blue.
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(17,  18). In principle, this would require a “four cell” model 
in which CD4+ T cells activated via the indirect pathway by 
processed alloantigen in the context of self-restricted HLA class 
II provide help to effector CD8+ T cells activated via the direct 
pathway by donor passenger APC bearing intact HLA:peptide. 
The “four cell model” challenges the dogma of the “three cell” 
or “linked” model whereby the primary mechanism by which 
activated helper T cells provide help to effector CD8+ T cells is 
by providing signals to the APC that result in the upregulation 
of presented antigens (19–21). Helper CD4+ T cells, therefore, 
“license” APC to more effectively present peptide in the context 
of HLA class I. The “three cell” model requires that both anti-
genic determinants recognized by CD4+ and CD8+ T cells be 
presented on the same APC.

However, the mechanism underling the phenomena of 
semi-direct allorecognition more likely lies in the exchange of 
membrane proteins between immune cells (22). After trans-
plantation, the recipients DC acquire intact donor HLA class 
I:peptide complexes from donor passenger DC or endothelial 
cells through either cell–cell interactions or by uptake of 
exosomes containing the antigen that are shed from donor tis-
sue (23, 24). In following, the recipients DC now bears intact 
donor HLA class I molecules as well as recipient HLA class II 
molecules, and is capable of stimulating the recipients CD4+ 
and CD8+ T cells via the indirect and direct pathways in a “three 
cell” model. Soluble MHC class I can be taken up by DC in vitro, 
and then presented leading to the production of alloantibody 
(25). The work by Curry et al. implies that soluble alloantigen 
can be taken up and presented intact to direct B cells, and can 
simultaneously be processed and presented to indirect CD4+ 
T cells.

Generation of HLA Alloantibody
Conlon et al. (6) definitively showed that production of alloanti-
body occurs exclusively through the indirect pathway. In a murine 
heart allograft model, C57B/6 mice (H-2b) lacking intact TCRs 
were transplanted with a BALB/c allograft (H-2Kd). Subsequent 
reconstitution with TCR transgenic CD4+ T cells engineered 
to specifically recognize an immunodominant BALB/c peptide 
(H-2Kd

54–68) processed and presented by MHC Class II resulted 
in a strong anti-H-2Kd IgG alloantibody response to the allograft. 
Furthermore, the adoptively transferred CD4+ T cells were found 
in germinal centers (GC), having acquired the phenotype of T 
follicular helper (TFH) cells (CXCR5+CCR7−), and anti-H-2Kd 
plasma cells were found in the bone marrow. By contrast, direct-
pathway CD4+ T cells were unable to provide help to allospecific 
B cells and alloantibody was not produced.

Formation of the Germinal Center and Generation of 
Long-Lived Memory
B cells residing in the secondary lymphoid organs can be exposed 
to small antigens directly through diffusion from the lymphatic 
system, or to large immune complexed antigens presented by 
follicular dendritic cells or by macrophages. Regulation of B cell 
immunity and generation of antibody-secreting plasma cells is 
primarily dependent on interactions with TFH cells in the GC of 
the secondary lymphoid organs (26). Antigen-specific TFH cells 
and antigen-primed B cells migrate to follicular regions of the 
secondary lymph nodes and form stable contacts through the 
signal lymphocyte activation molecule (SLAM)-associated pro-
tein (SAP) (27). Integrins and the SLAM protein CD84 are also 
involved in the interaction between TFH cells and pre-GC B cells 
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(28). These interactions ultimately lead to significant proliferation 
of antigen-specific B cells and the formation of the GC. CD4+ 
T cells recognize their cognate peptide antigen presented in HLA 
class II by the B cell, and provide help through costimulation and 
cytokines to drive activation and clonal expansion of B cells.

In the GC, B cells make contact with TFH cells that are both 
transient and stable resulting in selection of B cells that will that 
enter the long-lived memory component of the immune system 
(29, 30). Here, through somatic hypermutation, GC B cells that 
have high antigen affinity differentiate into memory B cells or 
antibody-producing long-lived plasma cells (31). Activated B cells 
differentiate into low-affinity antibody-producing plasmablasts, 
or undergo class-switch recombination and somatic hypermuta-
tion to form affinity matured, class-switched memory B cells or 
plasma cells. Long-lived plasma cells residing in the bone marrow 
contribute to much of the circulating antigen-specific immuno-
globulin and can persist for decades. There is also evidence that 
memory B cells can be maintained in the circulation without 
a requirement for continuous antigen exposure (32), ready for 
rapid recall upon repeated stimulation with antigen.

Recent work has aimed at detection of circulating allospecific 
memory B cells to predict durable sensitization and anamnestic 
responses in patients awaiting transplantation. One recent report 
(33) found that circulating HLA-specific B cells were found only 
in patients with a history of sensitization, and were detectable in 
nearly half of such patients. Interestingly, patients with circulat-
ing HLA antibodies but no known sensitization event had no 
detectable circulating B cells. Transfusion also resulted in little 
to no detectable circulating anti-HLA memory B cells, consist-
ent with the theory that transfusion is a less vigorous sensitizing 
event compared with pregnancy or transplantation (see below) 
(34). Snanoudj et al. were able to detect circulating B cells tar-
geting prior donor antigens many decades after transplantation 
and even after graft removal (33), supporting the paradigm that 
memory B cells do not require persistent antigen for survival. 
Finally, and most notably, several patients had detectable HLA 
antibody secreting B cells in circulation but no detectable circu-
lating antibodies in their sera.

Kinetics of Allorecognition
Direct pathway-activated donor-specific T cells are associated 
with acute T cell-mediated rejection in renal transplant patients 
(35). CD4+ T cells isolated from the recipient’s pre-transplant 
blood that were responsive to direct allostimulation with donor 
cells were also found to be predictive of early post-transplant out-
comes (35, 36). However, T cells activated via the direct pathway 
were found to be predominantly hyporesponsive in patients with 
transplant coronary artery disease (TCAD), chronic allograft 
nephropathy (CAN), or chronic rejection following liver trans-
plant indicating that these cells are not contributing to chronic 
rejection (7, 10, 37). In comparison, T cells primed by the indirect 
pathway are thought to mediate chronic rejection and are found 
in high frequency in patients with CAN, and in heart transplant 
patients with chronic rejection (7, 9, 10, 38).

Notably, T cells stimulated by the indirect allorecognition 
pathways are also capable of contributing to acute rejection during 
the early post-transplant period. Circulating allopeptide-reactive 

T cells were predictive of rejection in heart transplant patients stud-
ied during the first 10 weeks post-transplant (39). Furthermore, T 
cells responsive to allopeptide were found in significant quantities 
above that found in circulation when isolated from biopsies of 
graft tissue, suggesting that indirect pathway T cells can contrib-
ute directly to acute graft rejection (39).

ALLOANTiBODY ANTiGeN SPeCiFiCiTY

Antibody Structure and Function
Antibodies are heterodimers composed of a light chain and 
heavy chain encoded by distinct loci on different chromosomes. 
Each chain contains a constant region that is invariant, and a 
variable region that undergoes both recombination and somatic 
hypermutation to yield clonally unique sequences. The variable 
regions of both heavy and light chain form the antigen binding 
region (“complementarity determining region”), or paratope, 
which binds its cognate epitope on the antigen. Human immu-
noglobulins are divided into five isotypes (IgM, IgD, IgA, IgE, and 
IgG). Several of these isotypes are further divided into subclasses 
(IgG1, IgG2, IgG3, and IgG4; IgA1 and IgA2). Antibody isotype 
and subclass are determined by the constant region.

The subclasses were identified and numbered according 
to their predominance in circulation rather than order on the 
genome. Early in the GC reaction, IgM+ B cells class switch first 
to IgG3 or IgG1, then IgG2, and rarely IgG4 [immunoglobulin 
sequential class switching is described in Ref. (40, 41)].

Functionally, the subclasses of IgG are distinct. IgG1 has the 
highest concentration in circulation, and fixes complement well. 
IgG2 is the next most abundant in circulation and is not an effi-
cient complement fixer. IgG3 is unique with its long hinge region 
that confers the highest affinity for C1q compared with other 
subclasses, making it a potent effector [extensively reviewed in 
Ref. (42)]. However, IgG3 has the shortest half-life in circulation 
and, being first in order of class switching, has typically the lowest 
affinity for antigen but is the most potent activator of complement 
(43). IgG1, IgG3, and IgG4 mostly recognize protein antigens, 
while IgG2 is canonically efficient at recognizing carbohydrate 
antigens (in the absence of T cell help) and allergens. It is thought 
that IgG2 and IgG4 appear later after class switching and affinity 
maturation, as they have higher affinity for antigen but gener-
ally less effective activation of Fc-mediated effector functions, to 
temporally limit the immune response (41).

Antibodies Are Specific for Antigenic 
epitopes
Alloantibodies can be generated against any of the polymorphic 
loci, i.e., HLA-A, -B, -Cw, DRB1, DRB3 (DR52), DRB4 (DR53), 
DRB5 (DR51), DQB1, DQA1, DPB1, and DPA1. Antibodies 
recognize three-dimensional arrangements of amino acids on 
antigens, called epitopes. Fifteen to 25 amino acid residues form 
epitopes that are not necessarily adjacent in linear sequence, but 
are generally within 4 Å (44) (Figure 3). Many of the amino acid 
polymorphisms within HLA molecules lie within and around the 
peptide-binding groove at exposed residues on the alpha helices 
of the α1 and α2 chains of HLA class I, and on the α1 and β1 
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FiGURe 3 | Cartoon structure of antibody engaging epitope on HLA 
class i. Theoretical locations of polymorphisms impacting peptide binding 
are indicated in blue on the beta sheet of HLA class I. Locations of 
polymorphic amino acid residues available for recognition by antibodies on 
the alpha helices are highlighted in red. Red box, epitope.
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chains of HLA class II, enabling presentation of diverse peptides. 
The host–pathogen arms race is believed to have driven this 
polymorphism to prevent pathogen immune escape and protect 
populations from epidemics (45). Interestingly, antibody reactiv-
ity may also be influenced by the bound peptide (46), which can 
alter the overall three-dimensional conformation of HLA.

immunogenicity of HLA
Alloantibodies recognize three-dimensional amino acid epitopes 
on non-self HLA molecules. Because of the evolution of the HLA 
system, these epitopes can be shared by many different antigens, 
leading to broad antibody sensitization after exposure to a limited 
repertoire of non-self HLA. Antibodies are also sensitive enough 
to recognize single amino acid differences, resulting in intra-allele 
antibody production (47). Furthermore, molecular differences 
between HLA antigens can affect expression levels at the surface 
of the cell. Below, we describe in greater detail the mechanisms 
governing these various aspects of alloantibody recognition of 
epitopes.

Cross-Reactive Antibody Groups
The diversity of HLA has been driven by several genetic processes 
during positive selection. One major mechanism is gene conver-
sion via homologous recombination. Gene conversion results in 
large segments of genetic material being shared between alleles, 
giving rise to multiple proteins with the same or similar amino 
acid epitopes that can be recognized by the alloantibody response 
(48). This epitope sharing also results in cross-reactive antibody 
groups (CREGs), and indeed phylogenetic grouping of HLA 
based on nucleotide sequences generally mirrors serological 
cross-reactivity (49). Broad sensitization against many HLA 
antigens can, thus, occur even when the immune system is only 
exposed to a single non-self HLA antigen. For example, exposure 

to HLA-A11 may result in the generation of an antibody that is 
specific to an epitope carried by multiple HLA antigens belong-
ing to the A1 CREG including HLA-A1, A3, A23, A24, A36, and 
A80 as well as A11 (50, 51). In another example demonstrating 
inter-locus reactivity, sensitization to HLA-Cw can lead to 
antibody production to antigens of HLA-B (52) as HLA-B and 
HLA-Cw are more closely related to one another than to HLA-A. 
Similarly, DP antigens share epitopes with DR (53).

An extreme example of broad sensitization is in response to 
the mutually exclusive public epitopes Bw4 and Bw6, which are 
present on many different HLA-B (as well as some HLA-A, for 
Bw4) antigens. An individual exposed to a Bw6 positive antigen, 
such as B7, may produce antibodies against the Bw6 epitope that 
react with more than 20 different HLA-B antigens, carried by 
more than 50% of the population. These determinants, as well as 
C1 and C2 determinants on HLA-Cw molecules, are critical for 
NK cell receptor (KIR) binding, and so have likely been conserved 
through co-evolution of HLA and KIR receptors to prevent loss 
of self recognition (54).

In seminal work, Parham and McLean (55) described sero-
logical reactivity in relationship to known amino acid sequence 
data, first raising the idea of molecular matching. Differences in 
epitopes or “structural compatibility” between self and potential 
donor HLA antigens, also known as “eplets,” could portend the 
likelihood of an antibody response. HLA typing for solid organ 
transplantation is generally reported at the serologic (two digit) 
level. However, epitope matching is best accomplished with higher 
resolution HLA typing such that amino acid sequences that may 
be different within serologically equivalent groups are defined. 
Several groups have advocated for the use of structural epitope 
or eplet matching strategies in organ allocation, over serologic 
level matching (56, 57). For example, Wiebe et al. reported a lower 
incidence of de novo DSA production in patients who were HLA 
class II epitope matched (58), and immunogenicity of HLA-DP 
(59) also appears to be strongly based on epitope recognition.

Allele-Specific Antibodies
Antibodies can be produced against epitopes within antigens that 
differ from self by as little as one amino acid. Therefore, in addition 
to antibodies against serologic level HLA molecules, individuals 
can produce antibodies to other alleles of “self ” antigens, if amino 
acid sequences in key positions are sufficiently disparate. For 
example, a patient who displays HLA-DQ6 at the serologic level 
may also be defined through higher resolution typing methods as 
DQB1*06:01 at the allele level. The patient may become sensitized 
to other alleles of DQ6 and display allele-specific antibodies to 
alleles, such as DQB1*06:04, that are distinct from self (60).

Epitopes Formed by Specific DQA1/DQB1 Pairings
It is also possible for individuals to make antibodies against 
an epitope that is formed by the pairing of specific DQα1 and 
DQβ1 chains (61). The majority of HLA-DQ reactive antibodies 
recognize the DQβ chain, while a minority (<20%) bind DQα 
chain or a combination epitope formed by specific DQα/β pair-
ings (61). Importantly, such antibodies do not produce positive 
crossmatches against donors who carry only one of the DQα or 
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DQβ alleles in a different pairing (62), emphasizing the specificity 
of such antibodies.

Molecular Contributions to Immunogenicity
Differences in antigen availability may necessarily influence 
immunogenicity. Cell surface expression levels are known to vary 
among different loci, and even different alleles, of HLA. Certainly, 
expression of HLA-Cw (63, 64) and HLA-DP (65) is less abundant 
than proteins of other loci on endothelial cells that make up the 
vascular walls of the transplanted organ. In addition, HLA-A was 
found to be more highly expressed than HLA-B in HEK293T cells 
as it is hypothesized to form a more stable interaction with β2m 
throughout the terminal region of the alpha 2 domain and the 
entire alpha 3 domain (66) of the molecules.

Furthermore, Ramsuran et  al. recently reported wide varia-
tion in mRNA levels between different antigens of HLA-A; for 
example, individuals homozygous for HLA-A24 had higher 
expression of HLA-A than those homozygous for HLA-A3, 
which was attributed to polymorphic CpG sites and increased 
DNA methylation in the lower expressing alleles (67). Finally, 
lower expression of HLA-Cw may be the result of reduced affinity 
for β2 microglobulin, resulting in less stable protein at the cell 
surface (68, 69), increased degradation of mRNA (63), or dif-
ferential regulation by miRNA (70). Accordingly, sensitization to 
HLA-Cw is reportedly less frequent compared with other HLA 
class I molecules (71).

SeNSiTiZiNG eveNTS LeADiNG TO HLA 
iMMUNiZATiON: ROUTeS AND RATeS OF 
HLA SeNSiTiZATiON

Antibody responses to allogeneic HLA molecules can occur after 
any exposure to non-self tissues, such as transfusion, pregnancy, 
or transplantation. However, the durability and nature of the 
sensitization may vary depending on the alloimmunizing event.

Transfusion
Interestingly, the incidence of alloimmunization in the general 
population with a history of prior transfusion is less than 2% 
(72, 73), while in comparison Hyun et al. (74) reported that one-
third of transplant candidates with a history of transfusion were 
sensitized. The discrepancy indicates that transplant patients 
may have a more robust response to sensitization via transfusion, 
or may have more transfusions compared with non-transplant 
candidates.

Transfusion alone is considered poorly immunogenic. 
Sensitization to HLA antigens via transfusion requires very large 
blood volumes or multiple events to induce persistent HLA 
allosensitization in otherwise non-sensitized individuals (34). 
Paradoxically, a protective “transfusion effect” was reported in the 
early transplantation literature (75, 76), initially suggesting that 
donor-specific transfusion is immunomodulatory and improved 
graft outcomes. Animal models have suggested that graft pas-
senger leukocytes are important in this process, thus, providing 
tolerance prior to transplant (77). However, transplant recipients 
sensitized by third party transfusion have poorer 1-year survival 

compared with non-sensitized recipients (78). A modern meta-
analysis of that era concluded that higher rates of HLA sensitiza-
tion are found in patients with a history of transfusion compared 
with those without, and that there is a neutral to negative effect 
on allograft outcome after sensitization by transfusion (79).

Pregnancy
Both full-term pregnancy and spontaneous miscarriage induce 
alloantibodies (80). Anti-paternal alloantibodies appear around 
or after the 28th week of gestation during pregnancy (80). 
Sensitized women have higher rates of parity (pregnancy) 
compared with non-sensitized patients (81). One-third to half 
of women develop HLA immunization after delivery during 
their first pregnancy (73, 74, 82), and immunization frequency 
increases with parity (82). Antibodies to HLA class I were 
slightly more frequent than those to class II, although both were 
produced.

Female patients receiving kidney allografts from their male 
partners or their offspring experienced higher rejection rates 
(83), pointing to increased immunological risk in women upon 
re-exposure to paternal antigens on the allograft. Generally, 
antibodies induced by pregnancy declined in the circulation over 
time. Even so, post-transplant antibody increases occurred in the 
pregnancy cohort even decades after the last pregnancy (84).

Transplantation
Transplantation itself is a significant alloimmunizing event (81), 
and previously non-donor sensitized solid organ transplant 
recipients develop de novo donor-specific HLA antibodies at a 
rate of about 8–10% in the first year for liver and renal transplants 
(85, 86), and 15–25% of renal and cardiac transplant by 10 years 
post-transplant (85, 87, 88). Removal (transplantectomy) of failed 
renal-allografts appears to stimulate a large increase in circulating 
DSA (89), whether from increased immune activation in response 
to surgical trauma, removal of the antigen “sink” provided by the 
allograft and/or immunosuppression, is unclear.

When evaluating a patient for re-transplantation, it is impor-
tant to consider the presence of donor-specific alloantibodies that 
were formed via sensitization to the first allograft in relationship 
to the donor antigens carried by the second potential donor – the 
so-called “repeat mismatches.” Repeat mismatched donor HLA 
antigens against which a recipient has preformed alloantibody, 
particularly to HLA-DR, were found to have a detrimental effect 
on renal-allograft survival (90–92). While Farney et al. did not 
uncover a deleterious effect on graft survival of retransplantation 
with donors who shared mismatches in the presence of alloan-
tibodies with prior donors (93), a more recent study found that 
re-exposure to mismatched HLA class I antigens increased the 
risk of early graft loss in renal transplant recipients (94). Typically, 
repeat HLA mismatches in donors against which a recipient has 
made antibodies are avoided by transplant programs (95).

Allografts are also used for vascular reconstruction in many 
forms of congenital heart disease and have been demonstrated 
to cause persistent sensitization to HLA antigens (96). These 
findings have implications for those in whom heart transplant is 
considered late in the clinical course.
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ventricular Assist Devices
Ventricular Assist Devices (VADs) are associated with increased 
production of HLA antibodies. The current paradigm is that the 
VAD provides a continual antigenic or inflammatory stimulus that 
promotes generation of de novo HLA antibodies when patients 
are exposed to blood and/or platelet transfusions or heightens 
existing HLA antibody levels. In a recent study, we observed that 
patients implanted with the older pulsatile VAD (BiVad) showed 
increased HLA sensitization vs. patients implanted with the 
Heart MateII Axial VAD suggesting the older, pulsatile devices 
had greater sensitization potential (97).

Natural Antibodies
It has been suggested that HLA antibodies may be formed by 
means other than the typical routes of sensitization discussed 
above. Antibodies to HLA are found in non-transfused males 
at a rate of nearly 50% in one study (98) and often react with 
a restricted subset of HLA antigens that are uncommon in the 
general population. There is some evidence pointing to cross-
reactivity of pathogens (especially viral) with HLA by T cells 
(99–102). The abundant viral-specific memory T cell repertoire 
may, therefore, contribute to alloantibody production. Viral 
cross-reactivity with HLA may also occur at the protein level. 
For example, antibodies to HIV-1 may recognize HLA (103), 
and immunization with the HepB vaccine caused HLA antibody 
positivity in approximately half of previously negative, healthy 
adults 1 month after vaccination (104).

It has been proposed that “natural antibodies” against the 
non-classical HLA-E molecule can cross-react with HLA class 
I molecules (105). Alternatively, it is possible that antibodies 
detected are false-positive reactions with denatured antigen, a 
known limitation of the single-antigen bead assay commonly 
used to identify HLA antibodies in the sera (106–108). Additional 
evidence shows these antibodies do not often react with native 
antigen on cells (108, 109), and the clinical significance and 
durability of such natural antibody responses remain unclear 
(110, 111).

Non-HLA Antibodies
Non-HLA antibodies can be directed toward either alloan-
tigens, such as the major histocompatibility complex class I 
chain-related gene A (MICA) or B (MICB), or tissue-specific 
autoantigens, such as vimentin, cardiac myosin (CM), collagen 
V (Col V), agrin and angiotensin II receptor type I (AT1R). 
Additional non-HLA targets recently identified by Jackson et al. 
include anti-endothelial cell targets, including endoglin, EGF-
like repeats, Fms-like tyrosine kinase-3 ligand, and ICAM-4. The 
principle antigenic targets of non-HLA antibodies are expressed 
on cells of the allograft, including endothelium and epithelium. 
Therefore, donor cells are in direct contact with the recipients 
circulating peripheral blood lymphocytes, and have been shown 
to be the major immunological targets for the pathogenesis of 
allograft rejection. Prevalence of anti-endothelial cell antibodies 
(AECA) among renal recipients was nearly one quarter in pre-
transplant sera (112). AECAs correlated with post-transplant 
HLA DSA and AMR. Sun et al. observed that anti-endothelial 

cell antibodies were found in patients pre-transplant, but that 
they did not correlate with outcome or rejection; by contrast, de 
novo development of AECAs was significantly associated with 
early and severe acute rejection, but not C4d (113). AECA were 
implicated as the cause of acute antibody-mediated rejection 
(AMR) in 30% of heart transplant recipients without DSA to 
HLA (114).

MeCHANiSMS OF GRAFT DAMAGe BY 
HLA ANTiBODieS

High-titered pre-transplant DSA directed against HLA class I 
antigens can cause catastrophic hyperacute rejection and imme-
diate graft loss (115), whereas high titer class II DSA mediate 
graft rejection 2–4  days after transplant, upon re-expression 
of HLA class II antigens on the endothelium of the allograft 
(116–118). By contrast, pre-transplant DSA of low titer are often 
associated with development of acute AMR during the first 
3  months after transplantation and/or lower long-term graft 
survival (119). If left untreated, patients with AMR are at risk 
of graft loss and/or markedly shortened overall graft survival 
time. Patients producing de novo anti-HLA antibodies against 
their donor following transplantation are also at increased 
risk of graft failure unless their response can be controlled or 
abrogated (120).

There are three major effector functions carried out by anti-
bodies that can impact the graft. First, bivalent IgG can dimerize 
or crosslink its target upon binding. Collective studies indicate 
that IgG binding to HLA agonistically crosslinks HLA molecules 
and triggers downstream activation of the target cells. Second, 
antibodies can activate the classical complement cascade through 
binding to the Fc fragment to trigger production of potent 
anaphylatoxins, chemoattractants, opsonins, and cell-damaging 
factors. Thirdly, HLA IgG bound to target cells can engage Fc 
receptors on myeloid and lymphoid cells, to employ a host of 
Fc receptor-mediated effector functions, including antibody-
dependent cell cytotoxicity, antibody-dependent phagocytosis, 
and augment recruitment. These effector functions work in 
concert, and there is substantial interplay between them, as we 
will discuss below.

HLA Antibody-induced Signaling in Graft 
vascular Cells
Antibodies are capable of agonistically crosslinking their protein 
targets at the cell surface [recently reviewed in Ref. (121)]. In 
vascular cells, crosslinking of HLA induces intracellular signaling 
cascades that lead to functional changes, such as increased cell 
migration, cytoskeletal rearrangement, growth and proliferation, 
endothelial activation and exocytosis, and increased recruitment 
of leukocytes. These functional changes parallel the histological 
findings in clinical AMR, including microvascular inflammation, 
endothelial dysfunction, expansion of the neointima, and infiltra-
tion of mononuclear cells (Table 2).

HLA class I and II do not have intrinsic kinase activity and, 
therefore, partner with other proteins to transduce intracellular 
signals. Ligation of HLA class I with antibodies increases its 
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TABLe 2 | Function of HLA antibodies leading to histological 
manifestations of AMR.

Histological 
manifestation

Antibody function

C4d deposition Activation of complement
Endothelial cell swelling HLA crosslinking leading to cytoskeletal changes

Mononuclear cell 
infiltration

HLA crosslinking increases P-selectin and 
chemokines, monocyte, and neutrophil adherence
Antibody Fc regions interact with FcγRs

Neointimal thickening HLA crosslinking increases endothelial and 
smooth muscle cell proliferation and migration
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association with integrin β4 which, in turn, activates intracellular 
signaling cascades (122). Integrin β4 is an important cell adhe-
sion protein regulating cell adhesion, proliferation,  migration, 
and survival. Blockade of integrin β4 impairs HLA antibody-
stimulated signal transduction. Protein(s) that partner with HLA 
class II to transduce signaling are not yet reported. However, 
ligation of either HLA class I or class II with antibodies activates 
mammalian target of rapamycin (mTOR) signaling through the 
SRC/FAK–PI3K–AKT pathway and increases Akt-dependent 
cell survival signaling, through upregulation of Bcl-2 and HO-1 
(123–125). Furthermore, activation of key signaling proteins in 
endothelium, including S6K, S6RP, and ERK, demonstrated in 
human cardiac allografts with AMR and in murine models of 
MHC antibody-mediated injury (126–128) suggests pro-survival 
signals that may increase endothelial persistence, stress fiber 
formation (129, 130), and resistance to complement-induced cell 
death (125), contributing to neointimal formation during chronic 
rejection. Additional work by Galvani et  al. points to a direct 
effect of MHC antibodies on smooth muscle cells. Crosslinking 
of HLA I with antibodies provokes mitogenic signaling through 
matrix metalloproteinases in vitro, and contributes to neointimal 
thickening of human arterial grafts in vivo in murine recipients 
(131, 132). An additional feature of alloantibody crosslinking of 
HLA is increased intracellular calcium levels, leading to exocyto-
sis of endothelial Weibel–Palade body vesicles and increased cell 
surface P-selectin (133–135). P-selectin captures neutrophils and 
monocytes (133, 134), facilitating recruitment of immune cells 
into the allograft.

Complement
The complement system is an ancient form of innate immu-
nity that relies on proteolytic cleavage of active components. 
Complement proteins are always present in the circulation, 
but become rapidly activated upon exposure to target mol-
ecules. There are three main pathways of complement, which 
differ by the activating stimulus. The lectin pathway becomes 
activated upon recognition by mannose binding lectin (MBL) 
of pathogen-specific glycan residues on the surface of bacteria, 
fungi, and viruses. The alternative pathway of complement is 
initiated at the surface of non-host cells due to the presence of 
such factors as lipopolysaccharides on Gram-negative bacteria, 
zymosans on fungi and yeast, and other pathogen-associated 
molecules. Complexed human immunoglobulin has also 
been shown to activate the alternative pathway. The classical 

complement pathway is initiated exclusively by antigen-bound 
antibody through binding of the Fc portion of certain isotypes 
and subclasses to C1q. All of these pathways rely on sequential 
enzymatic reactions that produce active split products involved 
in inflammation, and all of these pathways converge on the 
terminal component C5.

Activation of complement by antibodies was one of the 
earliest methods used to detect donor-specific HLA antibodies, 
and positive cytotoxic crossmatch is still often considered to be 
a contraindication to transplant, as antibodies detected by this 
method can mediate hyperacute rejection of solid organ trans-
plants (115). Although the end result of complement activation, 
namely deposition of MAC and cell cytotoxicity, has been a focus, 
it is now thought to be a rare event (136). Endothelial cells express 
complement regulatory proteins (CD55/DAF, CD59, Crry) that 
antagonize complement activation by inactivating split products. 
C3d and C4d are generated by such inhibitory receptors and mark 
early complement activation. Attention has turned to the activity 
and predictive value of other complement proteins. Products of 
complement activation, in particular C4d, have proven histologi-
cal utility in detecting donor-specific antibody bound to the graft 
(137, 138). Other split products, including C4a, C3a, and C3b, are 
potent inflammatory signals that promote immune cell recruit-
ment and opsonization.

FcγR-Bearing immune Cells
Many cells express surface receptors that can interact with the 
constant region heavy chain (Fc) of antibodies. The human Fc 
receptor system consists of several classes that can bind to IgG 
(FcγR, CD64, CD32, CD16), IgA (FcαR, CD89), and IgE (FcϵR, 
CD23). The human receptor for IgM (FcμR) had been elusive 
until relatively recently (139). Fc receptors serve to bridge the 
humoral and cellular arms of the immune system, and provide 
innate immune cells with a target, and are critical for a variety of 
functions, including antibody-dependent cell-mediated phago-
cytosis (ADCP), antibody-dependent cell-mediated cytotoxicity 
(ADCC), cell–cell tethering and degranulation.

Given that IgG is thought to be the most clinically relevant 
isotype of HLA antibodies, we will focus on Fc-gamma receptors 
(FcγR) that bind to this isotype of immunoglobulins. FcγRs are 
expressed broadly in both the myeloid and lymphoid compart-
ments. There are three major classes of FcγRs, FcγRI (CD64), 
FcγRII (CD32), and FcγRIII (CD16). FcγRII and FcγRIII are 
further composed of several functionally disparate isoforms, 
most of which are dimorphic in the human population (140, 
141). Polymorphisms in human FcγRs influence susceptibility 
to autoimmune disease and response to anti-tumor therapeutics 
(142–146), and may also influence susceptibility of transplant 
recipients to rejection (147, 148), although a thorough evalua-
tion of the role of different FcγR alleles in antibody-mediated 
transplant rejection has not been reported.

Due to their lower affinity, the majority of FcγRs do not bind 
monomeric IgG very efficiently. Only the high-affinity FcγRI 
(CD64) is the exception, and cells with this receptor have been 
shown to carry monomeric IgG in circulation. FcγRs do bind to 
antigen-associated IgG, however, such as in immune complexes 
or immobilized on a (cell) surface. Once bound, FcγRs become 
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crosslinked as they physically colocalize at high antibody-antigen 
density. This promotes intracellular signaling in the FcγR-bearing 
cell leading to activation and maturation, and mediates effector 
functions such as phagocytosis or cytotoxicity.

The relevance of FcγR-bearing innate immune cells to anti-
body-mediated graft injury is reflected in the diagnostic criteria 
and histological manifestations of AMR. For example, infiltra-
tion of CD68+ macrophages is included in the AMR diagnostic 
criteria in cardiac transplantation (149), where macrophage 
staining is found intravascularly (150, 151). Indeed, increased 
macrophage burden is correlative with worse prognosis (152). 
Although not currently included in the AMR diagnostic criteria 
for renal transplantation, macrophage infiltration during rejec-
tion is also predictive of worse outcome in kidney allografts (153, 
154). Our recent studies are consistent with these clinical find-
ings and show that monocyte recruitment to HLA-Ab-activated 
endothelium is mediated by HLA-induced Weibel–Palade exo-
cytosis and P-selectin expression (134). Blockade of P-selectin 
potently inhibited leukocyte recruitment to the allograft during 
AMR underscoring its therapeutic potential (134). Furthermore, 
HLA-Ab augmented monocyte recruitment by the interaction 
of monocyte FcγRs with the Fc portion of the HLA-Abs (135). 
This interaction was IgG subclass dependent and influenced 
by monocyte FcγRIIa allelic variants. Monocytes from donors 
carrying the high-affinity FcγRIIa-H131 allele had greater FcγR-
dependent adhesion to ECs activated with HLA-Abs of both IgG1 
and IgG2 subclasses compared with monocytes expressing only 
FcγRIIa-R131. These results are clinically relevant and suggest 
that recipients producing DSA and carrying high-affinity FcγR 
alleles may be pre-disposed to acute AMR accompanied by 
increased monocyte infiltration.

Summary
Taken together, antibodies to donor proteins, including HLA, can 
cause graft damage through three major mechanisms, including 

direct activation of endothelial, smooth muscle, and epithelial 
cells to promote proliferation and inflammation; activation of the 
complement system to generate inflammatory split products; and 
engagement of FcγRs on NK cells, monocytes, and neutrophils.

CONCLUSiON

Allorecognition by the humoral immune system results in 
formation of antibodies to HLA and a variety of non-HLA 
proteins, and occurs after exposure to non-self tissues through 
pregnancy, transfusion, or transplantation. Alloantibody for-
mation is dependent upon T cell interactions and is primarily 
driven by indirect allorecognition by T cells. In addition, 
“natural” antibodies or anti-viral antibodies may cross-react 
with HLA, although the clinical significance of such antibod-
ies is not clear. Antibodies to donor HLA mediate allograft 
injury through Fc-dependent as well as Fc-independent 
mechanisms, which closely reflect the diagnostic criteria 
for AMR. Non-HLA antibodies can be against polymorphic 
proteins, such as MICA, or against autoantibodies, and also 
associate with worse graft outcome, although their etiology 
is less clear than for HLA DSA.
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