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Cell-based therapies have been studied extensively in the context of transplantation 
tolerance induction. The most successful protocols have relied on transfusion of bone 
marrow prior to the transplantation of a renal allograft. However, it is not clear that stem 
cells found in bone marrow are required in order to render a transplant candidate immu-
nologically tolerant. Accordingly, mesenchymal stem cells, regulatory myeloid cells, T 
regulatory cells, and other cell types are being tested as possible routes to tolerance 
induction, in the absence of donor-derived stem cells. Early data with each of these cell 
types have been encouraging. However, the induction regimen capable of achieving 
consistent tolerance, while avoiding unwanted sided effects, and which is scalable to 
the human patient, has yet to be identified. Here, we present the status of investigations 
of various tolerogenic cell types and the mechanistic rationale for their use in tolerance 
induction protocols.

Keywords: Treg, MDSC, regulatory mechanisms, regulatory myeloid cells, transplantation tolerance, HSCT, 
CD34+ cells

iNTRODUCTiON

Cell-based therapies lie at the root of transplantation tolerance induction protocols. Ray Owen at 
the University of Wisconsin made the early observation that a shared, naturally occurring neonatal 
blood supply was associated with the presence of chimeric red blood cell populations in adult cows 
(1). This, and other, observation prompted Peter Medawar to explore the possibility that donor 
chimerism would allow for acceptance of skin grafts from the same donor through which chimerism 
was established (2, 3). These findings, which led to the Noble Prize in 1960, were exploited by Dr. 
David Sachs (4) and Dr. Sam Strober (5) such that preclinical models (6) for tolerance to solid organ 
transplants could be developed (7–9). These preclinical models led to human clinical trials, which 
have since yielded encouraging results (10, 11).

Indeed, the mechanisms underlying tolerance development are still not clear. Since the 
completion of Medawar’s experiments, investigators have sought to identify the cell populations 
responsible for tolerance induction. Even today, however these cell types and their mechanisms 
remain elusive. Here, we will review some of the cell types, which have demonstrated tolero-
genicity in both experimental and in preclinical models, focusing on the potential for tolerance 
induction in man.
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DONOR BONe MARROw FOR MiXeD 
CHiMeRiSM eSTABLiSHMeNT

Based on the notion that outcomes in human transplantation 
were unacceptable due to the requirement for long-term phar-
macologic immunosuppression, and building on significant 
preclinical data, investigators at Massachusetts General Hospital 
attempted to achieve tolerance in humans. Their approach was 
to first establish lymphohematopoietic chimerism using the 
hematopoietic stem cells of the intended kidney donor, in order 
to establish a milieu where the donor and the recipient existed 
as a “mixed chimera” (10). In their seminal work published in 
the New England Journal of Medicine in 2008, investigators 
described the clinical course of five patients who received con-
ditioning, bone marrow transplantation, and subsequent renal 
transplantation. Transplant recipients were conditioned using 
two preoperative doses of cyclophosphamide, as well as peri-
transplantation anti-CD2, cyclosporine, and thymic irradiation. 
The five patients also underwent bone marrow transplantation 
and renal transplantation. In the group’s original description of 
the bone marrow procurement (11), investigators removed bone 
marrow from the donor’s iliac crest on the day of the transplant 
such that 2.7 × 108 cells/kg were infused into an intended recipi-
ent (11).

As per their initial description, four of the five patients included 
in this study were tolerant, and off all immunosuppression at last 
recorded follow-up (between 2 and 5 years) (10). Interestingly, 
while chimerism was pan-detectable in the first week, four of five 
patients had no detectable chimerism as of day 14, and in the 
remaining one patient only 3.5% chimerism in the granulocyte 
lineage remained until day 21. In this respect, the attempt to 
achieve sustained mixed chimerism failed. Despite this, the 
authors observed excellent clinical results. Given the non-specific 
nature of the bone marrow transplantation, it is difficult to know 
what elements of the cell transplant (bone marrow in this case), 
conditioning regimen, and the organ itself in this early study were 
responsible for long-lasting tolerance. Irrespective of the mecha-
nistic aspects of this initial study, these observations laid down 
the foundation for multiple pursuant studies, which have helped 
to address the tolerogenicity of cell-based transplants aimed at 
tolerance induction (10, 12).

Using donors and recipients who were HLA-matched siblings 
investigators at Stanford University employed a similar cell-based 
tolerance induction protocol for renal transplant recipients. Also 
published in the New England Journal of Medicine, Scandling 
et al. presented a series of 10 patients who underwent treatment 
with anti-thymocyte globulin, cyclosporine, and total lymphoid 
irradiation. Differing somewhat from the Massachusetts General 
Hospital (MGH) experience, an immunomagnetic bead column 
was used to enrich the bone marrow transplant for CD34+ hemat-
opoietic stem cells. The bone marrow donor was first mobilized 
with a 5-day course of subcutaneous G-CSF 6  weeks prior to 
procurement. Their patient then received 8 × 106 CD34+ hemat-
opoietic stem cells in addition to 1 × 106 CD3+ lymphocytes. The 
cell transplant was cryopreserved and administered on day 14, 
following completion of total lymphoid irradiation (13, 14). In 

more recent publications, the Stanford University group has 
shown that 8 of 15 patients completing the tolerance induction 
protocol were chimeric for 6 months or greater and successfully 
weaned from immunosuppression (14). Only four patients were 
not withdrawn from immunosuppression secondary to underly-
ing disease or episodes or rejection (14). Thus, in a well-matched 
cohort, both sustained mixed chimerism and renal transplanta-
tion tolerance could be achieved using this approach.

A third group at Northwestern University has successfully 
implemented human tolerance induction protocols using a dis-
tinct, yet similar cell-based protocol. Again, T cell depletion was 
utilized, however with two doses of alemtuzumab (anti-CD52) 
(15, 16). Tacrolimus in addition to mycophenolate mofetil was 
initiated at the time of transplantation. The first of four bone 
marrow transfusions obtained via iliac crest aspiration were given 
on posttransplantation day 5, followed by repeat transfusions at 
months 3, 6, and 9 (16). Bone marrow donors were mobilized with 
Neuopogen prior to donation, and bone marrow infusions were 
enriched for CD34+ hematopoietic stem cells. Encouragingly, 
five of the institution’s first eight patients were stably tolerant 
of their renal allografts at 1-year posttransplantation (16). The 
Northwestern group has also employed the use of “facilitator 
cells” to augment the chimeric state and tolerogenic milieu, 
although the details of these CD8+ non-T cell types are largely 
unknown as they are considered proprietary (15, 17).

Taken together, it is clear that bone marrow infusions, likely 
through the action of CD34+ hematopoietic stem cells can lead 
to tolerance induction in humans. Importantly, and consistent 
with the initial observations of Starzl and Demetris (18), it may 
not be absolutely necessary for a high-level of chimerism to last 
indefinitely, in order for the transplanted graft to remain tolerated 
(8, 10, 12).

In fact, the loss of chimerism (>1% donor cells) may coincide 
with a totally chimerism-free state, wherein tolerance is sustained 
solely by anergy and immunoregulation induced by the kidney 
graft parenchyma, as suggested by Sachs et al. (7, 8) Alternatively, 
the loss of macro-chimerism may coincide with the onset of 
micro-chimerism (<0.1% donor cells), a setting in which the 
“two-way” model of transplant tolerance, as proposed by Starzl 
and Demetris, is sustained (18, 19). Although Starzl’s theory was 
based on mutual HvG/GvH reactions, and not on Regulatory 
T  cells, a recent report indicates that Treg cells induced in the 
offspring during the transient chimerism stage of pregnancy are 
maintained by constant contact with rare maternal hematopoetic 
cells, indicating a key role for maternal microchimerism in toler-
ance (20).

In addition to the above descriptions of chimerism establish-
ment, exciting new reports have promulgated an alternative 
hypothesis underlying the mechanisms of tolerance induction 
through bone marrow infusion. Authors have shown that CD34+ 
monocytes are capable of inducting apoptosis of donor reactive 
T cells, and that through Treg expansion, this leads to tolerance. 
Regardless of the underlying mechanisms, immune tolerance 
through bone marrow infusion has proven efficacy in humans. 
However, additional potentially less morbid cell-based therapies 
are in development as well (21).
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MeSeNCHYMAL STeM CeLLS

Adapted from bone-marrow transplantation efforts to reduce 
the rate of bone-marrow graft failure following haplo-identical 
transplantation, mesenchymal stem cells may be capable of toler-
ance induction (22, 23). Pluripotent mesenchymal stem cells are 
naturally occurring and exist within the bone marrow (24–28). 
Mesenchymal stem cells are precursors to bone, fat, and other 
connective tissues. Additionally, however, mesenchymal stem 
cells have been shown to support normal hematopoiesis and 
to demonstrate immunosuppressive qualities (22, 25, 27, 28). 
Mesenchymal stem cells can rapidly expand ex vivo, yet they do 
not lose potential to differentiate into multiple cell types (23, 24, 
28). Partially explaining augmentation of haplo-identical bone-
marrow transplantation, mesenchymal stem cells also assist with 
engraftment of hematopoietic stem cells (23).

It has been hypothesized that mesenchymal stem cells partly 
explain the tolerogenic nature of bone marrow transplantation for 
tolerance induction. Accordingly, small and large animal models 
of attempted tolerance induction using these cells have been 
studied (23). In a rodent model of heterotopic heart transplanta-
tion, investigators observed that rapamycin alone led to rejection 
of haplo-mismatched cardiac grafts by 3  weeks. In contrast, 
mesenchymal stem cell infusion as monotherapy inhibited acute 
rejection, and when infusion of mesenchymal stem cells was 
coadministered with rapamycin, recipients enjoyed long-term, 
and rejection-free graft survival (23). Recipients of mesenchymal 
stem cell infusion also displayed minimal antibody production. 
Investigators observed deposition of mesenchymal stem cells into 
the cardiac grafts, as well as increased number of FoxP3+ T regula-
tory cells (23). Mechanistically, authors offered that the intra-graft 
mesenchymal stem cells might (1) protect the donor heart from 
exposure of alloantigens, and (2) provide local immunomodula-
tion for alloreactive T cell clones (23). While mesenchymal stem 
cells are certainly immunosuppressive, infusion of mesenchymal 
stem cells alone was insufficient to overcome the alloreactive host 
responses, suggesting that other factors intrinsic to the bone mar-
row (beyond mesenchymal stem cells) are potentially required for 
tolerance induction. Corroborating these findings, other authors 
have shown that mesenchymal stem cell infusions prolonged 
baboon skin graft survival (29) as well as survival of liver, kidney, 
and heart allografts in small animal models (23, 30–32).

The immunomodulatory effects of mesenchymal stem cells 
have been studied and their interplay with other immunological 
cell types has begun to be characterized (25–27). Indeed, authors 
have recently shown that the differential efficacy of mesenchymal 
stem cells is based on the cell source, suggesting that not all mes-
enchymal stem cells are created equally (33). While a complete 
understanding of the responsible mechanisms is incomplete, 
there is a clear upregulation of FoxP3+ Regulatory T cells result-
ing from mesenchymal stem infusion (34). In addition, the sup-
pressive functions of mesenchymal stem cells are thought to be 
mediated by both cell-to-cell contact as well as through the action 
of soluble factors (35). Additionally, mesenchymal stem cells have 
been shown to down regulate MHC class II and costimulatory 
molecules, resulting expansion of regulatory dendritic cells and 
impaired alloreactive T cell homing, respectively (30, 35–37). 

Perhaps important to clinical applications, recent reports sug-
gest that the timing of mesenchymal stem cell administration is 
important to graft survival. In addition, the immunosuppressive 
effects of mesenchymal stem cells have been shown to overcome 
the effects of graft versus host disease (GVHD) in man (38, 39). 
Indeed, in a rodent renal tolerance model, when mesenchymal 
stem cells were infused after kidney transplantation (versus 
prior), graft dysfunction and neutrophilic infiltration were 
observed within the graft. Unfortunately, however, at present it 
appears that the lifespan of mesenchymal stems cells is limited 
(28, 40). In contrast, significant graft survival prolongation was 
observed with the mesenchymal stem cell administration pre-
ceded organ transplantation (36). More recently, human studies 
of mesenchymal stem cell administration in living donor kidney 
transplantation demonstrated reduced doses of tacrolimus were 
required for those receiving cell therapy in addition to calcineurin 
inhibition (41), and improved graft function at 1 year. In 2015, 
investigators published of a human pilot study of renal trans-
plantation, in which pre- and posttransplantation administration 
of autologous mesenchymal stem cells was found to be not 
only safe, but the infusion lead to upregulation of Tregulatory 
cells in recipients (42). Taken together, mesenchymal stem cells 
seem capable of significant immunosuppression; however, the 
immunosuppressive effects appear incomplete, suggesting that 
additional elements need to be addressed for tolerance induction 
via mesenchymal stem cell adminsitration (41, 43).

EX VIVO eXPANDeD ReGULATORY 
T CeLLS

Regulatory T Cells
Regulatory T cells are perhaps the most widely discussed cell type 
with regard to tolerance induction and their biology has driven 
much of the recent research in transplantation tolerance (12, 
13, 44–50). Regulatory T cells, of which there are many subsets, 
are naturally occurring, and are required for self-tolerance. 
Additionally, Regulatory T  cells have been implicated in the 
immunosuppressive mechanisms described for each of the cell 
types presented in this manuscript (51–60). While some investi-
gators have reasoned that Regulatory T cells may be a marker of 
tolerance rather than the unifying mechanism by which tolerance 
to organ transplants is mediated, few will argue with the idea that 
Regulatory T cells are critical to the success of tolerance protocols. 
Accordingly, recent data show that microchimerism may itself 
sustain antigen-specific Regulatory T cells in a mouse model (20). 
Indeed, the hypothesis that Regulatory T cells represent a marker 
of tolerance is gaining traction among the tolerance community 
(20).

From the standpoint of cell-based tolerance induction 
protocols, Regulatory T  cells can be expanded ex vivo and 
administered exogenously, or transplanted as part of a tolerated 
graft (intra-graft Regulatory T  cells; for caveats, see Section 
“Intragraft Regulatory T cells”). Endogenous Regulatory T cells 
have been studied extensively and are conventionally defined 
as thymic derived (tRegulatory T cells) or peripherally derived 
(pRegulatory T  cells). tRegulatory T  cells and pRegulatory  
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T cells can be distinguished by different cell surface identifiers 
(CD39, CTLA-4, etc.) and by the soluble factors produced (IL-35, 
etc.). Notably, both tRegulatory T cells and pRegulatory T cells 
populations express intranuclear FoxP3, a transcription factor 
thought to be the most specific marker for Regulatory T  cells 
(61–63). Additionally, helios, a member of the Ikaros family of 
transcription factors, has been shown to distinguish thymic from 
peripheral Regulatory T cells (64). While helios is expressed in 
100% of thymocytes, naive rodent and human FoxP3 cells T cells 
generated peripherally via TCR stimulation failed to express 
helios (64). While the exact function of FoxP3 itself it not fully 
known, it is thought to downregulate the nuclear factor of acti-
vated T cells (NFAT) (62).

The mechanisms of Regulatory T cells have been extensively 
studied and recently reviewed (65). There are four primary 
actions, which are thought to mediate the inhibitory function of 
Regulatory T cells: (1) release of soluble, inhibitory factors, (2) 
cytolysis, (3) metabolic dysregulation, and (4) manipulation of 
the function of dendritic cells (65). The soluble factors IL-10 and 
TGF-beta have garnered significant interest in the Treg literature 
as the primary cytokines by which negative inhibition is mediated 
(66, 67). However, it is unclear if the cytokine profile for tRegula-
tory T cells and pRegulatory T cells is similar (65, 68). Building 
data from our laboratory and others have also suggested that 
IL-35 (Tomita et al., unpublished data) (69). It is also becoming 
clear that like natural killer cells and like cytotoxic T cells (CD8+), 
and regulatory T cells inhibit anti-donor responses via cytolysis 
through the activity of perforin and granzyme A (65, 70). While 
not widely discussed as a primary Treg function, regulatory 
T cells are also known to deplete IL-2 from the microenviron-
ment, resulting in metabolic dysregulation of target T cells (71, 
72). The interaction of Regulatory T cells and dendritic cells is 
bidirectional. Below in the review, we will discuss tolerogenic 
monocytes, which are upstream to Regulatory T cells, however 
Regulatory T cells themselves may also affect the maturation of 
suppressive monocytes through the action of CTLA-4 and other 
inhibitory signals (65, 73).

Given their known suppressive role in  vivo following 
protocols of tolerance induction, much interest has focused 
on ex vivo expansion of Regulatory T  cells such that subse-
quent administration might lead to tolerance induction. 
Regulatory T  cells may be generated (induced Regulatory 
T cells or iRegulatory T cells) ex vivo, in the presence of IL-2 
and TGF-beta (61, 67). Indeed preclinical and recent human 
trials have demonstrated that massive expansion of Regulatory 
T cells is possible, ex vivo. For such expansions, costimulation 
of purified Regulatory T  cells (CD4+CD25+CD127lo) with 
CD28 in the presence of rapamycin has been associated with 
a 1000-fold increase in Regulatory T cells over approximately 
3  weeks (74, 75). These protocols were extended to humans 
for the treatment of GVHD, with encouraging results. Notably, 
rapid expansion of Regulatory T cells ex vivo is associated with 
reduction is Regulatory T  cells’ suppressive qualities, despite 
the production of FoxP3 (74, 75). Similar expansion rates 
(also using CD28 costimulation) and findings were observed 
in human studies of autoimmune hepatitis (76, 77) and other 
autoimmune diseases (51).

Ex vivo expansion of Regulatory T cells has been attempted in 
both preclinical and clinical settings (78, 79). In a mouse model, 
investigators were able to expand antigen-specific CD4+CD25+ 
Regulatory T cells using antigen-primed, immature dendritic cells 
(79). Authors then adoptively transferred these antigen-specific 
Regulatory T  cells into skin-graft recipients (78). Investigators 
found that CFSE-labeled Regulatory T  cells migrated into the 
transplanted grafts, that survival was prolonged (stable appear-
ance and hear growth at >150 days), and that animals displayed 
evidence of transplantation tolerance (78). In a preclinical human-
ized mouse model of skin transplantation, investigators recently 
demonstrated that exogenous antigen-specific Treg administra-
tion significantly prolonged skin-graft survival. Importantly, the 
Treg expansion protocol utilizing CD69 and CD71 enrichment 
was thought to be scalable to the clinic (80). In a phase 1 2011 
study, Regulatory T cells were expanded ex vivo from umbilical 
cord blood and administered to partially HLA-matched patients 
with hematologic malignancy. Not only did this prove to be 
safe but also it provided preliminary evidence that recipients of 
these Regulatory T cells had decreased risk of acute GVHD (59). 
Another 2011 study was able to show that Regulatory T  cells 
coinfused with conventional T  cells prevented GVHD without 
the use of posttransplant immunosuppressive therapy (60).

According to the National Institutes of Health, there are four 
open-active trials and one closed-active trial utilizing the infu-
sion of ex vivo generated Regulatory T cells. A European group 
focused on cellular immunotherapy in organ transplantation 
has a phase 2 study in process in which autologous Regulatory 
T cells are removed from living donor renal transplant recipients, 
and after 5 days of expansion, they are reinfused into the recipi-
ent. In a second approved human trial, through the University 
of Minnesota, investigators are using autologous, donor 
alloantigen-specific Regulatory T cells produced from expanded 
Regulatory T  cells obtained from pre-liver transplant patients. 
The Regulatory T cells are then infused back into the recipient 
at regular intervals with the goal of achieving tolerance. A group 
from the University of California San Francisco is using ex vivo 
generated and expanded Regulatory T  cells to assess the effect 
on beta cell function and the autoimmune response in type 1 
diabetes. Another phase 1 trial is investigating the safety, toler-
ability, and effect of three different doses of ex vivo expanded 
polyclonal Regulatory T cells in the cutaneous manifestation of 
patients affected with lupus erythematosus. Another phase 1 trial 
is using ex vivo Regulatory T  cells for the prevention of acute 
GVHD in patients with hematological malignancies following 
hematopoietic stem cell transplantation. Another group from the 
University of California San Francisco is investigating the role of 
ex vivo expanded Regulatory T cells as a therapy for subclinical 
inflammation in kidney transplant patients.

iNTRAGRAFT ReGULATORY T CeLLS

It is widely accepted that immunomodulatory cell types home to 
areas of acute inflammation, and that these cell types establish a 
local, tolerogenic milieu (at least partly) through direct cell-to-
cell interaction (44, 46, 48, 81–86). In a miniature swine animal 
model of MHC class-I disparate tolerance induction, authors 
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have shown that a short course of calcineurin inhibition via 
cyclosporine leads to robust, long-lasting tolerance, which is not 
abrogated by infusion of pro-inflammatory cytokines, removal 
of the tolerated graft, or leukapheresis of peripheral T regulatory 
cells (44–46, 82, 87–89). Indeed, only when the tolerated kidney 
was removed for more than 3  months in this model, during 
which time the animal is kept alive by renal-transplantation with 
a recipient-matched kidney, did tolerance begin to wane (45, 90). 
These data are supported by mechanistic data in small animal 
models of heart transplantation (91). This abrogation of tolerance 
was hastened by sensitization with donor-derived peptide (45).

Given that Regulatory T  cells are known to mediate both 
tolerance induction and tolerance maintenance in the model, 
investigators hypothesized that adoptive transfer of recipient-
derived Regulatory T  cells (both peripherally and from within 
the graft) could lead to stable tolerance in a naive recipient (44, 
46). While adoptive transfer of leukapheresed Regulatory T cells 
alone did not lead to tolerance induction, transplantation of the 
tolerated kidney (with or without peripheral Treg infusion) did 
lead to stable tolerance in the naive recipient (44). These data 
suggested that the intra-graft regulatory components, widely 
thought to be CD4+CD25+FoxP3+ Regulatory T  cells, were 
capable of overcoming the intrinsic alloreactive responses from 
the naive recipient (86, 88, 89, 92). In this way, adoptive transfer 
of intra-graft Regulatory T cells is thought to be capable of toler-
ance induction (46). While important mechanistically, this model 
itself has little direct applicability to the clinic. However, these 
data strongly support the notion that tolerance is mediated by 
immunoregulatory cells and that, were these cells clinically avail-
able, transplantation tolerance might be readily achieved. There 
are questions surrounding this cell population. For example, it 
is unclear what percentage of intagraft cells are antigen specific, 
in contrast to tRegulatory T cells and pRegulatory T cells. If, for 
example, intragraft Regulatory T cells are enriched with donor-
specific Regulatory T  cells, these mechanisms by which this 
occurs might be exploited and extrapolated to the clinic.

CD40L(CD154)/CD40 is one of the key costimulatory 
mechanisms required for T-cell activation. CD40L(CD154) 
monoclonal antibody has used as a blocker of this costimulation 
pathway. After the clinical failure of CD40L(CD154) blockade 
in humans and non-human primates (NHP), the interest in the 
CD40L(CD154)/CD40 axis has reemerged due to promising 
results with CD40 blockade. In mice, donor-specific transfusion 
(DST) plus CD40L(CD154) blockade is a standard and successful 
protocol to induce donor-specific transplant tolerance, involving 
apoptosis, acquisition of regulatory cells, and suppression of 
proliferation of effector cells (93, 94).

Abbas and colleagues (95) have shown that there can be many 
resident T  cells in transplanted organs and tissues, including 
both pro-inflammatory memory T cells and memory Regulatory 
T  cells. On day 30–40 after resolution of an inflammatory 
response in the skin, activated T cells, which had migrated from 
central lymphoid tissue, were maintained in the target tissue, thus 
developing “Treg memory” to that tissue. This period roughly 
corresponds to the kinetics of development of allo-specific, linked 
suppression responses observed in DST and CD40 blockade 
tolerization model (Tomita et  al., submitted). Mechanistically, 

it is thought that anti-CD40L(CD154) leads to rapid changes 
in lymph node architecture and to the migration of Regulatory 
T cells and T effector cells through high-endothelial venules (96).

While capable of tolerance induction, the kinetics of periph-
eral allo-specific regulatory T memory cells into tissues (other 
than the lymphoid tissue) are unknown. In mice, approximately 
5 weeks after DST and CD40 blockade, treatment was sufficient 
for allo-specific regulation to manifest itself in both the lymphoid 
tissue and the non-lymphoid organ (liver) (Tomita et al., submit-
ted). The regulatory phenomenon was mediated by TGF-beta 
and IL-35, and the proportion of regulatory cytokine-producing 
CD4 T cells increased in lymphoid tissues and liver over time. 
However, TGF-beta producing and IL-35 producing cells had 
different migratory kinetics.

Whether Regulatory T cells (intra-graft or otherwise) induce 
tolerance directly or by virtue of facilitating other cell populations 
is unclear. Indeed, recently groups have reported that plasmacy-
toid dendritic cells are capable of facilitating hematopoietic cell 
engraftment. Below, we will address several addition cell popula-
tions, which may induce tolerance; however, it remains unclear if 
their function is by virtue of facilitation or by direct tolerogenic 
effects (17).

ReGULATORY MYeLOiD CeLLS

Myeloid cells derive from hematopoietic stem cells. Rather than a 
rigidly defined group of progressively matured cell types, myeloid 
cells are better conceptualized as a network of cells, which can 
differentiate into various subsets (52). Regulatory myeloid 
cells (RMCs) include three broad classes of cells: regulatory 
macrophages (Mregs), dendritic regulatory cells (DCregs), and 
myeloid derived regulatory cells. In vitro models using human 
cells demonstrate each class of RMC can be generated from 
peripheral blood mononuclear cells (PBMCs) (58). However, the 
signals required for differentiation into each cell type (Mreg vs. 
DCreg vs. MDSC) are different. For example, in vitro differen-
tiation of human PBMC into Mregs is facilitated by interferon 
gamma and macrophage colony stimulating factor (M-CSF). In 
contrast, expansion of DCregs from human PBMC is thought to 
require granulocyte/monocyte (GM)-CSF in addition to IL-4, 
IL-10, and TGF-beta plus other potentially tolerogenic factors. 
Lastly, MDSCs differentiation from PBMCs is supported by 
G-CSF and GM-CSF, and activation of MDSC requires IL-1, IL-6, 
and other pro-inflammatory factors (58).

Regulatory myeloid cells have elicited significant interest 
from the transplantation tolerance community, and clinical 
studies involving the use of DCregs as well as Mregs have been 
undertaken.

Regulatory Macrophages
Regulatory macrophages are a uniquely characterized group of 
cells expressing a profile of distinct group of cellular markers. 
They possess a novel gene-expression profile that is different 
from monocytes, monocyte-derived DCs, resting macrophages, 
IFN-gamma stimulated macrophages, and M-1, M2a-, M2b-, 
and M2c-polarized macrophages (97). They are derived from 
peripherally isolated CD14+ monocytes that are cultured for 
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7 days while exposed to M-CSF, 10% human serum, and a 24-h 
pulse of IFN-gamma (98). The mechanisms by which these cells 
work have been investigated in both mice and humans. Mouse 
Mregs have been shown to inhibit T cell activity in  vitro via 
inducible nitric oxide synthase (iNOS). In addition, Mregs delete 
cocultured allogeneic T cells via phagocytosis. In small animal 
models, T cells that avoided phagocytosis developed an impaired 
ability to secrete IL-2 and IFN-gamma (99). Human Mregs have 
been found to be potently suppressive of T cell proliferation 
via IFN-gamma induced indoleamine 2,3-dioxygenase (IDO) 
activity and contact-dependent deletion of activated T  cells 
(100). Riquelme and colleagues were able to demonstrate that a 
one-time intravenous dose of donor-derived Mregs given 8 days 
before cardiac transplantation in mice was able to significantly 
prolong allograft survival in immunocompetent recipients. The 
graft survival was antigen-specific as graft survival. Indeed, 
recipient Mreg infusions (and third party controls) yielded no 
survival prolongation (99). This mechanism appeared to be 
iNOS independent.

Regulatory macrophages are an attractive option for cell-
based tolerance induction in human recipients. A number 
of clinical trials have begun investigating this approach. The 
TAIC-I clinical trial was a single center, open-label single-arm 
study to assess the safety and tolerability of administering Mreg 
cell preparations to renal transplant recipients. A total of 12 
patients receiving their first renal transplant from a decreased 
donor were enrolled and infused with 0.9–5.0  ×  108 cells via 
central venous access 5  days after transplantation. Mregs 
were isolated by culturing donor splenic mononuclear cells in 
M-CSF and stimulation with IFN-gamma. There were no acute 
or later observed adverse reactions, providing initial clinical 
evidence that this is a safe therapy (101). A subsequent trial, 
TAIC-II, assessed the safety and efficacy of administering Mreg 
cell preparations to recipients of living-donor renal transplants. 
A total of 5 living-related kidney transplant recipients were 
infused with 1.4–5.9  ×  108 cells, received induction therapy 
with anti-thymocyte globulin, in addition to steroid and tac-
rolimus (trough levels of 8–12  ng/ml). Mregs were obtained 
by culturing donor pPBMCs in M-CSF and stimulation with 
IFN-gamma followed by coculture with recipient PBMCs. No 
acute reactions occurred. Steroids were weaned by 8  weeks 
posttransplant, and tacrolimus was decreased to 5–8  ng/ml. 
Four patients were successfully transferred to this dose of tac-
rolimus therapy, with no rejection occurring in two patients. 
Tacrolimus levels were further weaned to <2  ng/ml, and one 
patient experienced rejection at 36 weeks. Following cessation 
of immunosuppression, two patients experienced rejection at 
2 and 34 weeks postcessation (102). Another patient that did 
not qualify for the TAIC-II trial because of measurable levels 
of anti-donor HLA antibodies was described by Hutchinson 
and colleagues. The patient received a presensitized living-
related renal transplant. The patient was infused with 4.8 × 109 
Mregs 17 days prior to transplant, which were isolated via the 
same protocol as the TAIC-II study. The patient was stable at 
27 months posttransplant and interestingly was no longer posi-
tive for the anti-donor HLA antibodies. Serological screening 
determined that the patient remained hepatitis A virus positive 

(was positive before transplant) suggesting that this was a 
specific effect of Mreg treatment (103).

Since these two trials, Hutchinson and colleagues have refined 
their Mreg purification and treated two living-donor kidney 
transplant recipients. The first patient received a single HLA-B 
and DR mismatched-related kidney from her mother and 8 × 106 
donor-derived Mregs via central venous infusion 6 days prior to 
transplant. Azathioprine, steroids, and tacrolimus were started at 
the time of transplantation and at 3 years posttransplant, and the 
patient was stable with no signs of rejection demonstrated via 
biopsy while maintaining tacrolimus trough levels of 4–5 ng/ml. 
The second patient received a fully mismatched kidney from a 
living unrelated donor and 7.1 × 106 Mregs 7 days prior to trans-
plant. Azathioprine, steroids, and tacrolimus were started during 
transplantation. At 3 years posttransplant, the patient was stable 
with no signs of rejection via biopsy and was being maintained on 
tacrolimus with a trough level of 2.7 ng/ml (100). Taken together, 
preliminary evidence suggests that Mreg treatment preoperatively 
in renal transplant patients is safe, and further work needs to be 
done in humans to describe its effectiveness. The ONE Study is 
currently aiming to develop an array of cellular based therapies, 
one of which is Mregs, in order to achieve immunologic tolerance 
in transplant patients (104).

Dendritic Regulatory Cells
Dendritic regulatory cells have been reviewed in detail recently 
(51, 97, 105). In one early human study of DCregs, authors 
observed that in response to injection of 2 × 106 immature DCregs, 
antigen-specific Regulatory T cells were developed, and CD8+ T 
cell effector function was inhibited (58, 106, 107). Additionally, a 
more recent study of DCregs was undertaken in type I diabetes, 
for the purposes of self-tolerance (overcome autoimmunity). 
Authors administered 10 million cells intra-abdominally every 
2 weeks for a total of four injections. DCreg injections were not 
associated with adverse reactions. Perhaps important, investiga-
tors did observe an increase in the percentage of suppressive 
B220+ B cells, which may help suppress autoimmunity in type 1 
diabetes (108).

MDSCs
MDSCs are a heterogeneous, immature population of mono-
cytic- (mMDSCs) and granulocytic (gMDSCs)-derived cells 
that work to negatively regulate the immune system. MDSCs 
are naturally occurring, and are expanded during times of 
stress and inflammation (109). Much of what we know about 
MDSCs comes from cancer biology and the mechanisms by 
which MDSC-mediated immunosuppression occurs are being 
investigated. MDSC-mediated immunosuppression occurs 
through several known mechanisms. Primarily MDSCs have 
been found to express high levels of arginase-1 (produces 
urea and l-ornithine from l-arginine) and iNOS (generates 
NO), which have a well-established role in the suppression of 
T cell function (110, 111). By expressing arginase-1, MDSCs 
deplete local l-arginine levels of arginine, which is required 
by lymphocytes. In addition, MDSCs increase NO production. 
Arginase-1 dependent l-arginine depletion and NO production 
diminish the ability of T cells to proliferate and express MHC 
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class II as well as inducing T cell apoptosis (112–116). MDSCs 
have also been shown to elicit immunosuppressive effects 
through the production of reactive oxygen species (ROS) 
and peroxynitrite (117–121). In the case of the latter, the 
peptide-MHC structure is altered, weakening the peptide’s 
immunogenicity (109). Likely important for potential toler-
ance induction, MDSCs have been found (in the presence of 
IFN-gamma and IL-10) to induce de novo development of 
FoxP3+ Regulatory T cells (116, 122). MDSCs are capable 
of inducing the proliferation of existing Regulatory T cells 
and that depletion of Trges impairs the ability of MDSCs 
to accumulate (116, 123, 124). The mechanisms by which 
MDSCs contribute to immune tolerance is multifactorial, 
involves other cell types and is likely to be subset dependent 
as well (109, 125).

With regard to MDSCs and solid organ transplantation, 
Vanhove and colleagues have shown in a kidney transplant 
rat model that immune tolerance was induced via anti-CD28 
and that MDSCs accumulated within the allograft (126, 127). 
In vitro, the MDSCs were able to induce contact-dependent 
apoptosis of T cells, which induced the expression of iNOS in 
the MDSCs. The MDSCs were also found to have a minimal 
effect on Regulatory T cells that failed to induce iNOS in the 
MDSCs. These results highlight the cross-talk between these 
two cell types in immune tolerance. Lu et  al. demonstrated 
that transplantation of hepatic stellate cells into diabetic mice 
induced MDSCs. In addition, these MDSCs were associated 
with increased levels of iNOS and Arg-1 as well as CD4+ and 
CD8+ T cell suppression. The same group also demonstrated 
that with cotransplantation of 2.5 × 106 MDSCs and islet cells 
into diabetic mice, the survival of the islet cell allograft was 
significantly prolonged (128). In vitro and in vivo data both 
supported the necessity of the B7–H1 interaction for induc-
tion of Regulatory T cells involved in this process. Another 
study using repeated injections of LPS to induce MDSCs 
and evoke tolerance reported prolonged allograft survival 
through T cell suppression via a heme oxygenase-1 dependent 
pathway (129). This group was unable to reverse the T cell 
suppression by neutralizing iNOS or Arg-1, perhaps high-
lighting another immunomodulatory mechanism of MDSCs. 
Recently, Thomson and colleagues from the University of 
Pittsburgh showed that MDSCs can suppress T cell prolifera-
tion and cytokine secretion in non-NHP in vivo (130). This 
has raised the possibility of scaling these MDSC models to the 
NHP, and perhaps humans as well. In summary, much work 
is being done to uncover the mechanisms by which MDSCs 
contribute to establishing immune tolerance and the potential 
for use as a cellular based therapy is promising.

Regarding the potential for MDSCs in human transplanta-
tion, studies are lacking. Encouragingly, recent hematology 
data suggesting that MDCSs may control GVHD, and addi-
tional data demonstrating that MDSCs are upregulated after 
transplantation have highlighted MDSCs as a possible avenue 
to tolerance in humans (131). In a recent review, authors 
suggested that excitement for MDSCs in tolerance should be 
tempered until additional MDSC phenotyping can be per-
formed. Indeed, it is not yet clear if the immunosuppressive 

effects of MDSCs are specific vs. non-specific, and it is not 
yet clear if MDSCs would need to be used synergistically with 
other therapies (127, 131).

B CeLLS

While most studies have focused on the allo-reactive T cell in 
tolerance induction, the roles of allo-reactive B cells are largely 
unknown. However, a subset of B cells known as B regulatory 
cells (Bregs) has been identified as a potent factor in immune 
homeostasis and autoimmunity, and they have been found to 
be involved with maintaining immune tolerance associated with 
Regulatory T cells (132, 133). Recent work is uncovering a pos-
sible role in immunomodulation, which first gained attention 
when mice, deplete of B cells, were shown to develop a severe form 
of experimental autoimmune encephalomyelitis (EAE) (134). 
Further studies demonstrated similar findings in mouse models of 
autoimmune disorders such as collagen induced arthritis, ulcera-
tive colitis, and allergy (135–138). In 2007, investigators at MGH 
(139) reported to achieve tolerance in a heart transplant mouse 
model. They first established B-cell dependent allo-reactive tol-
erance using anti-CD45RB antibody. The phenomenon required 
the interaction of costimulation molecules on B cells with T cells, 
which were CD40+ and CD80/86+. They also reported in islet 
allograft models that mice treated with anti-CD45RB antibody 
plus anti-T cells immunoglobulin domain and mucin domain-1 
(anti-TIM-1) antibody were induced allo-reactive tolerance via 
an IL-10 dependent pathway (140). In addition, they recently 
showed that the Breg response was associated with Treg induc-
tion mediated by TGF-beta (141). A second group at University 
of Pittsburgh has indicated that TIM-1, which is an important 
marker for IL-10+ Bregs (induced by TIM-1 ligation), plays a 
critical role in regulation the immune response (142). A third 
group in Wisconsin has shown in an acute EAE mouse model 
deficient in B cells led to a delay in the emergence of FoxP3+ 
expression Regulatory T cells and the expression of IL-10 in the 
CNS. This was normalized by reconstitution with B cells, but 
was not normalized when reconstituted with B7 deficient B cells. 
The above work highlights a possible role for B cell dependent 
Treg expansion via B7 (143). Cell-to-cell contact has also been 
shown to contribute to B cell-dependent immunosuppression 
(144, 145). A recent study showed that coculture of purified 
Bregs was shown to suppress the proliferation of CD4+ T cells. 
Furthermore, Bregs coculture with Regulatory T cells led to the 
upregulation of FoxP3 and CTLA4 in Regulatory T cells (144). 
This evidence has led to the suggestion that Breg therapy may 
have an indirect role in immune tolerance therapy via ex vivo 
Treg expansion (133).

An immunoregulatory role for B cells has also been 
suggested in human diseases based on findings in patients 
with autoimmune diseases such as multiple sclerosis, lupus, 
rheumatoid arthritis, and even cancer (146–149). Numerous 
studies have begun to suggest that B cells also play an integral 
part in inducing immune tolerance in transplant patients (141, 
150–154). Although there are no studies to date regarding B cell 
therapy in humans, this technique has been quite successful in 
animal models of autoimmune diseases. Particularly exciting is 
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a model that has been developed in which polyclonal B cells are 
transduced with a retrovirus encoding specific antigens (155). 
Using this model, genetically modified B cells were able to 
inhibit autoimmune diseases such as uveitis, multiple sclerosis, 
type 1 diabetes, and rheumatoid arthritis in mouse models (19, 
156–160). These genetically engineered B cells were also shown 
to be capable of inducing the proliferation of FoxP3+ CD4+ 
Regulatory T cells (161). Furthermore, another group was able 
to show that reconstitution with similarly engineered B cells 
in  vivo protected against EAE in mice (162). Taken together, 
the success of B cell therapy for immunosuppression in animal 
models, and the established immunomodulatory role in humans 
suggests that the possibility of B cell-based cellular therapies 
for immune tolerance induction in humans is not out of the 
question.

OTHeR CeLL TYPeS

The above discussion is by no means complete. There are addi-
tional cell types which not included here which may be worthy 
of mention, such as apoptotic cells (163). Apoptotic cell-based 
therapies may improve graft survival and inflammatory diseases. 
Perhaps most excitingly, apoptotic cells may also be effective for 
the treatment of GVHD (163–165).

SYNTHeSiS OF THe DATA

Here, we have presented a number of different cell types, which 
contribute to tolerance induction. However, the presented data 
should be approached carefully. Indeed, mesenchymal stem cells 
or myeloid precursors (and/or MDSCs), which are present in the 
bone marrow may be involved in tolerance induction by cotrans-
plantation of bone marrow and a solid organ. The same is true 
for facilitating cells. However, cell therapies based on regulatory 
T  cells, B cells (Breg), dendritic cells, or macrophages emerge 
from their immunomodulatory properties rather than their sole 
presence in the bone marrow graft. Conversely, apoptotic cell-
based therapies (i.e., administration of donor apoptotic cells) 
or facilitating cells may account for tolerance induction after 
cotransplantation of bone marrow and solid organ. As such, the 
notion of tolerance inducing versus tolerance facilitation may 
require further discussion.

AUTHOR CONTRiBUTiONS

JS  –  study design, analysis, literature review, wrote the paper, 
and edited the paper. YT – literature search, analysis, and wrote 
the paper. CL – literature search, analysis, and wrote the paper. 
WB – study design and wrote the paper.

ReFeReNCeS

1. Owen RD. Immunogenetic consequences of vascular anastomoses between 
bovine twins. Science (1945) 102:400–1. doi:10.1126/science.102.2651.400 

2. Brent L. The discovery of immunologic tolerance. Hum Immunol (1997) 
52:75–81. doi:10.1016/S0198-8859(96)00289-3 

3. Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign 
cells. Nature (1953) 172:603–6. doi:10.1038/172603a0 

4. Sharabi Y, Sachs DH. Mixed chimerism and permanent specific transplanta-
tion tolerance induced by a nonlethal preparative regimen. J Exp Med (1989) 
169:493–502. doi:10.1084/jem.169.2.493 

5. Strober S, Modry DL, Hoppe RT, Pennock JL, Bieber CP, Holm BI, et  al. 
Induction of specific unresponsiveness to heart allografts in mongrel 
dogs treated with total lymphoid irradiation and antithymocyte globulin. 
J Immunol (1984) 132:1013–8. 

6. Sykes M. Mixed chimerism and transplant tolerance. Immunity (2001) 
14:417–24. doi:10.1016/S1074-7613(01)00122-4 

7. Kawai T, Cosimi AB, Colvin RB, Powelson J, Eason J, Kozlowski T, et al. Mixed 
allogeneic chimerism and renal allograft tolerance in cynomolgus monkeys. 
Transplantation (1995) 59:256–62. doi:10.1097/00007890-199501000-00018 

8. Kawai T, Cosimi AB, Wee SL, Houser S, Andrews D, Sogawa H, et  al. 
Effect of mixed hematopoietic chimerism on cardiac allograft sur-
vival in cynomolgus monkeys. Transplantation (2002) 73:1757–64. 
doi:10.1097/00007890-200206150-00011 

9. Kawai T, Sogawa H, Boskovic S, Abrahamian G, Smith RN, Wee SL, et al. 
CD154 blockade for induction of mixed chimerism and prolonged renal 
allograft survival in nonhuman primates. Am J Transplant (2004) 4:1391–8. 
doi:10.1111/j.1600-6143.2004.00523.x 

10. Kawai T, Cosimi AB, Spitzer TR, Tolkoff-Rubin N, Suthanthiran M, Saidman 
SL, et  al. HLA-mismatched renal transplantation without maintenance 
immunosuppression. N Engl J Med (2008) 358:353–61. doi:10.1056/
NEJMoa071074 

11. Spitzer TR, Delmonico F, Tolkoff-Rubin N, McAfee S, Sackstein R, Saidman 
S, et  al. Combined histocompatibility leukocyte antigen-matched donor 
bone marrow and renal transplantation for multiple myeloma with end 
stage renal disease: the induction of allograft tolerance through mixed 

lymphohematopoietic chimerism. Transplantation (1999) 68:480–4. 
doi:10.1097/00007890-199908270-00006 

12. Kawai T, Sachs DH, Sykes M, Cosimi AB, Immune Tolerance N. HLA-
mismatched renal transplantation without maintenance immunosuppres-
sion. N Engl J Med (2013) 368:1850–2. doi:10.1056/NEJMc1213779 

13. Scandling JD, Busque S, Dejbakhsh-Jones S, Benike C, Millan MT, Shizuru 
JA, et al. Tolerance and chimerism after renal and hematopoietic-cell trans-
plantation. N Engl J Med (2008) 358:362–8. doi:10.1056/NEJMoa074191 

14. Scandling JD, Busque S, Dejbakhsh-Jones S, Benike C, Sarwal M, Millan 
MT, et al. Tolerance and withdrawal of immunosuppressive drugs in patients 
given kidney and hematopoietic cell transplants. Am J Transplant (2012) 
12:1133–45. doi:10.1111/j.1600-6143.2012.03992.x 

15. Leventhal J, Abecassis M, Miller J, Gallon L, Ravindra K, Tollerud DJ, et al. 
Chimerism and tolerance without GVHD or engraftment syndrome in HLA-
mismatched combined kidney and hematopoietic stem cell transplantation. 
Sci Transl Med (2012) 4:124ra28. doi:10.1126/scitranslmed.3003509 

16. Leventhal JR, Mathew JM, Salomon DR, Kurian SM, Friedewald JJ, Gallon 
L, et  al. Nonchimeric HLA-identical renal transplant tolerance: regula-
tory immunophenotypic/genomic biomarkers. Am J Transplant (2016) 
16(1):221–34. 

17. Fugier-Vivier IJ, Rezzoug F, Huang Y, Graul-Layman AJ, Schanie CL, Xu H, et al. 
Plasmacytoid precursor dendritic cells facilitate allogeneic hematopoietic stem 
cell engraftment. J Exp Med (2005) 201:373–83. doi:10.1084/jem.20041399 

18. Starzl TE, Demetris AJ. Transplantation tolerance, microchimerism, and 
the two-way paradigm. Theor Med Bioeth (1998) 19:441–55. doi:10.102
3/A:1009924907775 

19. Agarwal RK, Kang Y, Zambidis E, Scott DW, Chan CC, Caspi RR. Retroviral 
gene therapy with an immunoglobulin-antigen fusion construct protects 
from experimental autoimmune uveitis. J Clin Invest (2000) 106:245–52. 
doi:10.1172/JCI9168 

20. Kinder JM, Jiang TT, Ertelt JM, Xin L, Strong BS, Shaaban AF, et al. Cross-
generational Reproductive fitness enforced by microchimeric maternal cells. 
Cell (2015) 162:505–15. doi:10.1016/j.cell.2015.07.006 

21. D’Aveni M, Rossignol J, Coman T, Sivakumaran S, Henderson S, Manzo T, et al. 
G-CSF mobilizes CD34+ regulatory monocytes that inhibit graft-versus-host 
disease. Sci Transl Med (2015) 7:281ra42. doi:10.1126/scitranslmed.3010435 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1126/science.102.2651.400
http://dx.doi.org/10.1016/S0198-8859(96)00289-3
http://dx.doi.org/10.1038/172603a0
http://dx.doi.org/10.1084/jem.169.2.493
http://dx.doi.org/10.1016/S1074-7613(01)00122-4
http://dx.doi.org/10.1097/00007890-199501000-00018
http://dx.doi.org/10.1097/00007890-200206150-00011
http://dx.doi.org/10.1111/j.1600-6143.2004.00523.x
http://dx.doi.org/10.1056/NEJMoa071074
http://dx.doi.org/10.1056/NEJMoa071074
http://dx.doi.org/10.1097/00007890-199908270-00006
http://dx.doi.org/10.1056/NEJMc1213779
http://dx.doi.org/10.1056/NEJMoa074191
http://dx.doi.org/10.1111/j.1600-6143.2012.03992.x
http://dx.doi.org/10.1126/scitranslmed.3003509
http://dx.doi.org/10.1084/jem.20041399
http://dx.doi.org/10.1023/A:1009924907775
http://dx.doi.org/10.1023/A:1009924907775
http://dx.doi.org/10.1172/JCI9168
http://dx.doi.org/10.1016/j.cell.2015.07.006
http://dx.doi.org/10.1126/scitranslmed.3010435


March 2016 | Volume 7 | Article 879

Scalea et al. Cell Therapies and Their Mechanisms

Frontiers in Immunology | www.frontiersin.org

22. Ball LM, Bernardo ME, Roelofs H, Lankester A, Cometa A, Egeler RM, et al. 
Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates 
lymphocyte recovery and may reduce the risk of graft failure in haploiden-
tical hematopoietic stem-cell transplantation. Blood (2007) 110:2764–7. 
doi:10.1182/blood-2007-04-087056 

23. Ge W, Jiang J, Baroja ML, Arp J, Zassoko R, Liu W, et al. Infusion of mes-
enchymal stem cells and rapamycin synergize to attenuate alloimmune 
responses and promote cardiac allograft tolerance. Am J Transplant (2009) 
9:1760–72. doi:10.1111/j.1600-6143.2009.02721.x 

24. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. 
Multilineage potential of adult human mesenchymal stem cells. Science 
(1999) 284:143–7. doi:10.1126/science.284.5411.143 

25. Mattar P, Bieback K. Comparing the immunomodulatory properties of bone 
marrow, adipose tissue, and birth-associated tissue mesenchymal stromal 
cells. Front Immunol (2015) 6:560. doi:10.3389/fimmu.2015.00560 

26. Franquesa M, Hoogduijn MJ, Bestard O, Grinyó JM. Immunomodulatory 
effect of mesenchymal stem cells on B cells. Front Immunol (2012) 3:212. 
doi:10.3389/fimmu.2012.00212 

27. Engela AU, Baan CC, Dor FJ, Weimar W, Hoogduijn MJ. On the interactions 
between mesenchymal stem cells and regulatory T cells for immunomod-
ulation in transplantation. Front Immunol (2012) 3:126. doi:10.3389/
fimmu.2012.00126 

28. Eggenhofer E, Luk F, Dahlke MH, Hoogduijn MJ. The life and fate of 
mesenchymal stem cells. Front Immunol (2014) 5:148. doi:10.3389/
fimmu.2014.00148 

29. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, et al. 
Mesenchymal stem cells suppress lymphocyte proliferation in  vitro and 
prolong skin graft survival in vivo. Exp Hematol (2002) 30:42–8. doi:10.1016/
S0301-472X(01)00769-X 

30. Casiraghi F, Azzollini N, Cassis P, Imberti B, Morigi M, Cugini D, et  al. 
Pretransplant infusion of mesenchymal stem cells prolongs the survival of a 
semiallogeneic heart transplant through the generation of regulatory T cells. 
J Immunol (2008) 181:3933–46. doi:10.4049/jimmunol.181.6.3933 

31. Wang Y, Zhang A, Ye Z, Xie H, Zheng S. Bone marrow-derived mesenchymal 
stem cells inhibit acute rejection of rat liver allografts in association with 
regulatory T-cell expansion. Transplant Proc (2009) 41:4352–6. doi:10.1016/j.
transproceed.2009.08.072 

32. Ge W, Jiang J, Arp J, Liu W, Garcia B, Wang H. Regulatory T-cell generation 
and kidney allograft tolerance induced by mesenchymal stem cells associ-
ated with indoleamine 2,3-dioxygenase expression. Transplantation (2010) 
90:1312–20. doi:10.1097/TP.0b013e3181fed001 

33. Collins E, Gu F, Qi M, Molano I, Ruiz P, Sun L, et al. Differential efficacy of 
human mesenchymal stem cells based on source of origin. J Immunol (2014) 
193:4381–90. doi:10.4049/jimmunol.1401636 

34. Qi H, Chen G, Huang Y, Si Z, Li J. Foxp3-modified bone marrow mesen-
chymal stem cells promotes liver allograft tolerance through the generation 
of regulatory T cells in rats. J Transl Med (2015) 13:274. doi:10.1186/
s12967-015-0638-2 

35. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. 
Nat Rev Immunol (2008) 8:726–36. doi:10.1038/nri2395 

36. Casiraghi F, Azzollini N, Todeschini M, Cavinato RA, Cassis P, Solini S, 
et  al. Localization of mesenchymal stromal cells dictates their immune or 
proinflammatory effects in kidney transplantation. Am J Transplant (2012) 
12:2373–83. doi:10.1111/j.1600-6143.2012.04115.x 

37. English K, Barry FP, Mahon BP. Murine mesenchymal stem cells suppress 
dendritic cell migration, maturation and antigen presentation. Immunol Lett 
(2008) 115:50–8. doi:10.1016/j.imlet.2007.10.002 

38. Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel 
M, et  al. Treatment of severe acute graft-versus-host disease with third 
party haploidentical mesenchymal stem cells. Lancet (2004) 363:1439–41. 
doi:10.1016/S0140-6736(04)16104-7 

39. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, et  al. 
Mesenchymal stem cells for treatment of steroid-resistant, severe, acute 
graft-versus-host disease: a phase II study. Lancet (2008) 371:1579–86. 
doi:10.1016/S0140-6736(08)60690-X 

40. Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ, 
et al. Mesenchymal stem cells are short-lived and do not migrate beyond the 
lungs after intravenous infusion. Front Immunol (2012) 3:297. doi:10.3389/
fimmu.2012.00297 

41. Peng Y, Ke M, Xu L, Liu L, Chen X, Xia W, et al. Donor-derived mesenchymal 
stem cells combined with low-dose tacrolimus prevent acute rejection after 
renal transplantation: a clinical pilot study. Transplantation (2013) 95:161–8. 
doi:10.1097/TP.0b013e3182754c53 

42. Mudrabettu C, Kumar V, Rakha A, Yadav AK, Ramachandran R, Kanwar 
DB, et  al. Safety and efficacy of autologous mesenchymal stromal cells 
transplantation in patients undergoing living donor kidney transplantation: 
a pilot study. Nephrology (Carlton) (2015) 20:25–33. doi:10.1111/nep.12338 

43. Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S, et al. Induction therapy 
with autologous mesenchymal stem cells in living-related kidney transplants: 
a randomized controlled trial. JAMA (2012) 307:1169–77. doi:10.1001/
jama.2012.316 

44. Scalea JR, Okumi M, Villani V, Shimizu A, Nishimura H, Gillon BC, et al. 
Abrogation of renal allograft tolerance in MGH miniature swine: the role of 
intra-graft and peripheral factors in long-term tolerance. Am J Transplant 
(2014) 14(9):2001–10. doi:10.1111/ajt.12816 

45. Weiner J, Scalea J, Ishikawa Y, Okumi M, Griesemer A, Hirakata A, et  al. 
Tolerogenicity of donor major histocompatibility complex-matched skin 
grafts in previously tolerant Massachusetts general hospital miniature swine. 
Transplantation (2012) 94:1192–9. doi:10.1097/TP.0b013e31827254f5 

46. Okumi M, Scalea JR, Gillon BC, Tasaki M, Villani V, Cormack T, et al. The 
induction of tolerance of renal allografts by adoptive transfer in miniature 
swine. Am J Transplant (2013) 13:1193–202. doi:10.1111/ajt.12194 

47. Sachs DH, Kawai T, Sykes M. Induction of tolerance through mixed 
chimerism. Cold Spring Harb Perspect Med (2014) 4:a015529. doi:10.1101/
cshperspect.a015529 

48. Hongo D, Tang X, Baker J, Engleman EG, Strober S. Requirement for 
interactions of natural killer T cells and myeloid-derived suppressor cells for 
transplantation tolerance. Am J Transplant (2014) 14:2467–77. doi:10.1111/
ajt.12914 

49. Sullivan JA, Adams AB, Burlingham WJ. The emerging role of TH17 cells 
in organ transplantation. Transplantation (2014) 97:483–9. doi:10.1097/
TP.0000000000000000 

50. Dutta P, Burlingham WJ. Microchimerism: tolerance vs. sensitiza-
tion. Curr Opin Organ Transplant (2011) 16:359–65. doi:10.1097/
MOT.0b013e3283484b57 

51. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, 
et  al. DC-SIGN(+) macrophages control the induction of transplantation 
tolerance. Immunity (2015) 42:1143–58. doi:10.1016/j.immuni.2015.05.009 

52. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of 
myeloid cells by tumours. Nat Rev Immunol (2012) 12:253–68. doi:10.1038/
nri3175 

53. Lucas CL, Workman CJ, Beyaz S, LoCascio S, Zhao G, Vignali DA, et al. LAG-
3, TGF-beta, and cell-intrinsic PD-1 inhibitory pathways contribute to CD8 
but not CD4 T-cell tolerance induced by allogeneic BMT with anti-CD40L. 
Blood (2011) 117:5532–40. doi:10.1182/blood-2010-11-318675 

54. Hutchinson JA, Riquelme P, Geissler EK. Human regulatory macrophages 
as a cell-based medicinal product. Curr Opin Organ Transplant (2012) 
17:48–54. doi:10.1097/MOT.0b013e32834ee64a 

55. Hutchinson JA. Somatic cell-based therapy. Transplantation (2015) 
99:1103–5. doi:10.1097/TP.0000000000000788 

56. Broichhausen C, Riquelme P, Geissler EK, Hutchinson JA. Regulatory 
macrophages as therapeutic targets and therapeutic agents in solid organ 
transplantation. Curr Opin Organ Transplant (2012) 17:332–42. doi:10.1097/
MOT.0b013e328355a979 

57. Ochando JC, Turnquist HR. Innate immune cell collaborations instigate 
transplant tolerance. Am J Transplant (2014) 14:2441–3. doi:10.1111/
ajt.12912 

58. Rosborough BR, Raich-Regue D, Turnquist HR, Thomson AW. Regulatory 
myeloid cells in transplantation. Transplantation (2014) 97:367–79. 
doi:10.1097/TP.0b013e3182a860de 

59. Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, 
et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted 
with umbilical cord blood: safety profile and detection kinetics. Blood (2011) 
117:1061–70. doi:10.1182/blood-2010-07-293795 

60. Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E, 
et  al. Tregs prevent GVHD and promote immune reconstitution in HLA-
haploidentical transplantation. Blood (2011) 117:3921–8. doi:10.1182/
blood-2010-10-311894 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1182/blood-2007-04-087056
http://dx.doi.org/10.1111/j.1600-6143.2009.02721.x
http://dx.doi.org/10.1126/science.284.5411.143
http://dx.doi.org/10.3389/fimmu.2015.00560
http://dx.doi.org/10.3389/fimmu.2012.00212
http://dx.doi.org/10.3389/fimmu.2012.00126
http://dx.doi.org/10.3389/fimmu.2012.00126
http://dx.doi.org/10.3389/fimmu.2014.00148
http://dx.doi.org/10.3389/fimmu.2014.00148
http://dx.doi.org/10.1016/S0301-472X(01)00769-X
http://dx.doi.org/10.1016/S0301-472X(01)00769-X
http://dx.doi.org/10.4049/jimmunol.181.6.3933
http://dx.doi.org/10.1016/j.transproceed.2009.08.072
http://dx.doi.org/10.1016/j.transproceed.2009.08.072
http://dx.doi.org/10.1097/TP.0b013e3181fed001
http://dx.doi.org/10.4049/jimmunol.1401636
http://dx.doi.org/10.1186/s12967-015-0638-2
http://dx.doi.org/10.1186/s12967-015-0638-2
http://dx.doi.org/10.1038/nri2395
http://dx.doi.org/10.1111/j.1600-6143.2012.04115.x
http://dx.doi.org/10.1016/j.imlet.2007.10.002
http://dx.doi.org/10.1016/S0140-6736(04)16104-7
http://dx.doi.org/10.1016/S0140-6736(08)60690-X
http://dx.doi.org/10.3389/fimmu.2012.00297
http://dx.doi.org/10.3389/fimmu.2012.00297
http://dx.doi.org/10.1097/TP.0b013e3182754c53
http://dx.doi.org/10.1111/nep.12338
http://dx.doi.org/10.1001/jama.2012.316
http://dx.doi.org/10.1001/jama.2012.316
http://dx.doi.org/10.1111/ajt.12816
http://dx.doi.org/10.1097/TP.0b013e31827254f5
http://dx.doi.org/10.1111/ajt.12194
http://dx.doi.org/10.1101/cshperspect.a015529
http://dx.doi.org/10.1101/cshperspect.a015529
http://dx.doi.org/10.1111/ajt.12914
http://dx.doi.org/10.1111/ajt.12914
http://dx.doi.org/10.1097/TP.0000000000000000
http://dx.doi.org/10.1097/TP.0000000000000000
http://dx.doi.org/10.1097/MOT.0b013e3283484b57
http://dx.doi.org/10.1097/MOT.0b013e3283484b57
http://dx.doi.org/10.1016/j.immuni.2015.05.009
http://dx.doi.org/10.1038/nri3175
http://dx.doi.org/10.1038/nri3175
http://dx.doi.org/10.1182/blood-2010-11-318675
http://dx.doi.org/10.1097/MOT.0b013e32834ee64a
http://dx.doi.org/10.1097/TP.0000000000000788
http://dx.doi.org/10.1097/MOT.0b013e328355a979
http://dx.doi.org/10.1097/MOT.0b013e328355a979
http://dx.doi.org/10.1111/ajt.12912
http://dx.doi.org/10.1111/ajt.12912
http://dx.doi.org/10.1097/TP.0b013e3182a860de
http://dx.doi.org/10.1182/blood-2010-07-293795
http://dx.doi.org/10.1182/blood-2010-10-311894
http://dx.doi.org/10.1182/blood-2010-10-311894


March 2016 | Volume 7 | Article 8710

Scalea et al. Cell Therapies and Their Mechanisms

Frontiers in Immunology | www.frontiersin.org

61. Safinia N, Scotta C, Vaikunthanathan T, Lechler RI, Lombardi G. Regulatory 
T cells: serious contenders in the promise for immunological tolerance in 
transplantation. Front Immunol (2015) 6:438. doi:10.3389/fimmu.2015.00438 

62. Dummer CD, Carpio VN, Goncalves LF, Manfro RC, Veronese FV. FOXP3+ 
regulatory T cells: from suppression of rejection to induction of renal allograft 
tolerance. Transpl Immunol (2012) 26:1–10. doi:10.1016/j.trim.2011.08.009 

63. Veronese F, Rotman S, Smith RN, Pelle TD, Farrell ML, Kawai T, 
et  al. Pathological and clinical correlates of FOXP3+ cells in renal 
allografts during acute rejection. Am J Transplant (2007) 7:914–22. 
doi:10.1111/j.1600-6143.2006.01704.x 

64. Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, et al. 
Expression of Helios, an Ikaros transcription factor family member, differen-
tiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. 
J Immunol (2010) 184:3433–41. doi:10.4049/jimmunol.0904028 

65. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev 
Immunol (2008) 8:523–32. doi:10.1038/nri2343 

66. Hara M, Kingsley CI, Niimi M, Read S, Turvey SE, Bushell AR, et al. IL-10 
is required for regulatory T cells to mediate tolerance to alloantigens in vivo. 
J Immunol (2001) 166:3789–96. doi:10.4049/jimmunol.166.6.3789 

67. Fu S, Zhang N, Yopp AC, Chen D, Mao M, Chen D, et al. TGF-beta induces 
Foxp3 + T-regulatory cells from CD4 + CD25 – precursors. Am J Transplant 
(2004) 4:1614–27. doi:10.1111/j.1600-6143.2004.00566.x 

68. Shevach EM. From vanilla to 28 flavors: multiple varieties of T regulatory 
cells. Immunity (2006) 25:195–201. doi:10.1016/j.immuni.2006.08.003 

69. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. The 
inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 
(2007) 450:566–9. doi:10.1038/nature06306 

70. Velaga S, Ukena SN, Dringenberg U, Alter C, Pardo J, Kershaw O, et  al. 
Granzyme A is required for regulatory T-cell mediated prevention of 
gastrointestinal graft-versus-host disease. PLoS One (2015) 10:e0124927. 
doi:10.1371/journal.pone.0124927 

71. Geis AL, Fan H, Wu X, Wu S, Huso DL, Wolfe JL, et al. Regulatory T-cell 
response to enterotoxigenic bacteroides fragilis colonization triggers 
IL17-dependent colon carcinogenesis. Cancer Discov (2015) 5:1098–109. 
doi:10.1158/2159-8290.CD-15-0447 

72. Garcia-Martinez K, Leon K. Modeling the role of IL2 in the interplay between 
CD4+ helper and regulatory T cells: studying the impact of IL2 modulation 
therapies. Int Immunol (2012) 24:427–46. doi:10.1093/intimm/dxr120 

73. Kleijwegt FS, Laban S, Duinkerken G, Joosten AM, Koeleman BP, Nikolic T, 
et al. Transfer of regulatory properties from tolerogenic to proinflammatory 
dendritic cells via induced autoreactive regulatory T cells. J Immunol (2011) 
187:6357–64. doi:10.4049/jimmunol.1101638 

74. Golovina TN, Mikheeva T, Suhoski MM, Aqui NA, Tai VC, Shan X, et al. 
CD28 costimulation is essential for human T regulatory expansion and 
function. J Immunol (2008) 181:2855–68. doi:10.4049/jimmunol.181.4.2855 

75. Hippen KL, Merkel SC, Schirm DK, Sieben CM, Sumstad D, Kadidlo DM, 
et al. Massive ex vivo expansion of human natural regulatory T cells (T(regs)) 
with minimal loss of in  vivo functional activity. Sci Transl Med (2011) 
3:83ra41. doi:10.1126/scitranslmed.3001809 

76. Longhi MS, Meda F, Wang P, Samyn M, Mieli-Vergani G, Vergani D, et al. 
Expansion and de novo generation of potentially therapeutic regulatory T 
cells in patients with autoimmune hepatitis. Hepatology (2008) 47:581–91. 
doi:10.1002/hep.22071 

77. Lapierre P, Lamarre A. Regulatory T cells in autoimmune and viral chronic 
hepatitis. J Immunol Res (2015) 2015:479703. doi:10.1155/2015/479703 

78. Golshayan D, Jiang S, Tsang J, Garin MI, Mottet C, Lechler RI. In 
vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells 
promote experimental transplantation tolerance. Blood (2007) 109:827–35. 
doi:10.1182/blood-2006-05-025460 

79. Jiang S, Camara N, Lombardi G, Lechler RI. Induction of allopeptide-specific 
human CD4+CD25+ regulatory T cells ex vivo. Blood (2003) 102:2180–6. 
doi:10.1182/blood-2003-04-1164 

80. Sagoo P, Ali N, Garg G, Nestle FO, Lechler RI, Lombardi G. Human regulatory 
T cells with alloantigen specificity are more potent inhibitors of alloimmune 
skin graft damage than polyclonal regulatory T cells. Sci Transl Med (2011) 
3:83ra42. doi:10.1126/scitranslmed.3002076 

81. Bettini M, Vignali DA. Regulatory T cells and inhibitory cytokines in autoim-
munity. Curr Opin Immunol (2009) 21:612–8. doi:10.1016/j.coi.2009.09.011 

82. Rosengard BR, Fishbein JM, Gianello P, Ojikutu CA, Guzzetta PC, Smith 
CV, et  al. Retransplantation in miniature swine. Lack of a requirement 
for graft adaptation for maintenance of specific renal allograft tolerance. 
Transplantation (1994) 57:794–9. doi:10.1097/00007890-199403270-00003 

83. Utsugi R, Barth RN, Lee RS, Kitamura H, LaMattina JC, Ambroz J, et  al. 
Induction of transplantation tolerance with a short course of tacrolimus 
(FK506): I. Rapid and stable tolerance to two-haplotype fully mhc- 
mismatched kidney allografts in miniature swine. Transplantation (2001) 
71:1368–79. doi:10.1097/00007890-200105270-00003 

84. Scalea JR, Bromberg J, Bartlett ST, Scalea TM. Mechanistic similarities 
between trauma, atherosclerosis, and other inflammatory processes. J Crit 
Care (2015) 30(6):1344–8. doi:10.1016/j.jcrc.2015.07.024 

85. Pillai AB, George TI, Dutt S, Strober S. Host natural killer T cells induce 
an interleukin-4-dependent expansion of donor CD4+CD25+Foxp3+ T 
regulatory cells that protects against graft-versus-host disease. Blood (2009) 
113:4458–67. doi:10.1182/blood-2008-06-165506 

86. Griesemer AD, Lamattina JC, Okumi M, Etter JD, Shimizu A, Sachs DH, et al. 
Linked suppression across an MHC-mismatched barrier in a miniature swine 
kidney transplantation model. J Immunol (2008) 181:4027–36. doi:10.4049/
jimmunol.181.6.4027 

87. Rosengard BR, Ojikutu CA, Guzzetta PC, Smith CV, Sundt TM III, Nakajima 
K, et al. Induction of specific tolerance to class I-disparate renal allografts 
in miniature swine with cyclosporine. Transplantation (1992) 54:490–7. 
doi:10.1097/00007890-199209000-00020 

88. Gianello PR, Lorf T, Yamada K, Fishbein JM, Nickeleit V, Vitiello DM, 
et  al. Induction of tolerance to renal allografts across single-haplotype 
MHC disparities in miniature swine. Transplantation (1995) 59:884–90. 
doi:10.1097/00007890-199503150-00023 

89. Gianello PR, Fishbein JM, Rosengard BR, Lorf T, Vitiello DM, Arn JS, et al. 
Tolerance to class I-disparate renal allografts in miniature swine. Maintenance 
of tolerance despite induction of specific antidonor CTL responses. 
Transplantation (1995) 59:772–7. doi:10.1097/00007890-199503150-00023 

90. Okumi M, Fishbein JM, Griesemer AD, Gianello PR, Hirakata A, Nobori 
S, et al. Role of persistence of antigen and indirect recognition in the main-
tenance of tolerance to renal allografts. Transplantation (2008) 85:270–80. 
doi:10.1097/TP.0b013e31815e8eed 

91. Hamano K, Rawsthorne MA, Bushell AR, Morris PJ, Wood KJ. Evidence 
that the continued presence of the organ graft and not peripheral donor 
microchimerism is essential for maintenance of tolerance to alloantigen 
in  vivo in anti-CD4 treated recipients. Transplantation (1996) 62:856–60. 
doi:10.1097/00007890-199609270-00026 

92. Scalea JR, Villani V, Gillon BC, Weiner J, Gianello P, Turcotte N, et  al. 
Development of antidonor antibody directed toward non-major histo-
compatibility complex antigens in tolerant animals. Transplantation (2014) 
98:514–9. doi:10.1097/TP.0000000000000249 

93. Graca L. Transplantation tolerance: context matters. Eur J Immunol (2015) 
45:1921–5. doi:10.1002/eji.201545762 

94. Chai JG, Ratnasothy K, Bucy RP, Noelle RJ, Lechler R, Lombardi G. 
Allospecific CD4(+) T cells retain effector function and are actively regulated 
by Treg cells in the context of transplantation tolerance. Eur J Immunol (2015) 
45:2017–27. doi:10.1002/eji.201545455 

95. Rosenblum MD, Gratz IK, Paw JS, Lee K, Marshak-Rothstein A, Abbas AK. 
Response to self antigen imprints regulatory memory in tissues. Nature 
(2011) 480:538–42. doi:10.1038/nature10664 

96. Warren KJ, Iwami D, Harris DG, Bromberg JS, Burrell BE. Laminins 
affect T cell trafficking and allograft fate. J Clin Invest (2014) 124:2204–18. 
doi:10.1172/JCI73683 

97. Riquelme P, Geissler EK, Hutchinson JA. Alternative approaches to 
myeloid suppressor cell therapy in transplantation: comparing regulatory 
macrophages to tolerogenic DCs and MDSCs. Transplant Res (2012) 1:17. 
doi:10.1186/2047-1440-1-17 

98. Hutchinson JA, Riquelme P, Geissler EK, Fändrich F. Human 
regulatory macrophages. Methods Mol Biol (2011) 677:181–92. 
doi:10.1007/978-1-60761-869-0_13 

99. Riquelme P, Tomiuk S, Kammler A, Fändrich F, Schlitt HJ, Geissler EK, et al. 
IFN-γ-induced iNOS expression in mouse regulatory macrophages prolongs 
allograft survival in fully immunocompetent recipients. Mol Ther (2013) 
21:409–22. doi:10.1038/mt.2012.168 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.3389/fimmu.2015.00438
http://dx.doi.org/10.1016/j.trim.2011.08.009
http://dx.doi.org/10.1111/j.1600-6143.2006.01704.x
http://dx.doi.org/10.4049/jimmunol.0904028
http://dx.doi.org/10.1038/nri2343
http://dx.doi.org/10.4049/jimmunol.166.6.3789
http://dx.doi.org/10.1111/j.1600-6143.2004.00566.x
http://dx.doi.org/10.1016/j.immuni.2006.08.003
http://dx.doi.org/10.1038/nature06306
http://dx.doi.org/10.1371/journal.pone.0124927
http://dx.doi.org/10.1158/2159-8290.CD-15-0447
http://dx.doi.org/10.1093/intimm/dxr120
http://dx.doi.org/10.4049/jimmunol.1101638
http://dx.doi.org/10.4049/jimmunol.181.4.2855
http://dx.doi.org/10.1126/scitranslmed.3001809
http://dx.doi.org/10.1002/hep.22071
http://dx.doi.org/10.1155/2015/479703
http://dx.doi.org/10.1182/blood-2006-05-025460
http://dx.doi.org/10.1182/blood-2003-04-1164
http://dx.doi.org/10.1126/scitranslmed.3002076
http://dx.doi.org/10.1016/j.coi.2009.09.011
http://dx.doi.org/10.1097/00007890-199403270-00003
http://dx.doi.org/10.1097/00007890-200105270-00003
http://dx.doi.org/10.1016/j.jcrc.2015.07.024
http://dx.doi.org/10.1182/blood-2008-06-165506
http://dx.doi.org/10.4049/jimmunol.181.6.4027
http://dx.doi.org/10.4049/jimmunol.181.6.4027
http://dx.doi.org/10.1097/00007890-199209000-00020
http://dx.doi.org/10.1097/00007890-199503150-00023
http://dx.doi.org/10.1097/00007890-199503150-00023
http://dx.doi.org/10.1097/TP.0b013e31815e8eed
http://dx.doi.org/10.1097/00007890-199609270-00026
http://dx.doi.org/10.1097/TP.0000000000000249
http://dx.doi.org/10.1002/eji.201545762
http://dx.doi.org/10.1002/eji.201545455
http://dx.doi.org/10.1038/nature10664
http://dx.doi.org/10.1172/JCI73683
http://dx.doi.org/10.1186/2047-1440-1-17
http://dx.doi.org/10.1007/978-1-60761-869-0_13
http://dx.doi.org/10.1038/mt.2012.168


March 2016 | Volume 7 | Article 8711

Scalea et al. Cell Therapies and Their Mechanisms

Frontiers in Immunology | www.frontiersin.org

100. Hutchinson JA, Riquelme P, Sawitzki B, Tomiuk S, Miqueu P, Zuhayra M, 
et al. Cutting edge: immunological consequences and trafficking of human 
regulatory macrophages administered to renal transplant recipients. 
J Immunol (2011) 187:2072–8. doi:10.4049/jimmunol.1100762 

101. Hutchinson JA, Riquelme P, Brem-Exner BG, Schulze M, Matthäi M, 
Renders L, et al. Transplant acceptance-inducing cells as an immune-con-
ditioning therapy in renal transplantation. Transpl Int (2008) 21:728–41. 
doi:10.1111/j.1432-2277.2008.00680.x 

102. Hutchinson JA, Brem-Exner BG, Riquelme P, Roelen D, Schulze M, 
Ivens K, et  al. A cell-based approach to the minimization of immu-
nosuppression in renal transplantation. Transpl Int (2008) 21:742–54. 
doi:10.1111/j.1432-2277.2008.00692.x 

103. Hutchinson JA, Roelen D, Riquelme P, Brem-Exner BG, Witzke O, Philipp 
T, et al. Preoperative treatment of a presensitized kidney transplant recipient 
with donor-derived transplant acceptance-inducing cells. Transpl Int (2008) 
21:808–13. doi:10.1111/j.1432-2277.2008.00712.x 

104. Geissler EK. The ONE Study compares cell therapy products in organ trans-
plantation: introduction to a review series on suppressive monocyte-derived 
cells. Transplant Res (2012) 1:11. doi:10.1186/2047-1440-1-10 

105. Ezzelarab MB, Zahorchak AF, Lu L, Morelli AE, Chalasani G, Demetris AJ, 
et  al. Regulatory dendritic cell infusion prolongs kidney allograft survival 
in nonhuman primates. Am J Transplant (2013) 13:1989–2005. doi:10.1111/
ajt.12310 

106. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-
specific inhibition of effector T cell function in humans after injection 
of immature dendritic cells. J Exp Med (2001) 193:233–8. doi:10.1084/
jem.193.2.233 

107. Dhodapkar MV, Steinman RM. Antigen-bearing immature dendritic cells 
induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood 
(2002) 100:174–7. doi:10.1182/blood.V100.1.174 

108. Giannoukakis N, Phillips B, Finegold D, Harnaha J, Trucco M. Phase I 
(safety) study of autologous tolerogenic dendritic cells in type 1 diabetic 
patients. Diabetes Care (2011) 34:2026–32. doi:10.2337/dc11-0472 

109. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of 
the immune system. Nat Rev Immunol (2009) 9:162–74. doi:10.1038/nri2506 

110. Bronte V, Zanovello P. Regulation of immune responses by l-arginine metab-
olism. Nat Rev Immunol (2005) 5:641–54. doi:10.1038/nri1668 

111. Rodríguez PC, Ochoa AC. Arginine regulation by myeloid derived suppres-
sor cells and tolerance in cancer: mechanisms and therapeutic perspectives. 
Immunol Rev (2008) 222:180–91. doi:10.1111/j.1600-065X.2008.00608.x 

112. Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC. 
Regulation of T cell receptor CD3zeta chain expression by l-arginine. J Biol 
Chem (2002) 277:21123–9. doi:10.1074/jbc.M110675200 

113. Rodriguez PC, Quiceno DG, Ochoa AC. l-arginine availability regulates 
T-lymphocyte cell-cycle progression. Blood (2007) 109:1568–73. doi:10.1182/
blood-2006-06-031856 

114. Harari O, Liao JK. Inhibition of MHC II gene transcription by 
nitric oxide and antioxidants. Curr Pharm Des (2004) 10:893–8. 
doi:10.2174/1381612043452893 

115. Rivoltini L, Carrabba M, Huber V, Castelli C, Novellino L, Dalerba P, et al. 
Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. 
Immunol Rev (2002) 188:97–113. doi:10.1034/j.1600-065X.2002.18809.x 

116. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, et al. Gr-1+CD115+ 
immature myeloid suppressor cells mediate the development of tumor-in-
duced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 
(2006) 66:1123–31. doi:10.1158/0008-5472.CAN-05-1299 

117. Hiramoto K, Satoh H, Suzuki T, Moriguchi T, Pi J, Shimosegawa T, et  al. 
Myeloid lineage-specific deletion of antioxidant system enhances tumor 
metastasis. Cancer Prev Res (Phila) (2014) 7:835–44. doi:10.1158/1940-6207.
CAPR-14-0094 

118. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, 
et  al. Mechanism regulating reactive oxygen species in tumor-induced 
myeloid-derived suppressor cells. J Immunol (2009) 182:5693–701. 
doi:10.4049/jimmunol.0900092 

119. Vickers SM, MacMillan-Crow LA, Green M, Ellis C, Thompson JA. 
Association of increased immunostaining for inducible nitric oxide 
synthase and nitrotyrosine with fibroblast growth factor transformation 

in pancreatic cancer. Arch Surg (1999) 134:245–51. doi:10.1001/
archsurg.134.3.245 

120. Cobbs CS, Whisenhunt TR, Wesemann DR, Harkins LE, Van Meir EG, 
Samanta M. Inactivation of wild-type p53 protein function by reactive oxygen 
and nitrogen species in malignant glioma cells. Cancer Res (2003) 63:8670–3. 

121. Nakamura Y, Yasuoka H, Tsujimoto M, Yoshidome K, Nakahara M, Nakao K, 
et al. Nitric oxide in breast cancer: induction of vascular endothelial growth 
factor-C and correlation with metastasis and poor prognosis. Clin Cancer Res 
(2006) 12:1201–7. doi:10.1158/1078-0432.CCR-05-1269 

122. Yang R, Cai Z, Zhang Y, Yutzy WH, Roby KF, Roden RB. CD80 in immune 
suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid 
cells. Cancer Res (2006) 66:6807–15. doi:10.1158/0008-5472.CAN-05-3755 

123. Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor 
cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T 
cells. Cancer Res (2008) 68:5439–49. doi:10.1158/0008-5472.CAN-07-6621 

124. Ambrosino E, Spadaro M, Iezzi M, Curcio C, Forni G, Musiani P, et  al. 
Immunosurveillance of Erbb2 carcinogenesis in transgenic mice is concealed 
by a dominant regulatory T-cell self-tolerance. Cancer Res (2006) 66:7734–40. 
doi:10.1158/0008-5472.CAN-06-1432 

125. Nagaraj S, Youn JI, Gabrilovich DI. Reciprocal relationship between 
myeloid-derived suppressor cells and T cells. J Immunol (2013) 191:17–23. 
doi:10.4049/jimmunol.1300654 

126. Dugast AS, Haudebourg T, Coulon F, Heslan M, Haspot F, Poirier N, et al. 
Myeloid-derived suppressor cells accumulate in kidney allograft tolerance 
and specifically suppress effector T cell expansion. J Immunol (2008) 
180:7898–906. doi:10.4049/jimmunol.180.12.7898 

127. Dilek N, Poirier N, Usal C, Martinet B, Blancho G, Vanhove B. Control 
of transplant tolerance and intragraft regulatory T cell localization by 
myeloid-derived suppressor cells and CCL5. J Immunol (2012) 188:4209–16. 
doi:10.4049/jimmunol.1101512 

128. Chou HS, Hsieh CC, Charles R, Wang L, Wagner T, Fung JJ, et al. Myeloid-
derived suppressor cells protect islet transplants by B7-H1 mediated 
enhancement of T regulatory cells. Transplantation (2012) 93:272–82. 
doi:10.1097/TP.0b013e31823ffd39 

129. De Wilde V, Van Rompaey N, Hill M, Lebrun JF, Lemaître P, Lhommé F, 
et  al. Endotoxin-induced myeloid-derived suppressor cells inhibit alloim-
mune responses via heme oxygenase-1. Am J Transplant (2009) 9:2034–47. 
doi:10.1111/j.1600-6143.2009.02757.x 

130. Zahorchak AF, Ezzelarab MB, Lu L, Turnquist HR, Thomson AW. In vivo 
mobilization and functional characterization of nonhuman primate mono-
cytic myeloid-derived suppressor cells. Am J Transplant (2016) 16(2):661–71. 

131. Dilek N, Vuillefroy de Silly R, Blancho G, Vanhove B. Myeloid-derived sup-
pressor cells: mechanisms of action and recent advances in their role in trans-
plant tolerance. Front Immunol (2012) 3:208. doi:10.3389/fimmu.2012.00208 

132. Kim JI, Rothstein DM, Markmann JF. Role of B cells in tolerance 
induction. Curr Opin Organ Transplant (2015) 20:369–75. doi:10.1097/
MOT.0000000000000204 

133. Sicard A, Koenig A, Morelon E, Defrance T, Thaunat O. Cell therapy to 
induce allograft tolerance: time to switch to plan B? Front Immunol (2015) 
6:149. doi:10.3389/fimmu.2015.00149 

134. Wolf SD, Dittel BN, Hardardottir F, Janeway CA. Experimental autoimmune 
encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med 
(1996) 184:2271–8. doi:10.1084/jem.184.6.2271 

135. Mauri C, Gray D, Mushtaq N, Londei M. Prevention of arthritis by inter-
leukin 10-producing B cells. J Exp Med (2003) 197:489–501. doi:10.1084/
jem.20021293 

136. Mizoguchi A, Mizoguchi E, Smith RN, Preffer FI, Bhan AK. Suppressive role 
of B cells in chronic colitis of T cell receptor alpha mutant mice. J Exp Med 
(1997) 186:1749–56. doi:10.1084/jem.186.10.1749 

137. Amu S, Saunders SP, Kronenberg M, Mangan NE, Atzberger A, Fallon PG. 
Regulatory B cells prevent and reverse allergic airway inflammation via 
FoxP3-positive T regulatory cells in a murine model. J Allergy Clin Immunol 
(2010) 125:1114.e–24.e. doi:10.1016/j.jaci.2010.01.018 

138. Braza F, Chesne J, Castagnet S, Magnan A, Brouard S. Regulatory functions of 
B cells in allergic diseases. Allergy (2014) 69:1454–63. doi:10.1111/all.12490 

139. Deng S, Moore DJ, Huang X, Lian MM, Mohiuddin M, Velededeoglu 
E, et  al. Cutting edge: transplant tolerance induced by anti-CD45RB 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.4049/jimmunol.1100762
http://dx.doi.org/10.1111/j.1432-2277.2008.00680.x
http://dx.doi.org/10.1111/j.1432-2277.2008.00692.x
http://dx.doi.org/10.1111/j.1432-2277.2008.00712.x
http://dx.doi.org/10.1186/2047-1440-1-10
http://dx.doi.org/10.1111/ajt.12310
http://dx.doi.org/10.1111/ajt.12310
http://dx.doi.org/10.1084/jem.193.2.233
http://dx.doi.org/10.1084/jem.193.2.233
http://dx.doi.org/10.1182/blood.V100.1.174
http://dx.doi.org/10.2337/dc11-0472
http://dx.doi.org/10.1038/nri2506
http://dx.doi.org/10.1038/nri1668
http://dx.doi.org/10.1111/j.1600-065X.2008.00608.x
http://dx.doi.org/10.1074/jbc.M110675200
http://dx.doi.org/10.1182/blood-2006-06-031856
http://dx.doi.org/10.1182/blood-2006-06-031856
http://dx.doi.org/10.2174/1381612043452893
http://dx.doi.org/10.1034/j.1600-065X.2002.18809.x
http://dx.doi.org/10.1158/0008-5472.CAN-05-1299
http://dx.doi.org/10.1158/1940-6207.CAPR-14-0094
http://dx.doi.org/10.1158/1940-6207.CAPR-14-0094
http://dx.doi.org/10.4049/jimmunol.0900092
http://dx.doi.org/10.1001/archsurg.134.3.245
http://dx.doi.org/10.1001/archsurg.134.3.245
http://dx.doi.org/10.1158/1078-0432.CCR-05-1269
http://dx.doi.org/10.1158/0008-5472.CAN-05-3755
http://dx.doi.org/10.1158/0008-5472.CAN-07-6621
http://dx.doi.org/10.1158/0008-5472.CAN-06-1432
http://dx.doi.org/10.4049/jimmunol.1300654
http://dx.doi.org/10.4049/jimmunol.180.12.7898
http://dx.doi.org/10.4049/jimmunol.1101512
http://dx.doi.org/10.1097/TP.0b013e31823ffd39
http://dx.doi.org/10.1111/j.1600-6143.2009.02757.x
http://dx.doi.org/10.3389/fimmu.2012.00208
http://dx.doi.org/10.1097/MOT.0000000000000204
http://dx.doi.org/10.1097/MOT.0000000000000204
http://dx.doi.org/10.3389/fimmu.2015.00149
http://dx.doi.org/10.1084/jem.184.6.2271
http://dx.doi.org/10.1084/jem.20021293
http://dx.doi.org/10.1084/jem.20021293
http://dx.doi.org/10.1084/jem.186.10.1749
http://dx.doi.org/10.1016/j.jaci.2010.01.018
http://dx.doi.org/10.1111/all.12490


March 2016 | Volume 7 | Article 8712

Scalea et al. Cell Therapies and Their Mechanisms

Frontiers in Immunology | www.frontiersin.org

requires B lymphocytes. J Immunol (2007) 178:6028–32. doi:10.4049/
jimmunol.178.10.6028 

140. Lee KM, Kim JI, Stott R, Soohoo J, O’Connor MR, Yeh H, et al. Anti-CD45RB/
anti-TIM-1-induced tolerance requires regulatory B cells. Am J Transplant 
(2012) 12:2072–8. doi:10.1111/j.1600-6143.2012.04055.x 

141. Lee KM, Stott RT, Zhao G, SooHoo J, Xiong W, Lian MM, et  al. TGF-β-
producing regulatory B cells induce regulatory T cells and promote 
transplantation tolerance. Eur J Immunol (2014) 44:1728–36. doi:10.1002/
eji.201344062 

142. Ding Q, Yeung M, Camirand G, Zeng Q, Akiba H, Yagita H, et al. Regulatory 
B cells are identified by expression of TIM-1 and can be induced through 
TIM-1 ligation to promote tolerance in mice. J Clin Invest (2011) 121:3645–
56. doi:10.1172/JCI46274 

143. Mann MK, Maresz K, Shriver LP, Tan Y, Dittel BN. B cell regulation of 
CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery 
from experimental autoimmune encephalomyelitis. J Immunol (2007) 
178:3447–56. doi:10.4049/jimmunol.178.6.3447 

144. Kessel A, Haj T, Peri R, Snir A, Melamed D, Sabo E, et al. Human CD19(+)
CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and 
enhance Foxp3 and CTLA-4 expression in T-regulatory cells. Autoimmun 
Rev (2012) 11:670–7. doi:10.1016/j.autrev.2011.11.018 

145. Tretter T, Venigalla RK, Eckstein V, Saffrich R, Sertel S, Ho AD, et  al. 
Induction of CD4+ T-cell anergy and apoptosis by activated human B cells. 
Blood (2008) 112:4555–64. doi:10.1182/blood-2008-02-140087 

146. Duddy M, Niino M, Adatia F, Hebert S, Freedman M, Atkins H, et al. Distinct 
effector cytokine profiles of memory and naive human B cell subsets and 
implication in multiple sclerosis. J Immunol (2007) 178:6092–9. doi:10.4049/
jimmunol.178.10.6092 

147. Blair PA, Noreña LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein 
MR, et  al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity 
in healthy individuals but are functionally impaired in systemic Lupus 
Erythematosus patients. Immunity (2010) 32:129–40. doi:10.1016/j.
immuni.2009.11.009 

148. Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, Isenberg DA, et al. 
CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting 
TH1 and TH17 differentiation. Sci Transl Med (2013) 5:173ra23. doi:10.1126/
scitranslmed.3005407 

149. Dong HP, Elstrand MB, Holth A, Silins I, Berner A, Trope CG, et al. NK- and B-cell 
infiltration correlates with worse outcome in metastatic ovarian carcinoma. 
Am J Clin Pathol (2006) 125:451–8. doi:10.1309/15B66DQMFYYM78CJ 

150. Silva HM, Takenaka MC, Moraes-Vieira PM, Monteiro SM, Hernandez 
MO, Chaara W, et al. Preserving the B-cell compartment favors operational 
tolerance in human renal transplantation. Mol Med (2012) 18:733–43. 
doi:10.2119/molmed.2011.00281 

151. Brouard S, Mansfield E, Braud C, Li L, Giral M, Hsieh SC, et al. Identification 
of a peripheral blood transcriptional biomarker panel associated with opera-
tional renal allograft tolerance. Proc Natl Acad Sci USA (2007) 104:15448–53. 
doi:10.1073/pnas.0705834104 

152. Newell KA, Asare A, Kirk AD, Gisler TD, Bourcier K, Suthanthiran M, et al. 
Identification of a B cell signature associated with renal transplant tolerance 
in humans. J Clin Invest (2010) 120:1836–47. doi:10.1172/JCI39933 

153. Sagoo P, Perucha E, Sawitzki B, Tomiuk S, Stephens DA, Miqueu P, 
et  al. Development of a cross-platform biomarker signature to detect 

renal transplant tolerance in humans. J Clin Invest (2010) 120:1848–61. 
doi:10.1172/JCI39922 

154. Thaunat O. Pathophysiologic significance of B-cell clusters in chron-
ically rejected grafts. Transplantation (2011) 92:121–6. doi:10.1097/
TP.0b013e31821f74fe 

155. Scott DW, Zhang AH, Su Y. B-cell based gene therapy for autoimmune diseases. 
Infect Disord Drug Targets (2012) 12:241–7. doi:10.2174/187152612800564383 

156. Liang W, Karabekian Z, Mattapallil M, Xu Q, Viley AM, Caspi R, et al. B-cell 
delivered gene transfer of human S-Ag-Ig fusion protein protects from exper-
imental autoimmune uveitis. Clin Immunol (2006) 118:35–41. doi:10.1016/j.
clim.2005.08.007 

157. Melo ME, Qian J, El-Amine M, Agarwal RK, Soukhareva N, Kang Y, et al. Gene 
transfer of Ig-fusion proteins into B cells prevents and treats autoimmune 
diseases. J Immunol (2002) 168:4788–95. doi:10.4049/jimmunol.168.9.4788 

158. Xu B, Scott DW. A novel retroviral gene therapy approach to inhibit specific 
antibody production and suppress experimental autoimmune encepha-
lomyelitis induced by MOG and MBP. Clin Immunol (2004) 111:47–52. 
doi:10.1016/j.clim.2003.12.013 

159. Soukhareva N, Jiang Y, Scott DW. Treatment of diabetes in NOD mice by 
gene transfer of Ig-fusion proteins into B cells: role of T regulatory cells. Cell 
Immunol (2006) 240:41–6. doi:10.1016/j.cellimm.2006.06.004 

160. Satpute SR, Soukhareva N, Scott DW, Moudgil KD. Mycobacterial Hsp65-
IgG-expressing tolerogenic B cells confer protection against adjuvant- 
induced arthritis in Lewis rats. Arthritis Rheum (2007) 56:1490–6. 
doi:10.1002/art.22566 

161. Skupsky J, Zhang AH, Su Y, Scott DW. B-cell-delivered gene therapy induces 
functional T regulatory cells and leads to a loss of antigen-specific effector 
cells. Mol Ther (2010) 18:1527–35. doi:10.1038/mt.2010.95 

162. Calderón-Gómez E, Lampropoulou V, Shen P, Neves P, Roch T, Stervbo U, 
et al. Reprogrammed quiescent B cells provide an effective cellular therapy 
against chronic experimental autoimmune encephalomyelitis. Eur J Immunol 
(2011) 41:1696–708. doi:10.1002/eji.201041041 

163. Poon IK, Lucas CD, Rossi AG, Ravichandran KS. Apoptotic cell clearance: 
basic biology and therapeutic potential. Nat Rev Immunol (2014) 14:166–80. 
doi:10.1038/nri3607 

164. Saas P, Kaminski S, Perruche S. Prospects of apoptotic cell-based therapies 
for transplantation and inflammatory diseases. Immunotherapy (2013) 
5:1055–73. doi:10.2217/imt.13.103 

165. Bonnefoy F, Perruche S, Couturier M, Sedrati A, Sun Y, Tiberghien P, et al. 
Plasmacytoid dendritic cells play a major role in apoptotic leukocyte-in-
duced immune modulation. J Immunol (2011) 186:5696–705. doi:10.4049/
jimmunol.1001523 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Scalea, Tomita, Lindholm and Burlingham. This is an open-access 
article distributed under the terms of the Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) or licensor are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, distribution 
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.4049/jimmunol.178.10.6028
http://dx.doi.org/10.4049/jimmunol.178.10.6028
http://dx.doi.org/10.1111/j.1600-6143.2012.04055.x
http://dx.doi.org/10.1002/eji.201344062
http://dx.doi.org/10.1002/eji.201344062
http://dx.doi.org/10.1172/JCI46274
http://dx.doi.org/10.4049/jimmunol.178.6.3447
http://dx.doi.org/10.1016/j.autrev.2011.11.018
http://dx.doi.org/10.1182/blood-2008-02-140087
http://dx.doi.org/10.4049/jimmunol.178.10.6092
http://dx.doi.org/10.4049/jimmunol.178.10.6092
http://dx.doi.org/10.1016/j.immuni.2009.11.009
http://dx.doi.org/10.1016/j.immuni.2009.11.009
http://dx.doi.org/10.1126/scitranslmed.3005407
http://dx.doi.org/10.1126/scitranslmed.3005407
http://dx.doi.org/10.1309/15B66DQMFYYM78CJ
http://dx.doi.org/10.2119/molmed.2011.00281
http://dx.doi.org/10.1073/pnas.0705834104
http://dx.doi.org/10.1172/JCI39933
http://dx.doi.org/10.1172/JCI39922
http://dx.doi.org/10.1097/TP.0b013e31821f74fe
http://dx.doi.org/10.1097/TP.0b013e31821f74fe
http://dx.doi.org/10.2174/187152612800564383
http://dx.doi.org/10.1016/j.clim.2005.08.007
http://dx.doi.org/10.1016/j.clim.2005.08.007
http://dx.doi.org/10.4049/jimmunol.168.9.4788
http://dx.doi.org/10.1016/j.clim.2003.12.013
http://dx.doi.org/10.1016/j.cellimm.2006.06.004
http://dx.doi.org/10.1002/art.22566
http://dx.doi.org/10.1038/mt.2010.95
http://dx.doi.org/10.1002/eji.201041041
http://dx.doi.org/10.1038/nri3607
http://dx.doi.org/10.2217/imt.13.103
http://dx.doi.org/10.4049/jimmunol.1001523
http://dx.doi.org/10.4049/jimmunol.1001523
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Transplantation Tolerance 
Induction: Cell Therapies and 
Their Mechanisms
	Introduction
	Donor Bone Marrow for Mixed Chimerism Establishment
	Mesenchymal Stem Cells
	Ex Vivo Expanded Regulatory T cells
	Regulatory T Cells

	Intragraft Regulatory T Cells
	Regulatory Myeloid Cells
	Regulatory Macrophages
	Dendritic Regulatory Cells
	MDSCs

	B Cells
	Other Cell Types
	Synthesis of the Data
	Author Contributions
	References


