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Osteoimmunology is field of research dedicated to the study of the interactions between 
the immune system and bone. Among the cells of the immune system that regulate the 
skeleton in health and disease are T lymphocytes, T cells secrete inflammatory/osteo-
clastogenic cytokines such as RANKL, TNF, and IL-17, as well as factors that stimulate 
bone formation, including Wnt ligands. In addition, T cells regulate the differentiation 
and life span of stromal cells via CD40L and other costimulatory molecules expressed 
on their surface. Consensus exists that parathyroid hormone (PTH) induces bone loss 
by increasing the production of RANKL by osteocytes and osteoblast. However, new 
evidence suggests that PTH expands Th17 cells and increases IL-17 levels in mice and 
humans. Studies in the mouse of further shown that Th17 cell produced IL-17 acts as an 
“upstream cytokine” that increases the sensitivity of osteoblasts and osteocytes to PTH. 
As a result, PTH stimulates osteocytic and osteoblastic release of RANKL. Therefore, 
PTH cause bone loss only in the presence of IL-17 signaling. This article reviews the 
evidence that the effects of PTH are mediated not only by osteoblasts and osteocytes, 
but also T cells and IL-17.
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iNtrODUctiON

Parathyroid hormone (PTH) is an important regulator of calcium and phosphorus concentrations 
in extracellular fluid. Physiologic levels of circulating PTH are essential for maintaining serum and 
urinary calcium levels within their normal range. Chronic excessive PTH production is a cause 
of skeletal and extra skeletal disease. Secondary hyperparathyroidism has been implicated in the 
pathogenesis of senile osteoporosis (1), while primary hyperparathyroidism (PHPT) is associated 
with accelerated bone loss (2) and osteoporosis (3–5).

Primary and secondary hyperparathyroidism are mimicked by continuous PTH (cPTH) infusion. 
cPTH and PHPT increase bone turnover in trabecular and cortical bone, as evidenced by elevations 
in histomorphometric and biochemical markers of resorption and formation (6–8), whereas PHPT 
and cPTH treatment cause cortical bone loss by enhancing endosteal resorption through stimulation 
of osteoclast formation, activity, and life span (3, 8, 9). Severe chronic elevations of PTH levels may 
also lead to trabecular bone loss (3, 8), although PHPT and cPTH treatment often induce a modest 
increase in cancellous bone (4–6, 10).

The effects of cPTH on bone result from its binding to the PTH/PTH-related protein (PTHrP) 
receptor (PPR or PTHR1), which is expressed not only on BM stromal cells (SCs), osteoblasts, and 
osteocytes (11, 12) but also on T cells (13) and macrophages (14). SCs and osteoblasts were the 
first targets of PTH to be identified, and earlier consensus developed that the catabolic effect of 
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cPTH is mostly mediated by enhanced production of RANKL 
and decreased production of OPG by SCs and osteoblasts 
(15–17). More recent studies in mice with deletion and/or 
overexpression of PPR and RANKL in osteocytes (12, 18–20) 
lead to the recognition that osteocytes represent essential targets 
of PTH in bone, and that increased production of RANKL by 
osteocytes plays an important role in cPTH-induced bone loss 
(12, 19). However, some reports have ascribed a key role to 
OB produced RANKL (21). Moreover, studies have also shown 
that PPR signaling in T cells stimulates the release of TNF (22), 
and that deletion of T cells, T cell production of TNF, or PPR 
signaling in T cells prevents cPTH-induced bone loss (22, 23), as 
effectively as deletion of PPR signaling in osteocytes. Because of 
these reports, T cells are now recognized as a second critical target 
of PTH in bone. Controversy remains on the relative relevance 
of T cells, osteocytes, and osteoblasts for the activity of PTH. 
However, new evidence suggests that PTH expands Th17 cells 
and increases IL-17 levels in mice and humans (24). Studies in the 
mouse of further shown that Th17 cell-produced IL-17 acts as an 
“upstream cytokine” that increases the sensitivity of osteoblasts 
and osteocytes to PTH. As a result, PTH stimulates osteocytic and 
osteoblastic release of RANKL, and thus cause bone loss, only in 
the presence of intact IL-17 signaling. This article focuses on the 
role of Th17 cell-produced IL-17 in the mechanism of action of 
PTH in bone.

tH17 ceLLs AND PtH-iNDUceD BONe 
LOss

The discovery that T lymphocytes express functional PPR (13) 
and respond to PTH (25) prompted investigations on the role of 
T cells as mediators of the effects of cPTH in bone. Early studies 
revealed that levels of PTH typically found in PHPT require the 
presence of T cells to induce bone loss (26, 27), whereas condi-
tions that cause extreme elevations in PTH levels induce bone loss 
via T cell-independent mechanisms (28–31).

T cells exert complex activities that are relevant for the effects 
of PTH in bone, including stimulating the production of TNF 
by both CD4+ and CD8+ T cells (22). Since CD8+ cells are more 
abundant in the BM than CD4+ cells, most of the TNF produced 
in the BM in response to cPTH originates from CD8+ cells (22). 
TNF stimulates osteoclast formation and activity via multiple 
mechanisms, which include increased production of RANKL 
by all osteoblastic cells including osteocytes. Attesting to the 
relevance of T cell produced TNF, cPTH fails to induce bone loss 
and stimulate bone resorption in mice specifically lacking T cell 
TNF production (22). PTH induces T cell production of TNF 
via direct activation of PPR signaling in T cells (22). Conditional 
silencing of the PTH receptor PPR in T cells blunts the stimula-
tion of bone resorption induced by cPTH without affecting bone 
formation, thus blocking cortical bone loss and converting the 
effects of cPTH in trabecular bone from catabolic to anabolic 
(22). These findings demonstrate the critical relevance of direct 
PPR signaling in T cells.

cPTH stimulates bone cells and immune cells to release growth 
factors and cytokines. Among them are TGFβ, IL-6, and TNF (22, 

32–34). TGFβ and IL-6 direct the differentiation of naive CD4+ 
cells into Th17 cells (35–37).

Th17 cells are the most osteoclastogenic subsets of T cells (38). 
Th17 cells are defined by their capacity to produce the cytokine 
IL-17. Th17 cells are constitutively present at mucosal surfaces, 
especially in the intestinal lamina propria (39). Th17 cells play a 
pivotal role in the bone loss of inflammatory conditions such as 
psoriasis, rheumatoid arthritis, periodontal disease, and IBD (40, 
41). Th17 cells potently induce osteoclastogenesis by secreting 
IL-17, RANKL, TNF, IL-1, and IL-6, along with low levels of IFNγ 
(42–44). IL-17 stimulates the release of RANKL by osteoblasts 
and osteocytes (24, 38) and potentiates the osteoclastogenic 
activity of RANKL by upregulating RANK (45). IL-17 provides 
an important connection between T cells and osteocytes as this T 
cell cytokine regulates osteocytic RANKL production (24), which 
is one key effect of PTH on osteocytes (12, 19).

Studies with agents neutralizing TNF have implicated TNF 
in the generation of Th17 cells in rodents and humans (46–48). 
Moreover, PTH binding to PPR activates the G protein-coupled 
receptor subunit GαS, leading to the generation of cAMP (49). 
Accumulation of cAMP in CD4+ cells and the resulting Ca2+ 
influx further promote Th17 cell differentiation and activity (50). 
Therefore, cPTH could expand Th17 cells via several mecha-
nisms. This reasoning prompted investigations on the relation-
ship between cPTH treatment and Th-17. Murine studies have 
revealed that cPTH treatment increases the relative and absolute 
frequency of Th17+ cells and the levels of IL-17 in peripheral blood, 
spleen, and BM (24). Detailed analysis of samples of peripheral 
blood revealed that cPTH increased IL-17 levels in purified 
peripheral blood CD4+ cells and unfractionated peripheral blood 
nucleated cells, but not in CD4+ cell-depleted peripheral blood 
nucleated cells, indicating that CD4+ cells represent the major 
source of IL-17 mRNA in peripheral blood cells. Moreover, cPTH 
also increases the mRNA levels of the Th17-inducing transcrip-
tion factors RORα and RORγt in peripheral blood, spleen, and 
BM CD4+ T cells. This effect of cPTH is specific for Th17 cells 
because cPTH does not expand murine Th1 cells, Th2 cells, and 
regulatory T cells.

Mechanistic studies have disclosed that cPTH increases Th17 
cell differentiation in the BM and the spleen. By contrast, cPTH 
does not stimulate Th17 cell proliferation (24). Surprisingly, these 
studies have shown that cPTH expands Th17 cells and increases 
the production of IL-17 via TNF, and more specifically, the pool 
of TNF produced by conventional CD4+ and CD8+ T cells. This 
conclusion is based on the fact that cPTH failed to expand BM 
and splenic Th17 calls in TNF-null mice and in T cell-null mice 
previously subjected to adoptive transfer of TNF−/− T cells. The 
latter experimental model is particularly significant, because the 
host mice possess all physiologic sources of TNF except for T 
cells. Yet, specific ablation of T cell produced TNF is sufficient 
to block the capacity of cPTH to expand Th17 cells, increase BM 
IL-17 levels and prevent bone loss (24). Additional T cell reconsti-
tution studies revealed that TNF directly targets Th17 precursors. 
To reach this conclusions, investigators reconstituted T cell-null 
mice with CD4+ cells from TNFR1−/− and TNFR2−/− mice and 
then treated the host mice with cPTH. Under these conditions, 
cPTH expanded BM Th17 cells and increase BM IL-17 levels in 
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mice with TNFR2−/− T cells but not in those with TNFR1−/− T 
cells, thus demonstrating that TNFR1 signaling is required for 
cPTH to induce the differentiation of CD4+ cells into Th17 cells. 
In addition to IL-6 TGFβ and TNF, several cytokines are known 
to promote Th17 cell expansion. Among them are the T cell pro-
duced factor IL-21 and the macrophage/dendritic cell produced 
cytokine IL-23. cPTH treatment increases the BM levels of IL-21, 
and IL-23R in WT mice. By contrast, cPTH did not increase the 
levels of these cytokines in TNF−/− mice. Thus, IL-21 and IL-23 
are likely to contribute to expansion of Th17 cells induced by 
cPTH. However, cPTH upregulates these factors via TNF.

As stated above, PTH receptor signaling activates GαS, lead-
ing to the generation of cAMP (49), which further promotes 
TH17 cell differentiation via Ca2+ influx (50). One mechanism 
by which activation of GαS in CD4+ cells could promote Th17 
cell differentiation is increased sensitivity to TNF. To investigate 
this hypothesis, investigators used GαSΔCD4,8 mice, a strain char-
acterized by silenced GαS signaling in CD4+ and CD8+ T cells. 
Pivotal experiments revealed that cultures of CD4+ cells from 
cPTH-treated control mice yielded a higher number of Th17 cells 
as compared to those from vehicle-treated mice (24). By contrast, 
cultures of CD4+ cells from vehicle and cPTH-treated GαSΔCD4,8 
mice yielded similar numbers of Th17 cells, demonstrating that 
cPTH increases the sensitivity of nascent Th17 cells to TNF via 
GαS signaling in CD4+ cells. Attesting to the relevance of GαS 
signaling in CD4+ cells for Th17 cell generation, cPTH was found 
not to expand BM and splenic Th17 cells and not to exerts its bone 
catabolic activity in GαSΔCD4,8 mice, demonstrate that silencing of 
Gαs in T cells prevents the expansion of Th17 cells and the bone 
loss induced by cPTH (24).

Signaling events downstream of GαS include cAMP generation 
(49) and activation of L-type calcium channels (51), which promote 
Th1 and Th17 cell differentiation (50). This evidence suggests the 
possibility that treatment with the L-type calcium channel blocker 
diltiazem may blunt the differentiation of CD4+ cells into Th17 
cells (50) and prevent the bone loss induced by cPTH.

This hypothesis was tested in murine studies that revealed 
that diltiazem blocks the expansion of Th17 cells, the increase 
in bone resorption, and the loss of cortical and trabecular bone 
induced by cPTH. The finding may suggest a potential therapeu-
tic role for L-type calcium channel blockers in the treatment of 
hyperparathyroidism.

NeUtrALiZAtiON OF iL-17A Or 
siLeNciNG OF iL-17rA BLOcK  
cPtH-iNDUceD BONe LOss

The finding that cPTH increases the levels of IL-17 does not dem-
onstrate that IL-17 plays a role in the bone catabolic activity of 
cPTH. To demonstrate the relevance of IL-17 in the mechanism 
by which cPTH alters skeletal homeostasis mice were treated with 
cPTH and a neutralizing antibody directed against murine IL-17 
(IL-17 Ab). These studies revealed that IL-17 Ab completely pre-
vents the loss of cortical and trabecular bone induced by cPTH. 
Analysis of biochemical and histomorphometric indices of bone 
turnover revealed that neutralization of IL-17 blunts the bone 
catabolic activity of cPTH by decreasing bone resorption (24).

To confirm these findings, additional experiments were 
conducted utilizing IL-17RA-null mice, a strain lacking the het-
erodimeric receptor IL-17RA/IL-17RC known as IL-17RA (52, 
53). IL-17 signaling is silenced in IL-17RA−/− mice (54). These 
studies disclosed that cPTH stimulates bone resorption and 
indices bone loss in control mice but not in IL-17RA mice (24), 
thus demonstrating that silencing of IL-17 signaling prevents the 
bone catabolic activity of cPTH.

iL-17 is AN UPstreAM cYtOKiNe 
reQUireD FOr cPtH tO iNcreAse 
rANKL reLeAse BY OsteOBLAsts AND 
OsteOcYtes

Osteocytes and the pool of RANKL produced by osteocytes are 
crucial for the activity of cPTH (12, 19, 20). On the other hand, 
studies form our laboratory have shown T cells are an additional 
important target of PTH (55). The fact that silencing of PPR 
signaling in T cells and osteocytes induces similar bone sparing 
effects is in keeping with a “serial circuit” regulatory model, where 
signals from one population affect the response to cPTH of the 
other. Since T cells and osteocytes have limited physical contacts, 
the cross talk between these populations is likely mediated by a 
soluble factor. IL-17A is a probable candidate because it is a potent 
inducer of RANKL in organ cultures containing osteoblasts and 
osteocytes (56). In support of this hypothesis, investigations have 
shown that neutralization of IL-17 via treatment with IL-17 Ab 
and deletion of IL-17RA block the capacity of cPTH to increase 
the production of RANKL by osteocytes and osteoblasts (24). 
These data indicate that IL-17A increases the sensitivity of 
osteoblasts and osteocytes to cPTH, thus enabling these lineages 
to release RANKL when stimulated by cPTH. Therefore, IL-17 
mediates the bone catabolic activity of cPTH by upregulating the 
production of RANKL by osteocytes and osteoblasts (Figure 1).

It is important to underscore that the available published data 
suggest that T cells, osteoblasts, and osteocytes are all required for 
cPTH and by extension, PHPT, to induce bone loss. By contrast, 
osteocytes, but not T cells and IL-17, are required for physiologic 
levels of endogenous PTH to regulate bone remodeling. In fact, 
mice lacking PPR signaling in osteocytes have high baseline bone 
volume (12), while IL-17RA-null mice and those lacking PPR 
signaling in T cells (22, 57) have a normal bone volume.

iNcreAseD PrODUctiON OF iL-17A iN 
HUMANs AFFecteD BY PriMArY 
HYPerPArAtHYrOiDisM

While numerous studies have investigated the role of immune 
cells and cytokines in the mechanism of action of PTH in animal 
models, little information is available in humans.

To investigate the effects of PHPT on the production of 
cytokines, unfractionated peripheral blood nucleated cells were 
obtained from 57 healthy controls and 20 similar subjects affected 
by PHPT. In PHPT patient’s blood samples were obtained before 
surgery and 1 month after successful resolution of PHPT by par-
athyroidectomy. This study revealed (Figure 2) that the mRNA 
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FiGUre 2 | Levels (Median ± interquartile range) of iL-17A (Panel A) 
and rOrc mrNAs (Panel B) in healthy controls (n = 57) and subjects 
with PHPt before (n = 20) and after parathyroidectomy (n = 20). Data 
were analyzed by Mann–Whitney (healthy controls vs. PHPT before surgery 
and healthy controls vs. PHPT after surgery) and Wilcoxon matched pairs 
signed rank tests (PHPT vs. PHPT after surgery) as the data were not 
normally distributed according to the Shapiro–Wilk normality test. 
Reproduced with permission from Ref. (24).

FiGUre 1 | schematic representation of the mechanism of action of 
cPtH in bone. PTH binds to the PTH receptor PPR expressed in 
conventional CD4+ and Cd8+ T cells and induces the secretion of TNF. This 
cytokines induces the differentiation of naive CD4+ cells into Th17 cells via 
TNFR1 signaling. Th17 cells release additional TNF, which further stimulates 
Th17 differentiation. More importantly, Th17 cells secrete IL-17, which targets 
osteocytes and osteoblasts, thus increasing their sensitivity to TNF. In the 
presence of IL-17, PPR activation in osteocytes and osteoblasts stimulates 
these cells to release RANKL, which stimulates bone resorption and induces 
bone loss. Silencing of IL-17 or IL-17RA signaling blocks the capacity of 
cPTH to stimulate the production of RANKL by osteocytes and osteoblasts. 
Reproduced with permission from Ref. (24).
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levels of IL-17A in unfractionated peripheral blood nucleated 
cells were approximately threefold higher in PHPT patients than 
in healthy controls (24). Moreover, surgical restoration of normal 
parathyroid function was associated with the normalization of 
IL-17A levels. Furthermore, the mRNA levels of the IL-17-inducing 
transcription factor RORC were approximately threefold higher 
in PHPT patients before surgery than in healthy controls and 
parathyroidectomy was followed by a decrease in RORC mRNA 
levels. PTH levels were directly correlated with IL-17A level and 
the differences in IL-17A and RORC levels between healthy con-
trols and PHPT patients remained significant even after adjust-
ment for age and gender by a multiple regression model. These 
findings suggest that increased IL-17A gene expression in PHPT 
patients is due to increased levels of circulating PTH.

cONcLUsiON

Remarkable progress has been made in understanding how T cells 
participate in the regulation of bone remodeling in health and dis-
ease. An impressive amount of work published in the last 10 years 
has led to the recognition that T cells play an unexpected role in 
the regulation of bone resorption and bone formation through a 
variety of mechanisms and the involvement of specialized cell line-
ages such as Th17 cells and Tregs. Work remains to be done to fully 
understand the cross-talk between bone cells and immune cells.

Some confirmation of the relevance of T cells in human bone 
diseases has now been reported but much remains to be done. 
Most of the human evidence has been accrued in studies on 
the pathogenesis of postmenopausal osteoporosis. For example, 
evidence begins to emerge in favor of a role of T cell produced 
TNF in postmenopausal bone loss in women (58, 59) and that 
in humans estrogen deficiency expands RANKL-expressing T 
cells and B cells (60, 61). Moreover, a role for IL-1 and TNF 
in humans is supported by reports that menopause increases 
the levels of these factors (62–66), while treatment with inhibi-
tors of IL-1 and TNF prevents the increase in bone resorption 
induced by estrogen deficiency (67). A recent report from 
our laboratory show that PHPT increases IL-17 production 
in humans, an abnormality which is resolved by successful 
parathyroidectomy. Our studies show that in mice, the bone 
loss induced by cPTH is prevented by the calcium channel 
blocker diltiazem, and IL-17 Ab. Direct clinical applications of 
these finding arise because L-type calcium channel blocker are 
available, while anti-human IL-17 Abs and IL-17 receptor Abs 
are under investigation as therapeutic agents in psoriasis and 
spondyloarthropathy (68–71).
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