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Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic 
poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable 
of infecting humans include a highly pathogenic AIV H5N1, first detected in humans 
in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 
and H7N9 cause severe influenza disease in humans, manifested by acute respiratory 
distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respec-
tively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their 
ability to infect humans emphasizes their epidemic and pandemic potential and poses a 
public health threat. It is, thus, imperative to understand the host immune responses to 
the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and ratio-
nally design new immunotherapies and vaccines. This review summarizes our current 
knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying 
the AIV infection in humans, and recent studies on universal pre-existing CD8+ T cell 
immunity to AIVs. Immune responses driving the host recovery from AIV infection in 
patients hospitalized with severe influenza disease are also discussed.
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AviAN iNFLUeNZA viRUSeS AND THeiR ePiDeMiOLOGY

Avian influenza viruses (AIVs, which belong to type A) circulate in birds as well as avian viral 
reassortants capable of infecting humans. Although AIV infections of wild birds are mainly asymp-
tomatic, wild birds carry AIVs in their intestines and, thus, shed the virus via feces, saliva, and 
nasal secretions. The first avian infection was recorded in 1878 in Italy, named a “fowl plague” and 
subsequently isolated from chickens in 1902. Aquatic birds are considered a natural reservoir of 
AIVs (1) and, to date, all the AIV subtypes were isolated from aquatic birds, with the exception of 
H17N10 and H18N11 found in bats (2). Based on the pathogenicity in chickens, AIVs are classified 
into low pathogenic avian influenza viruses (LPAIVs) and highly pathogenic avian influenza viruses 
(HPAIVs). LPAIVs, commonly found in wild birds, cause only mild disease in domestic birds, while 
HPAIVs cause severe influenza symptoms, affect respiratory tract as well as internal organs and 
lead to a high mortality rate in poultry. So far, influenza H5 and H7 subtypes, originating from 
non-pathogenic precursor viruses, are the only HPAIVs (3). Primary outbreaks of HPAIV in poultry 
(turkey and chicken) have been reported 17 times between 1959 and 2000 and 8 times since 1990. 
They resulted in devastating losses of birds as millions of animals had to be culled to control those 
AIV outbreaks (4).

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00060&domain=pdf&date_stamp=2016-03-01
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2016.00060
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:kkedz@unimelb.edu.au
http://dx.doi.org/10.3389/fimmu.2016.00060
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00060/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00060/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00060/abstract
http://loop.frontiersin.org/people/308695/overview
http://loop.frontiersin.org/people/164916/overview
http://loop.frontiersin.org/people/50928/overview


TABLe 1 | Summary of human infections caused by the avian influenza viruses.

influenza 
strain

Year/location Cases/fatalities Clinical manifestation Reference

H5N1 1997/Hong Kong 18/6 Flu-like symptoms, 
pneumonia

(27)

2003/Hong Kong 2/1 Pneumonia (28)
2003/China 1/1 Pneumonia (29)
2003–2015/Vietnam, Thailand, Cambodia, Indonesia, China, 
Azerbaijan, Djibouti, Egypt, Iraq, Nigeria, Turkey, Laos, Myanmar, 
Pakistan, Bangladesh, Canada

844/449 Flu-like symptoms, 
pneumonia

WHO/GIP, data in HQ as 
of 13 November 2015

H5N6 2014/China 2/1 Severe respiratory 
symptoms

(12, 26)

H6N1 2013/Taiwan 1/0 Flu-like symptoms (13)

H7N2 2002/USA 1/0 Flu-like symptoms (30)
2003/USA 1/0 Respiratory tract infection (30)
2007/UK 1/0 Conjunctivitis (31)

H7N3 2004/Canada 2/0 Conjunctivitis (32)
2006/UK 1/0 Conjunctivitis (33)
2012/Mexico 2/0 Conjunctivitis (34)

H7N7 1980/USA 3/0 Conjunctivitis (35)
1995/UK 1/0 Conjunctivitis (36)
2003/Netherlands 89/1 Conjunctivitis, pneumonia, 

flu-like symptoms
(37)

H7N9 2013–2015/China 665/229 Range from mild to severe 
respiratory symptoms

WHO, CDC

H9N2 1998/China 5/0 Flu-like symptoms (38)
1999/Hong Kong 2/0 Flu-like symptoms (39)
2003/Hong Kong 1/0 Flu-like symptoms (40)
2007/Hong Kong 1/0 Flu-like symptoms (30)
2009/Hong Kong 2/0 Flu-like symptoms (41)
2011/Bangladesh 1/0 Flu-like symptoms (42)

H10N7 2004/Egypt 2/0 Flu-like symptoms (14)
2010/Australia 2/0 Conjunctivitis, respiratory 

tract symptoms
(15)

H10N8 2013/China 3/2 Pneumonia (16)
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Out of all the AIVs, only H5N1, H7N2 (5), H7N3 (6, 7), H7N7 
(8, 9), H9N2 (10), H7N9 (11), H5N6 (12), H6N1 (13), H10N7 
(14, 15), and H10N8 (16) are known to cause human infections 
(Table 1). Generally, human infections with H7N2, H7N3, H7N7, 
and H6N1 result in mild clinical symptoms. However, some AIVs, 
including H5N1 and more recently, H7N9 strains, cause severe 
disease and high mortality rates in humans. This is mainly due 
to the absence of pre-existing AIV-specific antibodies (17–20), 
although both anti-H5 and H7-antibodies can be detected 
during the course of infection (21, 22). The highly pathogenic 
H5N1 virus attracted widespread attention in 1997, when a 
H5N1 outbreak in Hong Kong resulted in 18 human infections 
and 6 deaths. Subsequent outbreaks of the HPAIV H5N1 subtype 
occurred in China, Indonesia, Malaysia, Vietnam, and Thailand 
poultry industries in the early 2004, resulting in 13 human 
cases with 9 deaths in Vietnam, and 27 cases with 20 deaths in 
Thailand (23). Since then, multiple reassortant H5 HPAIV strains 
have spread across Asia and into Europe, the Middle East and 
Africa, giving rise to multiple subtypes (H5N2, H5N5, H5N6, and 
H5N8). Humans in close contact with AIV-infected poultry, and 
on rare occasion with other AIV-infected humans, can become 

infected. Globally, the total number of H5N1 cases reached 842 
with 447 deaths. Thus, the fatality rate is >50% for H5N1 infec-
tions. Although, several studies addressed the calculations of 
more realistic rates of H5N1 infections, taking into account mild 
asymptomatic cases and low transmissibility, these are still esti-
mated to be >30% (24). Countries that had the highest number of 
documented cases of H5N1 include Egypt, Indonesia, Vietnam, 
Cambodia, and China, where the total numbers ranged from 52 to 
344 (WHO/GIP; data obtained on the 23 June 2015). The overall 
prevalence of H5 viruses increased in China since 2010 (25), with 
H5-type HPAIV, H5N6 and H5N8 being prevalent among China’s 
domestic waterfowl. Avian H5N6 influenza virus is a low virulent 
strain in poultry that has caused several outbreaks in chickens in 
China, Vietnam, and Laos during 2014 and 2015. Two cases of 
H5N6 were reported recently in humans in China and the clinical 
manifestations were severe (12, 26).

H7 subtype AIV has caused numerous outbreaks in poultry in 
Europe and the Americas. In 2003, H7N7 emerged in poultry in 
the Netherlands, and then spread to Belgium and Germany (43, 
44), leading to the culling of over 30 million birds and result-
ing in >80 human cases, with one fatality (45). In 2013 in Italy, 
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monitoring of the workers from a recent H7N7 outbreak at a 
poultry farm revealed three cases of H7N7 human mild infec-
tions. H7N3 viruses were reported in poultry in several countries, 
including Chile and Canada, and a recent 2013 outbreak of HPAIV 
H7N3 virus in Mexico led to the culling of >20 million birds and 
two confirmed human mild infections (6). Since March 2013, a 
novel reassortant A/H7N9 virus crossed host barrier from birds 
to humans, resulting in 657 human cases with 38% mortality (46). 
This is striking given that the 1918 Spanish influenza pandemic 
had a fatality rate of >2.5% and was considered to be extremely 
severe (47, 48). Although H7N9 virus causes severe human infec-
tions with a 98% hospitalization rate, H7N9 is a low pathogenic 
influenza virus in birds and can be found in live poultry markets 
across China, but rarely at the poultry farms.

In 2013, H10N8 virus emerged from live poultry markets. It 
originated from the internal genes of enzootic H9N2 viruses in 
chickens, and surface genes of H10 and N8 viruses from domestic 
ducks. It caused three severe infections in humans, leading to 
two deaths (16). Interestingly, internal genes of both H7N9 and 
H10N8 originated from H9N2 virus (49), an ongoing reassortant 
with local chicken H9N2 strains, thought to have a high epidemic 
or pandemic potential. However, it is not fully understood how 
these H9N2 chicken viruses facilitated the genesis of the newly 
emerged H7N9 virus (50). Since 1990s, H9N2 avian influenza 
viruses became well established in domestic poultry across Asia 
and Europe (51). Although of low pathogenicity, five human cases 
of H9N2 infection were reported during 1998 and 2008 [CIDRAP: 
Avian Influenza (Bird Flu): Implications for Human Disease]. 
H9N2 AIVs rapidly differentiated giving raise to more than 102 
genotypic variants being recognized based on the nomenclature 
system (52). Notably, H9N2 viruses belonging to genotype 57 
(G57) have a selective advantage in chickens, with increased 
infectivity and ability to escape selective pressure via antigenic 
shift. G57 AIVs caused the widespread H9N2 outbreaks among 
chickens during 2010–2013 in China (50). The virus became pre-
dominant in H9N2-vaccinated farm chickens, caused widespread 
outbreaks prior to the emergence of the H7N9 virus, increased 
reassortment events between H9N2 and other viral subtype, and 
finally provided all of the internal genes to the novel H7N9 virus. 
The prevalence and high mutation rate of the H9N2 influenza 
viruses at the poultry farms, their capacity to provide internal 
genes to other avian viruses, and adaptation to the human host 
could provide an important early warning of the emergence of 
novel reassortants with pandemic potential.

RiSK OF iNFLUeNZA PANDeMiCS

Wide distribution of AIVs in poultry, occasional jumping across 
the host barrier to humans and the continuing evolution raise 
concerns about AIV’s pandemic potential. Nowadays, H9N2 and 
H5-type AIVs have nearly a global distribution in birds, and H7N9 
and H10N8 viruses are widely circulating in live poultry markets 
in China (25). Occasional human-to-human transmission of H5, 
H6, H7, H9, and H10 AIV and their continuous reassortment with 
local chicken AIV strains (especially local H9N2 strains) have a 
potential of becoming influenza pandemic. H7N9, in particular, 
appears to be fulfilling the requirements for a potential influenza 

pandemic virus: (1) crosses the host barriers and is widespread 
in live poultry markets; (2) adapts to human host and further 
reassorts with local H9N2, while being a “low-pathogenicity” 
virus in chickens; (3) there are no pre-existing neutralizing 
antibodies (NAbs) at the population level. Overall, there is an 
urgent need to understand the pathogenesis and immunity of 
AIVs in humans, especially for those strains that can cross the 
host barrier to humans.

CLiNiCAL FeATUReS OF SeveRe AviAN 
iNFLUeNZA DiSeASe

During seasonal influenza epidemics, elderly individuals (65+ 
years of age) showed higher rates of hospitalization (53). Severe 
disease from H5N1 infection was observed across different age 
groups, although higher hospitalization was found in several 
countries, including Vietnam and Indonesia in children and 
young adults (54). Conversely, during the first wave of H7N9 
infections, more severe disease was observed in males aged >59 
years old (55). These men shopped at the live bird markets in 
China and, therefore, were more likely exposed to H7N9 viruses. 
Furthermore, during aging both the innate and adaptive immune 
systems undergo immunosenesence, and results in decreased 
responsiveness to influenza vaccination and infection (56, 57). 
Some of the clinical and pathological features of severe A/H7N9 
disease induced by AIVs infections include multiple organ failure, 
leukopenia, lymphopenia, viral dissemination in extra-pulmonary 
sites, and prolonged viral shedding of H7N9 viral RNA in feces 
and urine (11, 58–62). Indeed, high viral loads were also associ-
ated with death in H5N1-infected patients (63). During the recent 
H7N9 epidemic, decreased viral load was associated with recov-
ery and outcome (59). Fatalities from avian influenza often result 
from pneumonia and acute respiratory syndrome (ARS) (64). 
Most hospitalized patients present with viral pneumonia, and the 
prevalence of bacterial co-infections infections is limited (51, 65). 
However, many hospitalized patients undergo broad-spectrum 
antibiotic treatment (20, 64), which possibly confound the detec-
tion of bacterial co-infections. This is in contrast to the 1918 
pandemic during which secondary bacterial pneumonia was the 
leading cause of mortality (62, 66). Additionally, co-morbidities 
and underlying medical conditions, including type I/II diabetes 
and hypertension, were highly prevalent in the hospitalized cases 
of H7N9 influenza (22, 64). Interestingly, mild influenza disease 
was observed in young children with documented cases of H5N1 
and H7N9 infections (67). Clinically, these children presented 
with fever, but no ARS-associated symptoms, such as pulmonary 
edema, were observed (67). However, the study had a small sample 
size (n = 2 ≤ 4), and the inflammatory milieu was not addressed. 
These observations warrant more analyses on the age-associated 
changes in the human immune system.

High fatality rates in AIV cases raise the question of how the 
avian viruses interact with the host immune system to cause such 
severe disease. Indeed, high viral titers and exuberant inflam-
matory responses contribute to fatal and severe avian influenza 
clinical disease. The mechanisms driving this in humans are 
likely to involve both intrinsic viral pathogenicity factors and 
dysregulation of inflammatory responses. The following sections  
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of this review focus on the host immune responses to AIVs in 
humans.

iNFLAMMATiON DURiNG AviAN 
iNFLUeNZA iNFeCTiON

Inflammation acts as a double-edged sword during viral infec-
tions. While inflammation can promote the recruitment of 
immune cells, uncontrolled and exacerbated inflammation, 
as observed in many AIV human cases, is associated with sys-
temic edema and extensive tissue damage. It is well established 
that human infection with avian viruses, including H7 and H5 
subtypes, can lead to “cytokine storms.” Analyses of serum and 
plasma from hospitalized patients revealed that hypercytokine-
mia of pro-inflammatory mediators (MCP-1, MIF, IL-6, IL-8, 
IP-10) and angiogenic/growth factors (HGF, SCF) is a common 
factor shared by H5N1 and H7N9 infections (63, 68, 69), and can 
be linked to fatal disease outcomes (68). Furthermore, analyses of 
bronchoalveolar lavage samples from hospitalized H7N9-infected 
patients showed elevated levels (by 100- to 1000-fold) of pro-
inflammatory modulators, such as IL-6, IL-8, MIP-1β, or IL-1β 
(69). Thus, plasma/serum cytokine analyses give an indication 
of spillover into the periphery of patients with severe infection, 
although the concentrations are considerably lower. Additionally, 
airway epithelial cells infected with H5N1 viruses contribute to 
this inflammatory milieu (70, 71).

Similar findings were observed in macaques, ferrets, and mice 
challenged with HPAIV H5N1. Extensive tissue damage and 
hypercytokinemia are consistently present in H5N1-inoculated 
animals, although HPAIV-infected mice have greater inflamma-
tory responses in the brain (72–75). Indeed, the clinical observa-
tions of hospitalized patients and animal studies to date showed 
that high levels of pro-inflammatory responses were strongly 
associated with severe disease from both H5N1 and H7N9 
infections. Interestingly, anti-inflammatory molecules, including 
IL-10, were detected in serum of H5N1-infected patients (63). 
Furthermore, limited production of anti-viral type I IFN, which 
in part serves to limit viral replication, was observed in respiratory 
epithelial cells infected with H5 or H7 subtype in vitro (76, 77). This 
indicates that there may be an attempt by the immune system to 
modulate inflammation, although this could be too little too late. 
Murine studies demonstrated that blocking pro-inflammatory 
cytokines, such as TNF, IL-6, and CCL2, did not improve survival 
of mice challenged with HPAIV (78), suggesting that multiple 
mechanisms, in addition to inflammation, are likely to exacerbate 
pathology. Mechanistically, blocking pro- inflammatory media-
tors in humans has not yet been preformed for AIVs. Further 
studies examining the use of immunomodulating cytokines 
and chemokines are warranted if alternative therapies are to be 
utilized for the treatment of severe influenza disease.

THe iNNATe iMMUNe ReSPONSeS 
DURiNG AviAN iNFLUeNZA iNFeCTiON

The innate immune response, composed of both cellular and 
soluble mediators, forms the first line of defense during viral 

infections. Indeed, the protective role of innate immunity is clearly 
demonstrated during HPAI infection of birds whereby, ducks 
exhibit asymptomatic or mild disease, while chickens become 
ill. Following H5N1 infection, primary lung cells isolated from 
chickens showed highly elevated immune and pro-inflammatory 
responses compared to duck cells, which appeared to be medi-
ated via inhibition of STAT-3 (79). Another study also found that 
RIG-I is absent in chickens, providing a plausible explanation for 
their increased susceptibility to influenza viruses as compared 
with ducks (80).

In humans, immunohistological analyses of lung tissues in 
five fatal cases of H5N1 showed an influx of neutrophils into 
the alveolar spaces, while TNF and IL-6 were detected in mono-
cytes/macrophages in  situ (81). The role of monocyte-derived 
macrophages (MDMs) and alveolar macrophages in protection 
versus pathology in avian influenza remains controversial. 
Robust pro-inflammatory responses, including TNF and IP-10 
were detected in culture supernatants in H5N1-infected human 
MDMs in vitro (82–84). This was dependent on the viral isolate 
and independent of viral replicative capacity in MDMs (82–84). 
Conversely, alveolar macrophages isolated from human lungs 
showed limited cytokine secretion after HPAIV infection 
(85). The latter study demonstrated that the permissiveness to 
infection was lower in alveolar macrophages than in MDMs 
(85). These data indicate differential roles of tissue-resident 
macrophages versus circulating and differentiated monocytes 
during avian influenza infections. Although, H7N9 viruses 
isolated from humans can replicate more efficiently in cultured 
primary alveolar macrophages, they induce lower levels of 
cytokine production, including TNF and CCL5 as compared to 
H5N1 viruses (86).

Indeed, during the steady state, tissue macrophages have 
been shown to provide homeostatic functions, including 
resolution of inflammation via removal of apoptotic debris and 
cells (87). Conversely, MDMs have an inflammatory effector 
profile, suggesting that they have the potential to contribute to 
inflammation-induced pathology (87, 88). Together, these stud-
ies highlight the importance of understanding how microenvi-
ronments drive differential levels of inflammation during avian 
influenza infection.

Natural killer (NK) cells, which comprise up to 10% of the 
lymphocyte compartment, contribute to immune homeostasis 
and viral immunity in both cancer and chronic viral infections. 
Their activation is regulated by the interaction of combinations 
of activating and inhibitory receptors with self and altered-self 
ligands, e.g., killer Ig-like receptors, CD16 (Fcγ receptor), 
NKp46 (89–91). Expanded numbers of NK cells were observed 
in H7N9-infected hospitalized patients with prolonged hospital 
stays. Furthermore, in these patients robust IFNγ responses 
were observed following ex vivo H7N9 virus stimulations, 
indicating preserved effector functionality (22). Additionally, 
antibody-dependent cell cytotoxic (ADCC) antibody isotypes 
could be detected in H7N9- and H5N1-infected patients (92). 
Recent studies have also shown that NK cells from healthy 
influenza-seropositive donors, can be activated via ADCC, 
where NK cells robustly upregulate IFNγ production and the 
surrogate marker of degranulation, CD107a (89). In the absence 
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of neutralizing H5-antibodies, these responses were also cross-
reactive with H5N1 hemagglutinin (84). Together, these studies 
demonstrate a role of NK cells during avian influenza virus 
infection and their potential to kill AIV-infected cells and aid 
in the viral control.

Other innate cellular components include the innate-like  
T cells, γδ T cell, NKT, mucosal-associated invariant T cells, 
which express re-arranged T cell receptors, and also the innate-
lymphoid cells, which lack re-arranged receptors. Collectively, 
these innate-like cells produce inflammatory and immune-mod-
ulating cytokines (e.g., IFNγ, TNF, IL-22, IL-17, IL-33), which are 
found in the periphery and can be enriched in peripheral tissues 
(93–96). Although there is a paucity of data regarding their role 
in AIV infection, the immunoregulatory roles of ILCs and NKTs 
were demonstrated in murine models of influenza. Both ILCs and 
NKTs have been shown to aid in the protection of the lung epithe-
lium during IAV infection via the production of IL-33 and IL-22, 
respectively (97, 98). An example of cytolytic potential during 
avian influenza virus infection comes from human Vγ9δ2 T cells, 
where the killing of H5N1-infected MDMs were demonstrated 
when expanded prior with a TCR-cognate phosphoantigen (99). 
Together, innate lymphocytes may be utilized as alternative 
biological therapies for severe avian influenza.

CD8+ T CeLL iMMUNiTY AGAiNST AviAN 
iNFLUeNZA viRUSeS

Influenza virus-specific CD8+ cytotoxic T lymphocytes (CTLs) 
provide protection against severe influenza disease, accelerate 
viral clearance, and promote rapid host recovery (22, 100–102). 
CTL-based heterosubtypic immunity against seasonal influenza 
viruses has been extensively studied in animal models (103, 104). 
In murine models, primary influenza-specific CTLs emerge 
around day 7, peak around day 10, and then contract via apop-
tosis. This is in response to the influenza virus replication, which 
peaks at days 3–5 and gets resolved around days 8–10 (105–107). 
A few studies were performed to investigate how CD8+ T cell 
responses are induced during HPAIV (e.g., H5N1) infection in 
mice and whether virus-specific CD8+ T cells play a protective 
or immunopathologic role during a primary HPAIV infection. 
Hatta et al. showed that different virulent H5N1 viruses had dif-
ferent replication kinetics in mice and that rapid replication could 
outpace the CD8+ T cell response (108). Some studies reported 
that H7N9 replication in mice peaked at day 5 (109) and cleared 
around day 8 (110), while others reported that during the primary 
infection of B6 mice, virus peaked on day 6, decreased by days 
8–10, and cleared by day 12 (111). In any case, this appears to 
differ from human H7N9 disease, where H7N9 viral RNA could 
still be detected in nasal swabs, blood, urine, or feces at days 
8–14 following disease onset. Since the virus replication kinetics 
and the pathogenicity of HPAIV in mice differ to those found in 
humans, it is of key importance to understand the influenza viral 
replication and CTL responses in humans.

Published reports provide evidence that prominent pre- 
existing influenza-specific CD8+ or CD4+ memory T cell pools 

are associated with more rapid recovery from experimentally 
mild H3N2 or naturally occurring H1N1-2009 influenza virus 
infection, as manifested by milder disease symptoms, shorter ill-
ness time, diminished viral shedding, and less transmission (100, 
101, 112, 113). However, the exact kinetics and the role of CD8+ or 
CD4+ T cell responses in the recovery from infection, especially 
severe AIV infection, is not well understood. Recently, Sridhar 
et  al. showed that the pre-existing IFN-γ-producing memory 
CD8+ T cells directed at the conserved epitopes inversely cor-
related with disease illness and symptom scores (101). Wilkinson 
et al. reported that influenza-specific T cell response increased 
largely at day 7 when virus was completely undetectable in nasal 
samples, while serum antibodies were present (112). Pre-existing 
memory CD4+ T cells, capable of killing virus-infected cells 
responded to influenza internal proteins and inversely correlated 
with less virus shedding and lower disease scores. The above-
mentioned studies used the household cohort approach during 
the 2009/2010 pH1N1 infection season (101) and the human 
influenza challenge with experimentally low dose of seasonal 
H3N2 and H1N1 infections (112), with viral clearance around 
days 6–8 after influenza infection (114). This might, however, 
differ to the viral replication and the resultant cellular immune 
responses following natural severe AIV infection.

The kinetics of CD8+ T cell responses in human influenza 
infection has been addressed by Rimmelzwaan’s laboratory. 
Hillaire et al. reported that virus-specific CD8+ T cells peaked 
within 1 week after influenza virus infection and then contracted 
rapidly (115), consistent with the observations in mice (116). 
However, Ennis et  al. found that virus-specific CD8+ T cells 
expanded around days 6–14 post-infection, and then declined 
around day 21 after infection (117), whereas Wagar et al. showed 
that total IFNγ+CD8+ T cells peak at around 3 weeks after the 
disease onset in case of pH1N1 infection. Interestingly, the 
CD8+ T cell number moderately decreased around day 78 and 
reached the baseline level at day 700 post-disease onset (118), 
consistent with Ennis’ report. As mentioned previously, the 
new AIV H7N9 could replicate actively between days 8 and 14 
(59), which differs greatly from the mild infection in humans 
reported for pandemic H1N1 (101) and experimental H3N2 
infection (112). This raises the following questions: (1) weather 
the kinetics of CD8+/CD4+ responses during AIV infection are 
similar to those observed during a mild influenza disease; (2) 
whether CD8+ T cell responses are mainly protective or could 
also be immunopathogenic; (3) whether the expanded CD8+ 
T cell responses are derived predominantly from the memory 
pools or possibly recruited from naïve precursors; and (4) what 
is the relationship between CD8+ T cells, CD4+ T cells, and 
humoral immunity.

The reports that looked at human CD8+ T cell responses 
elicited to HPAIV are scarce and focused mainly on pre-
existing and cross-protective immunity (Table 2). Early reports 
indicated that memory CD8+ (and CD4+) T cells from healthy 
individuals with no documented history of prior exposure to 
avian influenza could recognize epitopes from avian-derived 
viruses, including 1997 Hong Kong H5N1 (119). The cross-
reactive nature of influenza-specific CD8+ T cells was further 
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TABLe 2 | Relevant publications assessing human T cell immunity toward avian H5N1 and H7N9 influenza viruses.

Reference Avian influenza 
subtype

T cells Responses toward avian viruses

Jameson et al. 
(119)

H5N1 CTLs reactive to H1N1, H2N2, and H3N2, obtained 
from healthy individuals from USA

Cross-reactivity with H5N1

Lee et al. (122) H5N1 CTLs reactive to H3N2 obtained from healthy 
individuals from Vietnam and UK

Cross-reactivity with H5N1

Goy et al. (120) H5N1 CTLs reactive to H1N1 and H3N2 obtained from 
healthy individuals from Australia

Cross-reactivity with H5N1

Kreijtz et al. (121) H5N1 In vitro expanded CTLs toward H3N2 obtained from 
healthy HLA-typed donors from the Netherlands

Cross-reactivity with H5N1-infected BLCL

van de Sandt  
et al. (123)

H7N9 CTLs expanded in vitro toward H1N1 (seasonal and 
pandemic) or H3N2 (seasonal) from healthy HLA-typed 
donors from the Netherlands

CTL cross-reactivity with H7N9-peptide loaded BLCLs

Quinones-Parra 
et al. (124)

H7N9 In vitro peptide-expanded PBMCs obtained from 
healthy HLA-typed individuals from Australia

CTL cross-reactivity with H7N9-derived immunogenic peptides is 
restricted by certain HLA haplotypes and varies across ethnicities

Chen et al. (20) H7N9 PBMCs obtained from H7N9-infected patients  
in China

High numbers of peripheral blood T lymphocytes (CD4+ and CD8+) 
correlate with better clinical outcomes

Wang et al. (22) H7N9 Ex vivo longitudinal analyses of PBMCs obtained from 
hospitalized H7N9-infected patients in Shanghai, 
China

Rapid recovery from H7N9 infection is associated with early CD8+ 
T cell responses
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demonstrated by several groups (120–122), which reported 
heterosubtypic memory T cell responses against avian H5N1 
in healthy individuals without prior exposure to AIV. This 
heterosubtypic immunity was proposed to provide at least 
some level of protection toward the new emerging, possibly 
pandemic, influenza AIV strains. Nevertheless, there are no 
reports addressing the role of CD8+ T cells in individuals 
infected with primary H5N1 virus in humans. Similarly, 
it has been reported that a high percentage of CD8+ T cells 
specific for seasonal (H1N1 and H3N2) and pandemic (H1N1) 
viruses cross-react with the newly emerged H7N9 AIV and 
suggested that those cross-reactive CD8+ T cells can reduce 
disease severity and virus spread within the population (123). 
However, the population coverage of these broadly cross-
reactive pre-existing CTLs varied greatly across various eth-
nicities, indicating that especially indigenous populations are 
at the higher risk of succumbing to H7N9 infection (124). Our 
recent study showed the importance of CD8+ T cell responses 
against H7N9 AIV in the absence of pre-existing NAbs (22). 
We showed that H7N9-infected patients discharged from the 
Shanghai Public Health Clinical Centre within 2–3 weeks fol-
lowing admission had early prominent H7N9-specific CD8+  
T cell responses. On the other hand, individuals with prolonged 
hospitalization showed late recruitment of CD8+/CD4+ T cells 
and antibodies simultaneously (recovery by week 4), aug-
mented by prominent NK cell responses (recovery >30 days). 
By contrast, those with fatal disease outcomes had minimal 
influenza-specific immunity and little evidence of T cell activa-
tion at the transcriptional level (69).

However, all of the above human studies are based on the 
assessment of PBMCs within the peripheral blood, which might 
not totally reflect what happens at the site of infection. Although 
the previous reports from mice studies (125, 126) showed that 

blood CD8+ T cell response could be a surrogate for the CD8+ T 
cell response in the lung and lymph nodes, there are still no pub-
lished studies in humans that investigate whether similar kinetics 
occur within the blood and lungs during human influenza infec-
tion. In addition, it is difficult to know how many lung resident 
memory T cells are present following the natural influenza virus 
infection and how protective they are against the heterologous 
challenge in humans.

CONCLUSiON

Taken together, it seems that the pathogenicity and virulence of 
AIVs in humans are determined by the interactions between the 
virus and the host immune response. For mild infections, whether 
caused by seasonal influenza viruses or occasional asymptomatic 
AIVs, the pre-existing CD8+ and/or CD4+ T cells can provide a 
great level of protection (101, 112, 115). In this situation, innate 
immunity provides a rapid first-line immune defense, slows down 
the virus, and assists development of adaptive immunity, without 
any damaging “cytokine storm” effect. This is then followed by 
adaptive immunity capable of clearing the viral infection and 
promoting host recovery. However, in case of a severe human 
influenza infection, caused by either seasonal influenza viruses 
or HPAIV, due to as yet unknown reasons, infected people are 
more susceptible to severe outcome. High replication of AIV 
may either inhibit the innate immunity or drive the overactive 
innate immune response. This may then interfere with generation 
of rapid and effective adaptive immunity and, thus, subsequently 
result in detrimental cytokine storm. Defective innate and/or 
adaptive immune mechanisms cannot control the infection in a 
timely fashion, as shown in our H7N9 study (22). Delayed CD8+ 
T cell responses in patients with prolonged hospital stays could 
have also resulted from the lack of robust cross-strain protective 
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memory pools, thereby reflected the need to recruit the naïve 
CD8+ T cell precursors into the primary influenza response 
rather than rapidly recalling the available memory CD8+ T cells. 
Thus, establishment of robust memory pools appears to be of a 
great importance for the rapid recruitment of adaptive immune 
responses after HPAIV, so that the innate immunity (and inflam-
mation) does not get to the point that is immunosuppressive for 
cellular immunity and, thus, cannot control the rapidly replicating 
virus (22).
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