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Rasmussen encephalitis (RE) is a rare pediatric neuroinflammatory disease of unknown 
etiology characterized by intractable seizures, and progressive atrophy usually con-
fined to one cerebral hemisphere. Surgical removal or disconnection of the affected 
cerebral hemisphere is currently the only intervention that effectively stops the seizures. 
Histopathological evaluation of resected brain tissue has shown that activated brain 
resident macrophages (microglia) and infiltrating T cells are involved in the inflammatory 
reaction. Here, we report that T cells isolated from seven RE brain surgery specimens 
express the resident memory T cell (TRM) marker CD103. CD103 was expressed by 
>50% of CD8+ αβ T cells and γδ T cells irrespective of the length of time from seizure 
onset to surgery, which ranged from 0.3 to 8.4  years. Only ~10% of CD4+ αβ were 
CD103+, which was consistent with the observation that few CD4+ T cells are found in 
RE brain parenchyma. Clusters of T cells in brain parenchyma, which are a characteristic 
of RE histopathology, stained for CD103. Less than 10% of T cells isolated from brain 
specimens from eight surgical cases of focal cortical dysplasia (FCD), a condition that 
is also characterized by intractable seizures, were CD103+. In contrast to the RE cases, 
the percent of CD103+ T cells increased with the length of time from seizure onset to 
surgery. In sections of brain tissue from the FCD cases, T cells were predominantly found 
around blood vessels, and did not stain for CD103. The presence of significant numbers 
of TRM cells in RE brain irrespective of the length of time between clinical presentation and 
surgical intervention supports the conclusion that a cellular immune response to an as 
yet unidentified antigen(s) occurs at an early stage of the disease. Reactivated TRM cells 
may contribute to disease progression.

Keywords: rasmussen encephalitis, focal cortical dysplasia, resident memory T cells, alpha beta T cells, gamma 
delta T cells

inTrODUcTiOn

Rasmussen encephalitis (RE) is a rare chronic neuroinflammatory disease that primarily affects 
young children (1, 2). In the acute stage of the disease, RE patients present with intractable partial 
(focal) seizures that may spread to the rest of the brain. Hyperintensity in T2/FLAIR magnetic 
resonance images usually in one cerebral hemisphere is indicative of inflammation and atrophy 
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(3). The inflammation may spread through the affected cerebral 
hemisphere, but generally does not cross over to the contralateral 
hemisphere (3). In the residual stage of the disease, there is 
significant unilateral brain atrophy and permanent neurological 
deficits that may affect motor and sensory systems. Intravenous 
immunoglobulins and tacrolimus can slow the destruction of 
brain tissue, but cannot reverse the intractable seizures (4). Early 
treatment of a presumptive RE case with ganciclovir was reported 
to ameliorate the seizures (5). Ultimately, surgical removal or 
disconnection of the affected cerebral hemisphere is the only 
intervention that stops the seizures, but inevitably leaves the 
patient with some functional deficits. A better understanding 
of the inflammatory processes that occur in RE may lead to the 
development of alternative non-surgical treatments.

The inflammatory reaction in RE involves both activated 
brain resident macrophages (microglia) and T cells (6–9). 
Histopathological examination of resected brain tissue and brain 
biopsies show T cells in perivascular spaces, leptomeninges, and 
in small clusters scattered throughout the affected grey and white 
matter (7, 9). Here, we report that many of the T cells in the 
parenchyma of affected RE brain tissue at the time of surgery are 
resident memory T cells (TRM) as evidenced by the expression of 
CD103, the αE integrin subunit. TRM cells are a distinct popula-
tion of memory cells that persist in non-lymphoid tissues (NLTs) 
long after the resolution of an immune response (10–14). They 
develop in situ from T cells that enter an inflamed tissue during 
the effector stage of an immune response (15). In animal models 
of virus infection, the establishment of TRM cells is controlled by 
regulatory T cells (16, 17). It has also been shown in mice that 
TRM cells respond more rapidly than circulating central memory 
T cells to the local reoccurrence of a pathogen (14). The binding 
of αEβ7 integrin heterodimers to E-cadherin on epithelial cells is 
thought to contribute to the retention of TRM cells in NLTs (18), 
although not all TRM cells express CD103 (19). αEβ7 integrin is 
also involved in the maturation of the immunological synapse 
and promotes the polarization of cytotoxic T cells (20). The 
potential significance of TRM cells in RE brain is discussed.

MaTerials anD MeThODs

All of the surgical specimens used in this study were obtained 
under IRB approval (UCLA IRB nos. 11-00030 and 13-001213), 
and with informed consent. In accordance with HIPAA guide-
lines, all specimens and patient data were de-identified. There 
were no exclusion criteria. The clinical information for five of the 
seven RE cases and for four of the eight focal cortical dysplasia 
(FCD) cases in the present study has been previously published 
(21). The data for all of the cases are provided in Table S1 in 
Supplementary Material.

Flow cytometry
The isolation and cryopreservation of the brain-infiltrating lym-
phocytes (BILs) have been previously described (21). In brief, fresh 
brain tissue was finely minced in dissociation solution (HBSS with 
20 mM HEPES pH7.0, 5 mM glucose, and 50 U/ml penicillin/
streptomycin), then digested overnight at room temperature in 
dissociation solution containing 0.5 mg/ml Type IV collagenase 

(Worthington Biochemical Corp., Lakewod, NJ, USA) and 5% 
filtered human serum (Mediatech Inc., Manassas, VA, USA). 
BILs were obtained by fractionation on a 30%: 70% Percoll® 
(SigmaAldrich, St. Louis, MO, USA) step gradient in RPMI 
containing 20 mM HEPES. BILs were stained with the following 
antibodies: APC-efluor® 780-conjugated CD3 (clone UCHT1; 
eBioscience Inc., San Diego, CA, USA), PE/Cy7-conjugated 
CD4 (clone SK3; eBioscience Inc.), PerCP/Cy5.5-conjugated 
CD8 (clone RPA-T8; eBioscience Inc.), APC-conjugated TCR αβ 
(clone IP26; eBioscience Inc.), FITC-conjugated TCR γδ (clone 
B1.1; eBioscience Inc), and PE-conjugated CD103 (clone B-Ly7; 
eBioscience Inc). Data were acquired on an analytical LSRII flow 
cytometer (Becton Dickinson, San Jose, CA, USA), and were ana-
lyzed with FlowJo software (TreeStar Inc., Ashland, OR, USA); 
histograms were exported into CorelDrawX6 (Corel Corporation, 
Ottawa, ON, Canada). Statistical analysis and graphing utilized 
R-project programs (www.r-project.org).

immunocytochemistry
Serial sections (5  μm) of paraffin-embedded involved tissue 
were deparaffinized; antigen retrieval was accomplished by 
microwaving for 20  min in buffered citrate (10  mM, pH 6.0). 
Sections were blocked for 1 h (Impress Kit, Vector Laboratories, 
Burlingame, CA, USA), then incubated overnight at 4°C with a 
rabbit anti-human CD3 polyclonal antibody (1:800, Dako North 
America, Inc., Carpinteria, CA, USA) or a rabbit anti-human 
CD103 monoclonal antibody (clone EPR4166, 1:500, Abcam, 
Cambridge, MA, USA). Sections were subsequently incubated 
with a peroxidase-conjugated anti-rabbit secondary antibody (1: 
300, Impress Kit, Vector Laboratories) for 1 h at room tempera-
ture. Staining was visualized by adding 3, 3′-diaminobenzidine 
(DAB) (MP Biomedicals, Santa Ana, CA, USA), followed by 
counterstaining with hematoxylin. Images were acquired using 
an Aperio ScanScope XT scanner (Aperio, Vista, CA, USA), then 
transferred to CorelDRAWX6 (Corel Corporation). For immu-
nofluorescence microscopy, fixed free-floating 30  μm cryostat-
cut sections were blocked in PBS with 5% normal goat serum 
(Vector Laboratories) and 0.3% Triton X-100 for 1 h, then incu-
bated in mouse anti-human CD8 (clone C8/144B, 1: 100, Dako) 
and anti-human CD103 monoclonal antibody (clone EPR4166, 
1:500, Abcam) overnight at 4°C followed by incubation in Alexa 
Fluor® 488 goat anti-rabbit and Alexa Fluor® 568 goat anti-mouse 
secondary antibodies (1:1000, Life Technologies, Carlsbad, CA, 
USA) for 1  h at room temperature. Sections were mounted 
in ProLong® Gold anti-fade reagent containing DAPI (Life 
Technologies). Images were acquired using an Olympus spinning 
disk confocal microscope (Olympus America, Inc., Center Valley, 
PA, USA) under the control of SlideBook™ image acquisition 
and analysis software (Intelligent Imaging Innovations, Inc., 
Denver, CO, USA), then transferred to CorelDRAWX6 (Corel 
Corporation).

resUlTs

The clinical details of the surgical cases in this study are provided 
in Table S1 in Supplementary Material. BILs previously isolated 
from five RE brain surgery specimens (21) and from two new RE 
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FigUre 1 | cD103 expression by T cells isolated from re and FcD brain specimens. Box plots with median values showing the percent of CD8+ αβ T cells 
(a), γδ T cells (B) and CD4+ αβ T cells (c) in brain-infiltrating lymphocytes (BILs) that are CD103+, and (D) the percent of T cells that express CD103 in peripheral 
blood lymphocytes (PBMCs) from the same patients. In (e,F) box plots with median values of patient ages at seizure onset and at surgery are shown. Red dots 
correspond to individual RE cases (n = 7), and blue dots correspond to individual FCD cases (n = 8). Calculated p-values (Mann–Whitney test in A and B and 
unequal variance t-test in C–F) indicated that there was a significant difference in the relative number of CD103+ T cells in RE BILs compared with FCD BILs, but not 
in peripheral blood. There was no statistical difference between the FCD cases and the RE cases with respect to the age of seizure onset and age at surgery. The 
linear correlation between the percent of CD103+ CD3+ T cells in lymphocytes isolated from fresh RE and FCD brain tissue and the length of time between seizure 
onset and surgery was calculated (g,h), and showed a positive correlation between the relative number of CD103+ T cells in FCD BILs and the length of time 
between seizure onset and surgery. Pearson correlation coefficients, p-values and 95% confidence limits (shaded areas) are shown.
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FigUre 2 | expression of cD103 by cD8+ T cells. Cryostat sections of brain tissue from RE surgery case RECP34 were co-stained with CD8 and CD103 
antibodies; immunostaining was visualized with Alexa Fluor® conjugated secondary antibodies. (a) CD8+ T cells in brain parenchyma, (B) CD103+ staining of the 
same T cells (c) merged image. Arrows point to examples of CD8+ CD103+ T cells. Scale bars correspond to 50 μm.
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cases and eight FCD cases were stained for the TRM cell marker, 
CD103 (αE integrin subunit) together with antibodies for CD3, 
CD4, CD8, TCR αβ, and TCR γδ. Inflammatory markers and T 
cells have been identified in sections of resected brain tissue from 
FCD surgeries (22), although, to our knowledge, T cells have not 
been previously isolated from fresh FCD surgical material. The 
profile of T cell subtypes from the FCD brain specimens varied, 
although CD8+ αβ T cells and γδ T cells predominated, which 
we also found to be case in RE (21) (Figure S1 in Supplementary 
Material). As shown in Figures 1A,B, over half of the CD8+ αβ 
T cells and γδ T cells in the RE BIL fractions expressed CD103. 
There were far fewer CD103+ CD4+ T cells (Figure 1C) consonant 
with the observation that few CD4+ T cells are found in brain 
parenchyma of RE patients (7, 9, 23). The percent of CD103+ 
T cells in the BIL fractions from the FCD cases was significantly 
lower compared with that of the RE cases (Figures  1A–C), 
whereas the percent of CD103+ T cells in the blood of both FCD 
and RE cases at the time of surgery was very low and not statisti-
cally different (Figure 1D).

There was no statistical difference between the FCD cases and 
the RE cases with respect to the age of seizure onset and age at 
surgery (Figures 1E,F); however, in marked contrast to the RE 
cases (Figure 1G), the percent of CD103+ T cells was significantly 
positively correlated with the length of time from seizure onset to 
surgery, although the relative number of TRM cells remained low 
(Figure 1H).

The early T cell activation marker, CD69, is also expressed 
by TRM cells (12). We previously evaluated CD69 expression by 
flow cytometry and immunocytochemistry to determine whether 
T cells in RE brain tissue were activated (21). There was good agree-
ment between the percent of CD103+ and CD69+ T cell subtypes 
in the BIL fractions from cases RECP32, RECP33, and RECP34 
suggesting that all of the CD69+ T cells may be TRM cells. For cases 
RECP26 and RECP37, fewer αβ and γδ T cells were CD69+ (21).

The expression of CD103 by T cells was confirmed by co-
staining cryostat sections of resected RE brain tissue with CD8 
and CD103 antibodies. Figure 2 shows CD8 and CD103 immu-
noreactivity associated with the cell surface of the same T cells.

Serial paraffin sections of cerebral cortex from two RE and two 
FCD surgery cases were also stained with CD103 antibodies. In a 
representative field of involved RE brain parenchyma, a cluster of 
CD3+ T cells located at the border between white matter and grey 
matter contains CD103+ cells (Figures 3A,B), which are likely to 
be T cells. Individual T cells that appear to emanate from a blood 
vessel are also CD103+, although far fewer CD103+ cells are seen 
in the perivascular space of the blood vessel (Figures 3C,D). By 
contrast, in sections of resected brain tissue from the two FCD 
cases, CD3+ T cells are only found in association with blood 
vessels; few are present in brain parenchyma (Figures  3E,G). 
The lymphocytes in perivascular spaces do not express CD103 
(Figures 3F,H).

DiscUssiOn

Surgery constitutes the last option for the treatment of RE, and is 
only performed several months to several years after the patient 
first presents with seizures. If, as is suspected, the disease is trig-
gered by an inflammatory reaction in the brain, we conjectured 
that some of the T cells found in surgically resected RE tissue 
may be tissue-resident memory T cells. By flow cytometry, we 
found that more than half of the CD3+ BILs from seven RE 
surgeries expressed CD103 irrespective of the length of time that 
had elapsed between the first clinical presentation of the disease 
and the surgery. Relatively few of the T cells isolated from eight 
dysplastic brain tissue specimens expressed CD103. The range of 
ages at the time of surgery and length of time between seizure 
onset and surgery were similar to the RE cases.

The positive correlation that we observed between the percent 
of CD103+ T cells isolated from FCD brain tissue, and the length 
of time between seizure onset and surgery indicates that TRM cells 
may accumulate in the brain over time in cases of FCD, albeit in 
relatively low numbers, possibly as a consequence of recurrent 
inflammation caused by the intractable seizures (24). By contrast, 
the high percentage of TRM cells found in RE brain tissue as early 
as 3 months after seizure onset is consistent with an acute immune 
response having occurred at a very early stage of the disease (3, 9).
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FigUre 3 | immunohistochemical staining of resident memory T cells in re and FcD patient brain parenchyma. Serial 5 μm sections of brain tissue from two RE (RECP27 
and RECP34) and two FCD surgery cases (CD18 and CD19) were stained with CD3 and CD103 antibodies. Immunostaining was visualized with a peroxidase-conjugated secondary 
antibody and 3, 3′-diaminobenzidine substrate (brown reaction product). Sections were counterstained with hematoxylin. The same clusters of CD3+ T cells (a) comprise CD103+ cells 
(B). Scattered T cells in brain parenchyma express CD103 (c,D), but very few T cells in perivascular space are CD103+ (c,D). In FCD, CD3+ T cells (e,g) are confined to perivascular 
spaces and do not express CD103 (F,h). Insets show magnified views of the areas marked by a red arrow. Scale bars correspond to 100 and 25 μm (insets).

The clusters of CD103+ T cells that we observed in brain 
parenchyma look remarkably similar to those found in the brains 
of mice several weeks after an acute intranasal vesicular stomatitis 
virus infection (25). In this study, it appeared that CD103+ T cells 
were clustered around the original hotspots of viral infection 
even though no viral transcripts were detected at these sites (25). 
Other work has shown that TRM cells do not necessarily require 
the continuous presence of antigen to remain in place (26, 27). 
Whether an initial inflammatory event in RE is the result of an 
infection is not known. Cytomegalovirus, herpes simplex virus, and 
Epstein–Barr virus sequences have been detected in some, but not 
all, RE brain specimens (28–32). The partially successful treatment 

of a presumptive RE case with ganciclovir suggests a possible viral 
etiology (5), as does a patient in Japan who was diagnosed with RE 
following repeated infection with influenza virus (33). In this case 
report, the possibility of molecular mimicry as a cause of RE was 
suggested (33). To investigate whether a persistent viral infection 
may account for the recurrent immune response in RE, we searched 
for pathogen-related transcripts in RNA-Seq data from six RE brain 
tissue samples, but did not find any transcripts to known viruses 
(unpublished results). In skin, TRM cells are found in psoriatic lesions 
and sites of fixed drug eruptions (FDEs), and their presence explains 
the reoccurrence of lesions in the same locations (34). Psoriasis and 
FDEs have not been linked to known infectious agents, thus, the 
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TRM cells are presumably autoreactive due to a failure of tolerogenic 
mechanisms, which may also be the case in RE.

In the RE brain tissue examined, it appeared that T cells 
were actively trafficking into brain parenchyma at the time of 
surgery (Figure 3C). By contrast, T cells in the FCD brain tissue 
examined were confined to perivascular spaces (Figures 3E,G), 
suggesting that the T cells had crossed the endothelial cell barrier, 
but not the glia limitans. Lymphocyte entry into the brain is a 
two-step process (35). Following extravasation into perivascular 
and leptomeningeal spaces T cells must subsequently cross the 
parenchymal basement membrane and the glia limitans to access 
the brain (36). In a mouse model of multiple sclerosis, this process 
involves a complex interplay between cytokines, chemokines, and 
matrix metalloproteases produced by astrocytes, microglia, non-
resident macrophages, and T cells (37–39). Encounter with cells 
within the perivascular space that present cognate antigen may 
also be critical for T cell entry into the brain (40).

We have recently shown that identical Vδ1 CDR3 sequences 
can be detected in RE and FCD brain tissue (21), suggesting that 
the same γδ T cell clones may traffic to the brain in both diseases, 
but only enter the brain parenchyma in appreciable numbers in RE. 
This supposition could be addressed by T cell receptor sequence 
analysis of CD3+ cells isolated by laser capture microscopy from 
parenchyma and perivascular cuffs in sections of RE and FCD 
brain tissue. There are several case reports of overlapping RE and 
FCD pathology (41–46), although none of the cases in the present 
study were characterized by dual pathology. The presence of TRM 
cells may explain why T cells can breach the glia limiting in far 
greater numbers in RE than in FCD. Activation of TRM cells has 
been shown to recruit circulating T cells into an area of recurrent 
inflammation (47).

We conclude that the presence of TRM cells suggests that an 
immune response may precede the clinical presentation of RE, 

and may account for the difference between RE and FCD with 
respect to the extent of T cell infiltration into the brain seen at the 
time of surgery. We speculate that local reactivation of TRM cells, 
possibly triggered by seizure-induced inflammation (24), recruits 
antigen-experienced or newly primed T cells into the brain 
(11), thus perpetuating a chronic inflammatory condition, and 
progressive destruction of brain tissue. The presence of TRM cells 
may also explain why, once established, any recurrent immune 
reaction remains confined to one side of the brain. Treatments 
designed to block T cell entry into the brain or egress from lymph 
nodes may not be completely effective if reactivated TRM cells are 
directly involved in the immunopathology, as was shown to be 
the case in psoriasis (34).
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