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Spleen tyrosine kinase (Syk) is a member of the Src family of non-receptor tyrosine 
kinases, which associates directly with surface receptors, including B-cell receptor and 
Fcγ receptor, and is involved in a variety of signal transduction pathways. Rheumatoid 
arthritis (RA) and systemic lupus erythematosus are autoimmune diseases in which auto-
antibodies, immune complexes, and autoreactive T cells account for the expression of 
tissue inflammation and damage. Syk inhibitors efficiently suppress RA in patients albeit 
in the expression of unwanted side effects, including gastrointestinal effects, hyperten-
sion, and neutropenia. Syk inhibitors also inhibit clinical manifestations in lupus-prone 
mice. Here, we review the evidence that supports the use of Syk inhibitors to treat 
rheumatic and other autoimmune diseases.
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inTRODUCTiOn

Spleen tyrosine kinase (Syk) is a cytoplasmic protein-tyrosine kinase and a member of the Src fam-
ily of non-receptor tyrosine kinases (1). The Syk protein contains a pair of Src homology 2 (SH2) 
domains at the N-terminus that are joined to each other by linker A and are separated by a longer 
linker B from the catalytic domain (2, 3). Syk is activated when the tandem SH2 domains are engaged 
or when tyrosines participating in the linker–kinase sandwich become phosphorylated. SH2 domains 
are structural motifs that bind phosphotyrosine to enhance protein–protein interactions (4, 5). These 
high affinity Syk-binding sites are known as immunoreceptor tyrosine-based activation motifs or 
ITAMs, which are located in many important receptors (6). Syk physically docks to the doubly 
phosphorylated ITAM via its tandem SH2 domains in a head-to-tail orientation. Conformational 
changes disrupt the “linker–kinase sandwich” and activate the enzyme (7).

Spleen tyrosine kinase catalyzes the phosphorylation of proteins on tyrosines located at sites 
(8). Signals are further transmitted from the Syk-receptor complex through the phosphorylation 
of adapter proteins, such as BLNK/SLP-65, SLP-76, and LAT (3, 9). These phosphorylated proteins 
serve as scaffolds to which effectors dock with SH2 or other related phosphotyrosine-binding motifs. 
Effectors include members of the Tec-family of tyrosine kinases, lipid kinases, phospholipases, and 
guanine nucleotide exchange factors that further propagate the signal allowing for the activation of 
multiple pathways, including PI3K/Akt, Ras/ERK, PLCγ/NFAT, Vav-1/Rac, and IKK/NFκB (2, 3).

Spleen tyrosine kinase is widely expressed in the hematopoietic system and is involved in a variety 
of signal transduction pathways, including receptor signaling in mast cells, monocytes, osteoclasts, 
and T, B cells (10–16) (Figure 1). In this review, we discuss the role of Syk in Fcγ receptor (FcγR) 
signaling and the effect of Syk inhibitor in treatment of autoimmune diseases.
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FiGURe 1 | engagement of Syk and downstream effects. Following 
aggregation of FcR by immune complex (IC), the phosphorylation of ITAM 
tyrosine leads to the recruitment of Syk to the receptor in an interaction 
mediated by its tandem pair of SH2 domains. Active Syk initiates signaling 
pathways of PI3K/Akt, Ras/ERK, PLCγ/NFAT, Vav-1/Rac, and IKK/NFκB and 
then generates downstream effects, such as phagocytosis, cytokine 
production, degranulation, B-cell maturation, osteoclastogenesis, and platelet 
activation.
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Syk AnD igG/Fcγ ReCePTOR SiGnALinG 
PATHwAY

IgG is recognized by FcγR, and IgG–antigen (Ags) complexes 
bind to FcγR on immune cells to mediate inflammatory immune 
responses. There are three kinds of FcγR: FcγRI, FcγRIIA, and 
FcγRIIIA. IgG-binding FcγR induces activation of Syk through 
ITAMs defined by these receptors (17). Receptor engagement 
enhances the phagocytosis of IgG-opsonized particles and the 
production of cytokines, nitric oxide, and reactive oxygen species, 
which promote the killing of microbes and cause tissue inflam-
matory damage. Syk-deficient macrophages cannot phagocytose 
IgG-coated particles, and Syk-deficient neutrophils fail to undergo 
an oxidative burst in response to the engagement of FcγRs (18, 
19). In neutrophils, integrins signal through an association with 
either FcγR or DAP12, another ITAM-containing accessory pro-
tein, and Syk is required for adhesion-dependent activation (20).

igG/Fcγ ReCePTOR SiGnALinG AnD 
AUTOiMMUne DiSeASeS

Type II and Type III hypersensitivity reactions are mediated by 
IgG that interacts with bound and soluble Ags, respectively, and 
are responsible for the inflammation that accompanies many 
autoimmune diseases.

B and T cells have been shown to exert an important role in 
the pathogenesis of autoimmune diseases (21). The T cell recep-
tor (TCR) is associated with the CD3 complex, which includes a 
dimer of ζ chains each of which contains three ITAMs (15). TCR 
engagement triggers the phosphorylation of ζ chain ITAM tyros-
ines that leads to the binding of Zap-70. B cells are responsible for 
production of IgG and are activated through the B-cell receptor 
(BCR). BCR consists of a membrane spanning immunoglobulin 
in association with two signaling adaptors: CD79a (Ig-α) and 
CD79b (Ig-β), each of which contains a single ITAM (2, 3). Syk-
deficient mice lack mature B cells (22). Disruption of the Syk gene 
in DT40 B cells blocks essentially all BCR-stimulated signaling 
pathways (23).

Systemic lupus erythematosus (SLE) is a chronic autoimmune 
disease characterized by high levels of autoantibodies and mul-
tiorgan tissue damage. The TCR–CD3 complex in SLE T cells is 
rewired in that the levels of CD3ζ is decreased, and its place is 
taken by FcγR, which recruits Syk and not Zap-70 as its signaling 
partner (24). Much of the altered gene expression that character-
izes SLE T cells (e.g., increased expression of IL-21, CD44, PP2A, 
and OAS2) can be induced by the overexpression of Syk in nor-
mal T cells (25). High level of autoantibodies in serum and IgG 
deposition in tissues typify SLE. Circulating immune complexes 
(ICs) and primarily those formed in  situ are important in the 
expression of the inflammatory response (20).

Rheumatoid arthritis (RA) is a chronic autoimmune disease 
characterized by joint inflammation and bone destruction (26). 
T cells (especially Th1 and Th17 cells) are important in the patho-
genesis of RA (27, 28). Recently, follicular helper T (Tfh) cells, 
whose primary task is to drive the formation of B cell responses, 
have been recognized as critical regulators of autoimmunity (29, 
30). Levels of pSyk in peripheral blood B cells are preferentially 
higher in patients with RA compared to healthy subjects. Patients 
with significantly higher pSyk levels are strongly positive for 
anti-citrullinated protein antibodies (31). Mice deficient in 
FcγR or FcγRIII fail to develop collagen-induced arthritis (32), 
and genetic deficiency of Syk protects mice from autoantibody-
induced arthritis (33). The depletion of Syk from neutrophils 
alone is effective in blocking joint inflammation in autoantibody-
induced arthritis (34), and direct injection of naked Syk siRNA 
into joints inhibits the development of arthritis (35).

Systemic sclerosis (SSc) is a chronic autoimmune disease with 
a high morbidity and mortality. Skin and organ fibrosis are key 
manifestations of SSc, and pathogenesis remains unclear (36). Syk 
inhibitor fostamatinib was demonstrated to limit tissue damage 
and fibrosis in a scleroderma mouse model (37). It indicates 
that the Syk pathway appears as a potential molecular target for 
therapeutic intervention in SSc.

Thrombocytopenic purpura (ITP) and heparin-induced 
thrombocytopenia (HIT) are autoimmune diseases in which 
autoantibodies against Ags on platelets result in platelet activation 
and the opsonization and phagocytosis of both platelets and meg-
akaryocytes by macrophages. Syk inhibitors block IC-mediated 
platelet activation through FcγRIIA in a mouse model of HIT 
(38). Fostamatinib (a Syk inhibitor) blocks platelet loss induced 
by an antibody (Ab) against integrin αIIβ in a mouse model of 
ITP (39). A Phase II clinical trial in patients demonstrated that 
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fostamatinib can restore platelet counts in approximately 50% of 
patients with ITP (39).

eFFiCACY OF Syk inHiBiTOR On 
PATienTS wiTH RHeUMATOiD 
ARTHRiTiS

A highly specific Syk inhibitor, known as R406, has been shown 
to block Fc receptor signaling (40, 41). R788 (renamed fostam-
atinib) is a small molecule, water-soluble prodrug of the bio-
logically active R406 and a potent inhibitor of Syk (42). The small 
molecule, R406 as well as R788, has been shown to inhibit the 
development of experimental arthritis (43, 44). In a randomized 
clinical Phase II trial, fostamatinib when added to background 
treatment with methotrexate at a stable dose was effective in the 
treatment of patients with RA (45, 46). Side effects included diar-
rhea, neutropenia, alanine transferase elevation, and increased 
blood pressure. Most side effects were associated with the higher 
doses of fostamatinib. Thus, although fostamatinib is a useful 
DMARD, its clinical use has been precluded by the recorded 
unexpected side effects.

eFFiCACY OF Syk inHiBiTOR On LUPUS 
MRL/lpr MiCe

Increased expression of Syk in SLE T cells affect the expression 
of a number of enzymes, cytokines, and receptors, which are 
important in disease pathogenesis, suggesting Syk may become 
therapeutic target in SLE patients (25). In addition, IgG is 
involved in the skin and kidney injury in SLE patients (21, 47), 
and intradermal injection of lupus serum IgG induces skin 
inflammation (47). The expression of Syk is increased in the skin 
lesion of lupus MRL/lpr mice (48), and the Syk inhibitor R788 
completely abrogates skin inflammation induced by lupus serum 
(Deng, unpublished data). The Syk inhibitor R788 can prevent 
skin injury and also suppress established skin injury in lupus 
MRL/lpr mice. Interestingly, discontinuation of treatment results 
in extended suppression of skin disease for at least 8 weeks (48). 
Finally, a Syk inhibitor has also been demonstrated to prevent 
and improve, if administered after the beginning of the disease, 
of kidney damage in lupus-prone mice (48, 49).

eXPReSSiOn OF Syk AS A PARAMeTeR 
OF PATHOLOGY in RA AnD SLe

Spleen tyrosine kinase is expressed in rheumatoid synovium, 
with activated phosphorylated Syk being differentially expressed 
between RA and OA synovium (41). Syk activation plays an 
essential role in TNF-α-induced cytokine production in fibro-
blast-like synoviocytes and RANKL-induced osteoclastogenesis 
(3, 41). Expression of Syk is abnormally increased in T cells of SLE 
patients (24) and skin lesion in lupus-prone mice (48). Expression 
of Syk is associated with disease progression in lupus-prone mice 
(48), thus expression of phosphorylated Syk may be worked as a 
parameter of pathology of RA and SLE.

SiDe eFFeCTS OF Syk inHiBiTOR 
FOSTAMATiniB

In the trials of RA patients, side effects of Syk inhibitor fos-
tamatinib (R788) were observed. These side effects include 
diarrhea, nausea, hypertension, dizziness, headaches, neutro-
penia, upper respiratory tract infections, and increased serum 
alanine transaminase (ALT) levels (45, 46, 50). Diarrhea 
and neutropenia are the two most common adverse events 
in the overall safety population. These side effects were dose 
dependent and were often reported with the 150 mg bd dose 
of fostamatinib. Diarrhea occurred in 6 (13%), 5 (11%), 8 
(16%), and 21 (45%) of the patients in the placebo and R788 
50, 100, and 150 mg groups, respectively (45, 50). The number 
of neutrophil returned to normal in all patients within 3–7 days 
after interruption or reduction of the fostamatinib dose (46). 
Neutropenia caused by Syk may be by Syk-impairing bone 
marrow neutrophil release, and concurrent MTX use may also 
play a role (51). Hypertension was a potential side effect of con-
cern. The increase in blood pressure was observed at month 1 
in the fostamatinib groups (45, 50). Increases in blood pressure 
were more pronounced in patients with existing hypertension 
at screening or baseline. All cases responded to conventional 
antihypertensive medication or reduction in fostamatinib 
dose. It has been postulated that an off target effect on vascular 
endothelial growth factor receptor 2 (VEGFR) may be respon-
sible for hypertension (52).

FOLLiCULAR DenDRiTiC CeLLS in 
AUTOiMMUne DiSeASeS

Follicular dendritic cells (FDCs) are unique immune cells that 
contribute to the regulation of humoral immune responses. 
FDCs are located in the B-cell follicles of secondary lymphoid 
tissues, where they trap and retain Ags in the form of highly 
immunogenic ICs consisting of Ag plus specific Ab and/or 
complement proteins through Fc and C receptor (53, 54). FDC–
FcγRIIB exerts an essential role in mediating IC periodicity, 
Ag-presentation, inducing germinal center (GC) reaction, and 
generating specific Ab responses. Binding of ICs to FDC–FcγRIIB 
induces FDC activation that leads to significant upregulation of 
FDC–ICAM-1, FDC–VCAM-1, and FDC–FcγRIIB itself (54). 
IC-bearing FDCs and autoreactive GCs frequently exist in 
autoimmune diseases (55, 56). Interference with FDC-reticula 
attenuates autoreactive GC formation, reduces pathogenic auto-
Ab titers and memory B cells, and ameliorates arthritis (56–58). 
It has been recently demonstrated that FDC follicular units 
develop in RA synovium (56, 59). The high levels of FcγRIIB in 
FDCs protects the immunogenicity of FDC–ICs by minimiz-
ing serious inhibition of B-cell activation upon BCR/FcγRIIB 
crosslinking (54, 60). Actually, the expression of FcγRIIB is 
significantly reduced on RA memory B cells and plasmablasts, 
and these alterations on FcγRIIB are associated with high levels 
of anti-citrullinated vimentin auto-Abs (61). It is not clear 
whether Syk inhibitor fostamatinib blocks FDC activation and 
signal transduction.
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COnCLUSiOn

Based on the evidence, Syk exerts an important role in the IgG/
FcγR signaling pathway and in the aberrant signaling of SLE T 
cells. There is ample evidence from the study of human samples 
preclinical experiments that signaling involving Syk contributes 
to the pathogenesis of autoimmune diseases. Syk inhibitors 
efficiently suppress RA in patients albeit in the expression of 
unwanted side effects and raise platelet counts in patients with 
immune thrombocytopenia. In lupus-prone mice, systemic 
administration of Syk inhibitors results in the prevention or 
treatment of skin and kidney injury. It is hoped that more specific 

inhibitors of Syk devoid of side effects should prove of great clini-
cal value.
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