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Being able to track donor reactive T cells during the course of organ transplantation 
is a key to improve the graft survival, to prevent graft dysfunction, and to adapt the 
immunosuppressive regimen. The attempts of transplant immunologists have been for 
long hampered by the large size of the alloreactive T cell repertoire. Understanding how 
self-TCR can interact with allogeneic MHC is a key to critically appraise the different 
assays available to analyze the TCR Vβ repertoire usage. In this report, we will review 
conceptually and experimentally the process of cross-reactivity. We will then highlight 
what can be learned from allotransplantation, a situation of artificial cross-reactivity. 
Finally, the low- and high-resolution techniques to characterize the TCR Vβ repertoire 
usage in transplantation will be critically discussed.
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UNDeRSTANDiNG THe CROSS-ReACTiviTY

Shaping the T Lymphocyte Receptor Repertoire
Through evolution, numerous processes have been selected to generate a diverse repertoire of TCRαβ 
able to protect mammalian from pathogenic insults (Figure 1). Highly similar genes recombine to 
form functional genes and generate a highly diverse TCR repertoire. TCRβ chains are encoded by 
distinct Variable (V; TRBV), Diversity (D; TRBD), and Joining (J; TRBJ) genes, whereas TCRα chains 
are encoded by distinct sets of V and J genes (TRAV and TRAJ). Junctional diversification further 
extends the combinatorial diversity by either trimming gene ends or adding nucleotides between the 
recombining genes (1). In contrast to the IGHV (V genes of Immunoglobulin Heavy Chain) germline 
dataset compiled by the ImMunoGeneTics (IMGT) group that greatly benefit from the advanced of 
deep-sequencing technologies, the human TCR germline has been only minimally changed since 
the complete sequencing of the TCR gene loci in 1996 (2, 3). The 65 functional genes, ORFs, and 
pseudogenes have been reported for the TRBV, 54 for the TRAV and 2 for the TRBD dataset. The 
analysis of the TCR CDR3 is still a very challenging process. The identification of the TRBD genes 

Abbreviations: CAMR, chronic antibody-mediated; CDR, cluster differentiation region; CMV, cytomegalovirus; CNS, central 
nervous system; CSF, cerebral spinal fluid; EBV, Epstein–Barr virus; GZMb, Granzym B; HLA, human leukocyte antigen; IFNg, 
interferon g; ITAM, immunoreceptor tyrosine activation motifs; MHC, major histocompatibility complex; MLR, mixed lym-
phocyte reaction; NGS, next generation sequencing; PERF, perforin; TCR, T cell repertoire; TEMRA, T cell effector memory 
re-expressing CD45RA; TNFa, Tumor necrosis factor.
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FiGURe 1 | Understand the cross-reactivity of a highly diverse TCR 
repertoire. A highly diverse TCRαβ repertoire is generated by iterative 
processes selected through evolution. Combinatory diversity results from the 
selection of Variable (V; TRAV and TRBV), Diversity (D; TRBD) and Joining (J; 
TRAJ and TRBJ) genes. Junctional diversification further extends the 
combinatorial diversity by either trimming gene ends or adding nucleotides 
between the recombining genes. Finally, the association of the TCRα and 
TCRβ chain constitutes the final steps of the numerous iteration processes 
that lead to the generation of a highly diverse TCR repertoire, which is able to 
efficiently protect individuals from pathogenic stimulations. TCRαβ adopts a 
stereotype docking geometry atop the MHC/peptide complex. This 
orientation leads to a spatial interaction between the germline-encoded 
CDR1 and CDR2 of the TCRα and β chains and the edges of the peptide-
groove of MHC. The accumulation of reported crystallographic structures has 
challenged the stereotypic view of the angle of the TCR docking. However, 
the recognition of conserved motifs on the side of MHC molecules by CD4/
CD8 co-receptor constrained the TCR docking geometry. Despite the high 
diversity of the TCR repertoire, a high degree of cross-reactivity has been 
reported that could be explained by the “natural” ability of TCR to interact 
with MHC molecules (MHC focus model) as well as the interaction of TCR to 
a limited number of amino acids of the peptide bound to the MHC peptide 
groove.
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cannot be performed due to the high degree of similarities of the 
TRBD at their 5′ ends, the short length of the two genes, and the 
presence of G-rich N nucleotides at the 5′ ends that could be also 
added by the TdT enzyme.

It is misleading to estimate the combinatory diversity by 
simply multiplying together the number of V, D, and J genes (4). 
Rather than a random combination of the TCR genes, studies 
have shown that TCR genes are highly biased in their usage, 
and that only part of the theoretical diversity is selected (5, 6). 
Chromosomal recombination patterns can be explained by vari-
ations in enhancers and Recombination Signal Sequences (RSS) 
and organization of the TRBJ genes (a block of six and seven genes 

located respectively downstream from the TRDB1 and TRDB2 
gene) that leads to a bias in D–J pairing. The diversity of the TCR 
repertoire is further broaden during the rearrangement process 
first by the addition of P nucleotides (Palindromic nucleotides) 
thanks to recombination activating gene-1 and -2 (RAG1 and 
RAG2) (7) that form hairpin loops at the gene end and then by the 
addition of N nucleotides (with a biased toward G nucleotides) by 
the terminal deoxynucleotidyl transferase (TdT) (8). Insertions 
of nucleotides have a profound impact on the diversity of the 
Complementary-Determining Regions 3 (CDR3) sequences and 
contribute to most (60%) of this diversity (9). The coding ends of 
the genes can be also trimmed by exonucleases. However, given 
the limited number of amino acids, the removal of nucleotides 
by exonucleases is constrained to generate a productive codon 
and therefore limits the contribution of exonuclease trimming to 
the diversity of the TCR repertoire. Finally, the association of the 
TCRα and TCRβ chain constitutes the final steps of the numerous 
iteration processes that lead to the generation of a highly diverse 
TCR repertoire, which is able to efficiently protect individuals 
from pathogenic stimulations.

Current Understanding of the Recognition 
of pMHC by TCR
Six CDR will engage the peptide/MHC complexes, endogenous 
and exogenous peptides being presented respectively by MHC 
class I and II molecules. MHC class I grooves constrain the length 
of the presented peptides (8–14 amino acids length) while the 
open nature of peptide-binding cleft of MHC class II molecules 
allow a broader range of peptides to be presented. The HLA locus 
is the most polymorphic region of the human genome, with more 
than 13,000 variant alleles (10,297 HLA Class I Alleles and 3,543 
HLA Class II Alleles according to the IMGT/HLA). The high 
diversity of HLA conferring an almost unique signature of HLA 
for mankind is further extended by the combinatory diversity 
resulting from the association of six HLA Class I (two alleles of 
HLA-A, -B, and Cw) and six HLA Class II molecules (two alleles 
of HLA-DR, -DP, and -DQ). The high mutation level of the HLA 
loci is preferentially focused on the peptide-binding cleft that 
clustered most of the variability of the amino acid sequence. The 
focus of mutations underlines the function of the HLA molecules, 
namely being able to display a very large array of peptides.

Garcia et  al. were the first to report the crystallographic 
structure of a murine TCR 2C bound to peptide/MHC Class I 
(H-2KB–dEV8). The cytotoxic T cell clone 2C is one of the most 
well-characterized TCR and has been initially isolated from a 
BALB/b mouse as an allospecific T cell that recognized Ld on the 
mastocytoma P815. Beside its primary antigen (peptide p2C), 
the 2C TCR can bind to different antigens, including the dEV8 
(10) and SIYR (11). They also showed that TCRαβ adopts a 45° 
diagonal orientation to the long axis of the peptide (12). This 
orientation leads to a spatial interaction between the germline-
encoded CDR1 and CDR2 of the TCRα and β chains and the 
edges of the peptide-groove of MHC (Figure  1). The highly 
diverse CDR3 region is facing the central portion of the bound 
peptide. The multiple crystallographic structures of TCR/peptide 
MHC complexes [more than 120 of crystallographic structures 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


March 2016 | Volume 7 | Article 893

Degauque et al. TCR Repertoire in Transplantation

Frontiers in Immunology | www.frontiersin.org

have been obtained (13)] have revealed that the docking angle of 
the TCR is conserved with a stereotype position of a 75° diagonal 
orientation to the long axis of the peptide (14). The conserved 
binding model has lead to the concept that TCR and MHC are 
hardwired to interact, resulting from a coevolution selection of 
conserved regions (codons) to lock in TCR onto MHC molecule. 
The stereotyped orientation of TCR atop MHC molecule is 
however more flexible than initially proposed, with the accumu-
lation of crystal structures. The median docking angle of TCR is 
63.2° (min–max 37–90°) with MHC class I and 76.4° (min–max 
44–115°) with MHC class II (13) (Figure 1).

Different theories have been postulated to explain the hard-
wire of TCR to MHC molecules (15), including the key role of 
co-receptors of CD4 and CD8 that imposed steric requirements 
for concurrent associations of TCR, CD3, CD4/CD8, and MHC 
complexes allowing the appropriate signaling events to occur. 
Indeed, the main role of co-receptor CD4 and CD8 is to recruit 
the Src tyrosine kinase p65lck (lck) via its association with the 
cytoplasmic tail of CD4 or CD8. Lck concentration promotes 
phosphorylation of immunoreceptor tyrosine activation motifs 
(ITAMs) in the cytoplasmic tails of CD3 subunits and then initi-
ates the cascade of signaling events leading to the full activation 
of the T lymphocyte. Given the key role of co-receptor CD4 and 
CD8 in process, it was assumed that their ability to bind, respec-
tively, the membrane-proximal α2 and β2 domains of the MHC 
class II molecule and the protruding loop in the α3 domain of the 
MHC class I molecule will constrain the docking geometry of the 
TCR to the pMHC (Figure 1).

A recent report by Beringer et  al. (16) had challenged the 
consensus idea of a highly stereotype docking of TCR atop MHC 
molecules (13). Crystallographic structures of two TCR binding 
to proinsulin peptide presented by HLA-DR4 (HLA-DR4proinsulin) 
have been obtained from two clones of induced regulatory CD4 
T cells. The ternary complexes revealed a 180° polarity reversal 
compared to all other TCR-peptide-MHC complex structures. It 
remains to be address whether this singular observation could be 
generalizable, whether the reverse docking is a unique feature of 
regulatory cells and whether the potential signaling differences 
may influence the phenotype and the function of the T cells.

Cross-Reactivity, from intellectual 
Concept to a Critical Need for immune 
System
Cross-reactivity can be defined by the ability of a given TCR 
to interact with more than one pMHC complex with different 
presented peptides or MHC molecules. This new concept has 
been presented as early as 1977 by Matzinger and Bevan (17). An 
alloreactive T cell clone was derived by Owens et al. in 1984 with 
three H2-E reactivity (allo-Ek specific, H2-Ek, DBA/B10 H2-Ed, 
and self H2-Ed) (18). Since then, numerous reports have provided 
evidence of cross-reactivity. For instance, mouse 2C TCR can 
interact with syngeneic MHC H-2Kb presenting dEV8 (10) and 
SIYR (11) and with allogeneic H-2Kbm3 presenting dEV8/Kbm3 
(10) and allogeneic H-2Ld–p2CA (11). The study by Birnbaum 
et  al. is an elegant attempt to quantify the cross-reactivity of a 
given TCR (19). Using five different CD4 TCR clones (three from 

mouse origin and two from human origin), high throughput 
screening of yeast libraries and deep sequencing, the authors 
demonstrate that a single TCR can interact with more than 100 
different peptides.

Jerne et al. postulated in the mid-1950 that each cell exhibits 
a unique clonotype able to recognize only one antigen (20, 21). 
Don Mason has been among the first to challenge the validity of 
this clonal selection theory (22) showing that the immune system 
will be highly incompetent to protect an individual from external 
insult if one and only TCR was able to recognize a single peptide 
presented in a given HLA context. More than 1015 T cells, which 
would weigh more than 500 kg, would be needed to provide effi-
cient coverage of the potential foreign peptides. This clearly stated 
that the immune system could not efficiently protect individual 
if one TCR interacts with a single antigen. Unlike the affinity 
maturation of B cell receptor, the protein sequence of TCR is 
fixed and naive T cells are required to recognize foreign antigens 
not encountered before. The number of potential antigens to be 
recognized is huge given the variability induced by the high diver-
sity of peptide-binding groove of HLA class I and II molecules. 
From the 20 proteinogenic amino acids and given that peptides 
from 8- to 14-mer can be presented, an incredibly high number 
of peptides can be potentially generated (>1015 peptides) (23). 
The diversity can be further extending by the posttranslational 
modifications of amino acids. In a 2012 opinion paper, Andrew 
Sewell elegantly presents the necessity of the cross-reactivity (23), 
as the number of potential foreign peptide–MHC complexes that 
T cells might encounter dwarfs the number of TCRs available [the 
number of unique TCRαβ is estimated to be in the magnitude of 
1011 (24, 25)].

The mechanisms described previously to generate a diverse 
TCRαβ have to be envisioned at the population level. Given the 
relatively limited number of genes encoding for TCR chain α and β 
and the requirement of TCR to recognize the highly diverse HLA 
molecules, the necessity of each T cell to recognize a large array 
of peptides is expected (22). Before presenting the experimental 
approach aiming to quantify the number of peptides recognized 
by a single TCR, we would like to present clear evidences of 
the cross-reactivity involving memory T cells without previous 
antigen encounter. It has been described few years ago that CD8 
T cells with a memory phenotype can be found in mice (26–28). 
CD8 T cells specific for ovalbumin and viral antigens (HSV, vac-
cinia) could be detected in mice despite their germ-free environ-
ment (28). Despite the absence of previous antigen encounter, 
these pre-existing memory CD8 T cells harbor traits of memory 
cells such as the ability to rapidly proliferate upon stimulation and 
to secrete rapidly pro-inflammatory cytokines. Homeostatic pro-
liferation, aging, and cross-recognition of alternate ligands have 
been postulated to drive the accumulation of these memory-like 
naive CD8 T cells (27, 29). This observation has been extended 
to human settings in which CD4 T cells specific for HIV-1, CMV, 
and herpes simplex virus (HSV) epitopes were identified in 
healthy volunteers that had never been infected with these viruses 
(30). Again, these cells exhibit not only memory markers but also 
memory-associated features (rapid proliferation and cytokine 
secretion). The acquisition of memory characteristics could be a 
consequence of homeostatic proliferation (31) or a consequence 
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of the cross-reactivity to other antigens in the environment. To 
support the latest hypothesis, Su et  al. have shown that HIV-1 
specific T cells can recognize environmental peptides present in 
the gut and soil, bacteria and ocean algae, and plants. Of interest, 
T cells specific for HIV-1 can even be purified from cord-blood 
(30), demonstrating thereby the presence of T cells able to recog-
nize self and non-self antigens in newborns. Of interest, the phe-
notype of cross-reactive T cells was different between newborns 
and adults, with a naive and a memory phenotype, respectively.

The concept of clonal deletion that occurred in the thymus is 
challenged by the aforementioned reports and compelling evi-
dences suggest that from an evolutionary perspective, the necessity 
to protect an individual against pathogens is far more important 
than to limit the autoreactivity. A recent study from Davis team 
further sustained this claim (32). The frequency of CD8 T cells 
specific of a Y chromosome specific antigen (equivalent to HY 
peptide) is only threefold lower in man as compared to women 
(32). Of interest, whereas CD8 T cells purified for their specific-
ity regarding a pool of six self peptides do not proliferate after 
stimulation with the same set of self peptides, CD8 T cells specific 
of a pool of six non-self peptides exhibit a potent proliferative 
response (32). The absence of response reported for self-specific 
CD8 T cells and not for foreign antigen-specific CD8 T cells has 
been linked to a different genetic programing as compared to the 
clones purified from woman, with a lower expression of IL-2R, 
IL-21R, and Bcl-XL (32). Thus, evolution has favored the absence 
of hole over autoimmune disease (about 1% of incidence). It may 
seem awkward that the evolution has favor the escape of anti-
self specific T cells from thymic selection over a more stringent 
deletion of all anti-self T cells. A heavier burden of maintaining 
tolerance is needed to prevent the development of autoimmune 
diseases. However, the need to defend the immune system against 
pathogens, especially during childhood, is far greater than the 
need to prevent autoimmunity as for population’s survival. By 
limiting the deletion of self-reactive T cells and thanks to the large 
cross-reactivity of T cells, the holes in the T cell repertoire that 
pathogens might take advantage of are constrained.

The analysis of the immune system in monozygotic twins is 
enlightened in many aspects as such studies allow the dissociation 
between the inborn and the acquired contributions. The team of 
Davis has recently showed that the heritability of T and B cells 
parameters declines very rapidly with age (33). At the age of 
40 years, the heritability explained less than 10% of the variation 
in T and B cell parameters. CMV infection is a protypical example 
of the influence of non-heritable factor on the whole immune 
system. Indeed, 58% of all parameters measured in discordant 
twins were influenced by CMV infection (33). The environment 
carves the immune system of each single individual, with each 
past immune response heavily imprinting the (present) immune 
system.

Since the initial observation that immunity against cowpox 
protects individual from smallpox (34), numerous examples of 
cross-reactivity had been reported in mice and in human (35). 
For instance, infections with BCG, influenza A virus (IAV), 
lymphocytic choriomeningitis virus (LCMV), and murine cyto-
megalovirus (MCMV) all confer a level of protective immunity 
against Vaccinia Virus (36–38). The benefit of cross-reactivity 

as for pan-virus protection is more difficult to assess for obvi-
ous reasons. Nevertheless, the numerous example of a single 
TCR able to recognize different antigens [BCG and Poxviruses 
(37); Papillomavirus and Coronavirus (39); Influenza virus and 
Epstein–Barr virus (40)]. The large cross-reactivity of T cells 
confers a more efficient protection cover using a limited number 
of T cells that need to screen an incredibly large array of peptides 
that can be presented by MHC molecules. Beside the efficient 
use of limited T cell resource, cross-reactivity confers a spatio-
temporal advantage to the immune system to scan any infected 
cells. Cross-reactivity could also be envisioned as an evolution 
strategy to limit the immune recognition escape.

ALLOTRANSPLANTATiON iS NOT ONLY 
AN eXAMPLe OF ARTiFACTUAL CROSS-
ReACTiviTY BUT ALSO GiveS CLUeS 
ReGARDiNG THe GLOBAL 
ORGANiZATiON OF THe iMMUNe 
SYSTeM

Recipient immune system can interact with foreign HLA 
molecules under two very different circumstances: pregnancy 
and transplantation. Thanks to evolution and adaptation of the 
maternal immune system to the presence of HLA mismatch 
fetuses, allorecognition during pregnancy is not harmful and 
could even be beneficial as for mammalian sexual reproduction. 
Immunological tolerance toward allogeneic fetus is obtained 
through a complex network of regulatory mechanisms including 
the lack of expression of classical MHC class I molecules by the 
placental trophoblast and the expression of non-classical MHC 
class I HLA-E and HLA-G. More surprisingly, HLA mismatches 
have been proposed to be beneficial for pregnancy outcome. In 
the 1960s, Billington reports that the placenta is larger in H-2 
incompatible mouse as compared to compatible fetuses (41). 
HLA compatible fetuses (i.e., similar to maternal HLA) have been 
shown to be more prone to be aborted (42). In contrast, recipient 
immune system will potently eliminate an allogeneic graft in the 
absence of immunosuppressive therapy.

Despite the absence of thymic central selection (43) of poten-
tial graft-recipient T cells by allogeneic MHC motifs regarding 
their ability to recognize allogeneic potential HLA, a large pool of 
T cells can be activated by donor HLA molecules either through 
the direct pathway (i.e., donor HLA presenting donor peptides) 
or the expected processing of foreign MHC molecules, coined 
as the “indirect pathway” (i.e., recipient HLA presenting donor 
peptides) in transplantation immunologist jargon. The direct 
allorecognition pathway represents a unique example of func-
tional and efficient cross reactivity. Two main hypothesizes have 
been postulated to explain the basis of alloreactivity, emphasizing 
the role of either MHC molecule or peptide. The polymorphism 
between donor and MHC molecules could act as an “innate 
focus” that leads to the activation of unprimed recipient T cells 
or the allopeptide could be recognized as foreign antigen while 
allogeneic and self-MHC molecules exhibit a high degree of 
similarity (Figure 1).
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According to the MHC centric model, the peptide plays only a 
minor role in the process, and alloreactive TCRs recognize struc-
tural determinants on the MHC helices of syngeneic or allogeneic 
MHC. The bias of TCR to interact with MHC molecules supports 
this theory. Crystal structures of allo-pMHC complexes such as 
2C TCR with allogeneic H-2Kbm3 presenting dEV8/Kbm3 (44) 
or BM3.3 TCR with allogeneic pBM1–H-2Kb (45) have shown 
that alloreactive TCRs interact with allogeneic MHC in a similar 
fashion as with syngeneic MHC. To further support the role 
of MHC in alloreactivity, it has been reported that some HLA 
mismatches between donor and recipient are associated with 
worse graft survival than others, leading to the notion of taboo 
mismatches based on shape rather than sequence differences 
(46). For instance, despite a single amino acid in an HLA Class I 
antigen, mismatches between HLA-B*4402 and HLA-B*4403 is 
associated with transplant rejection (47) and acute graft-versus-
host disease (48). The peptide repertoire bound to HLA-B*4402 or 
HLA-B*4403 have been shown to be very similar (49). However, a 
recent report challenges this observation (50). The single amino 
acid mismatch induced the presentation of more unique peptides 
by HLA-B*4403 than HLA-B*4402, consistent with the stronger 
T cell alloreactivity observed toward HLA-B*4403 compared 
with HLA-B*4402 (50). This observation supports the notion of a 
peptide focus TCR allorecognition, in the same line as molecular 
mimicry.

Allorecognition could also involved cross-reactivity between 
MHC class I and MHC class II or even xeno MHC (51, 52). In 
1986, Schilman et  al. reported that CD8 T cell clone could be 
activated by both MHC class I (H-2Db) and MHC class II (I-Ek) 
molecules (53). By-directional recognition of T cells between 
MHC class I and MHC class II have been reported later (54–56). 
These observations may have important implication in the 
attempt to minimize HLA mismatches during the process of 
organ allocation.

Defining the Magnitude of T Cell 
Response to Allostimulation
Using a mixed lymphocyte reaction (57), it has been shown that 
1–10% of T cell in peripheral blood can be activated (58). As men-
tioned before, the number of HLA mismatches between donor 
and recipient is a primary driving force that mobilized a larger 
fraction of T cells than nominal antigens. Whether alloreactive T 
cells are activated by the high number of new antigens presented 
by donor HLA or by the large number of different allo-pHLA 
complexes (or both) is still under debate, and the two hypoth-
eses are not mutually exclusives. The indirect pathway further 
enhances the reactivity of recipient T cells toward allogeneic graft. 
Indeed, peptides presented by MHC molecules derived predomi-
nantly from MHC-related molecules (59–61). The introduction 
of donor HLA molecules will thus lead to the introduction of 
great pool of new peptides that can mobilized a large fraction of 
recipient T cells.

It is now also well accepted that memory T cells generated 
prior transplantation constitute a major hurdle for long-term graft 
acceptance. Chronic viruses such as EBV and CMV induce the 
generation of a large pool of memory T cells. For instance, 10% of 

both the CD4 and CD8 memory compartments in blood are reac-
tive to HCMV (62). The cross-reactivity between virus-specific T 
cells and allogeneic HLA has been extensively documented (63). 
EBV or CMV specific CD8 T cells exhibit frequently a cross-
reactivity toward allogeneic MHC class I complexes (64–68). 
Similar observations have been reported for CD4 T cells specific 
for EBV or CMV (69–71). Virus-specific T cells that cross-react 
with alloantigens have been shown in experimental models to 
proliferate in response to a transplanted allograft in vivo (72). For 
instance, LCMV-specific CD8 T cells generated after infection 
of mice with Armstrong strain of LCMV are able to vigorously 
proliferate in  vivo after skin transplantation and ultimately to 
mediate skin graft rejection (72).

Tracking Anti-Donor Response by the 
investigation of TCR vβ Repertoire: From 
Low Resolution Technique to High 
Throughput Sequencing
Given the size of anti-donor T cell pool, great efforts have been 
paid to track the immune-response using the analysis of TCR Vβ 
repertoire and to correlate specific usage of TCR Vβ repertoire 
with graft status or graft outcome. Before presenting the available 
reports, it is necessary to present the two major methods used to 
investigate TCR Vβ usage; a low resolution (spectratype alone 
or TcLandscape when combined with quantitative analysis) and, 
more recently, a high resolution (deep-sequencing of TCR Vβ 
region) approach (Figure  2). The low-resolution technique is 
based on the analysis of the length of the CDR3 region whereas 
the high-resolution technique identifies the sequence of each 
TCR Vβ and later quantifies the abundance of the different T cell 
clones.

Each TCR Vβ family is composed of T cells with various 
lengths of their CDR3 region. The distribution of the CDR3 
length can be assessed by spectratype (73, 74). A broad spectrum 
of profiles can be identified ranging from a Gaussian-like profile 
to a highly restricted profile, highlighting the absence of selection 
of T cell, or the expansion of T cell clones, respectively. Different 
analytic tools have been used to characterize the CDR3 length 
distribution (75–78). The qualitative assessment of the TCR Vβ 
repertoire can be complemented by the quantification of the dif-
ferent Vβ families at the mRNA level using qRT-PCR (79–81) or 
at the cellular level using flow-cytometry (82). Such techniques 
still offer several benefits over higher resolution techniques such 
as their cost, the short time frame to obtain results, and the 
generation of a reasonable amount of data can be also displayed 
as “visible” pattern as an “X-ray” of the global TCR alteration in a 
specific pathological context (83–86). A rapid survey of the usage 
of the TCR Vβ repertoire can be efficiently performed, guiding 
further investigations focused on targeted TCR Vβ families. At 
the other range of the resolution spectrum, deep-sequencing of 
TCR Vβ obtains a full picture of the usage of T cell repertoire 
with deep or ultra-deep resolution. The availability of all TCR 
Vβ sequences allows for the precise appraisal of the distribution 
of the different T cell clones especially across different biologi-
cal compartments (76). Furthermore, with a complete TCR Vβ 
sequencing, researchers can investigate the similarity of T cell 
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sequences between biological compartments or individuals 
and take advantage of public repository databases to assess the 
specificity of a sequence and potentially to reconstruct the TCR in 
order to search for the recognized peptides. However, the amount 
of data generated using this technique is extremely high and 

efficient bio-informatics tools specifically devoted to the analysis 
are needed to identify meaningful information in the ocean of 
data. The accessibility of deep-sequencing is likely to be broaden 
in the near future thanks to the advances in bio-informatics tools 
and the reduction of the cost.
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Low-resolution techniques have been used to investigate 
the usage of TCR Vβ repertoire in kidney transplant recipients 
with various clinical outcomes or at various time points post-
transplantation (86–88). Using the combination of spectratyping 
and quantitative assessment of the TCR Vβ transcript, we have 
been able to define direct or indirect allorecognition patterns 
in an experiment model of allograft in congenic rats (52, 79, 
80). Using the same approach, we reported that patients with 
biopsy-proven chronic antibody-mediated (CAMR) rejection 
exhibits strong alterations of their TCR Vβ repertoire correlating 
with the level of graft lesions classified with Banff classification 
(87). In contrast, operationally tolerant patients [i.e., patients 
off-immunosuppression for more than 12  months with a well-
functioning graft (89–91)] exhibit a polyclonal TCR Vβ reper-
toire (87). A large cohort of patients with stable graft function for 
more than 5 years post-transplantation had been prospectively 
recruited in our center with stringent clinical and demographic 
inclusion criteria in order to obtain a homogeneous population. 
Nevertheless, we could highlight that the usage of TCR Vβ reper-
toire is highly heterogeneous ranging from the absence of clonal 
selection (similar to operational tolerance) to an accumulation 
of selected T cells (as for CAMR rejection) (87). The presence 
of altered TCR Vβ repertoire has been previously reported in a 
rat model of CAMR (92) in which similar CD8 clones could be 
identified in the blood and in the graft (93). In a large prospective 
study of kidney transplant recipients with a stable graft function 
for more than 5 years, we show that the altered TCR Vβ repertoire 
was due to an accumulation of TEMRA (T cell Effector Memory 
re-expressing CD45RA; CD45RA+CCR7−) CD8 T cells with an 
activated profile (CD27−CD28−), a high expression of cytotoxic 
molecules, perforin (PERF) and Granzym B (GZM-B), T-bet, 
and CD57 and the ability to secrete TNF-α and IFN-γ (88). Of 
interest, stable patients who have an increase in differentiated 
TEMRA CD8 T cells have a twofold higher risk of long-term 
graft dysfunction (88). Of note, using a similar strategy, Kim 
et al. recently reported that clonal CD8 T cell could be evidenced 
in human transplanted hand, with several TCR clonal selections 
persisting at least 100 days (among the 178 days of surveillance) 
(94). Collectively, these data highlight that a low-resolution 
technic provides key features as for the accumulation of selected 
T cell clones that can be used to monitor the kidney transplant 
recipients.

A major drawback of spectratype-based method is its intrinsic 
low resolution as multiple T cell clones could share the same 
CDR3 length. It is necessary to sequence the TCR Vβ chain with 
an altered CDR3 length distribution to assess the clonality of a 
given Vβ family. However, we recently compared spectratype or 
next generation sequencing (NGS) techniques to characterize the 
TCR Vβ repertoire in the blood, the cerebral spinal fluid (CSF), 
and the central nervous system (CNS) of patients with multiple 
sclerosis (76). Both methods were as efficient to highlight the 
similarity of TCR Vβ repertoire between CSF and CNS (≈80% 
of TCR Vβ clones identified in the CNS were also found in the 
CSF) and to identify ≈50% of the TCR Vβ clones using blood 
CD8 sample (76).

As previously discussed, the size of donor-reactive T cell 
repertoire is large and constitutes a limitation to the use of 

deep-sequencing approach. It may thus be a naive approach to 
perform NGS on unfractioned T cells with the aim to identify 
T cell clones specific to a given situation, such as kidney trans-
plantation or viral infection; a two-step approach is needed. The 
first step is to purify the T cell population of interest based on 
the expression of phenotypic (using tetramer for instance) or 
functional (e.g., cytokine secretion, proliferation) markers. The 
in-depth characterization of TCR Vβ of T cell population of inter-
est allows for the definition of a signature that can be later used 
as a tag when unpurified samples are analyzed. This approach 
has been used to track CMV- or BK-specific T cell clones (95) or 
alloreactive T cells (96, 97). The first report hypothesizing such 
an approach in the transplant context has been published by the 
group of Leventhal (96). Using healthy volunteers, this study 
aimed to assess breadth, clonal structure, and dynamics of the 
alloreactive T cell repertoire. After 7 days of MLR, the proliferat-
ing T cells were purified according to the dilution of cell division 
dye. By comparing the number of clones before culture and in the 
proliferated MLR responder, two types of alloreactive clones were 
identified, low- (i.e., unobserved in pre-culture sample and ≥10 
T cells after MLR) and high-abundance pre-culture clones (i.e., 
present in pre-culture sample and ≥10× enriched after MLR). 
More than 11,000 low-abundant clones and more than 2,000 
high-abundant clones were detected in the different experiments. 
These data provide new evidences of the large size of the alloreac-
tive T cell pool.

This approach was used recently to track donor-reactive T cells 
in kidney transplant recipients (97). The fingerprint of donor-
reactive T cell repertoire was established before transplantation by 
deep-sequencing of proliferating CD4 and CD8 T cells after 6 days 
of MLR. The fingerprint of donor-reactive T cells was monitored 
later after transplantation without the need to perform MLR. The 
team of Sykes provides evidences that tolerance induction proto-
col based on combined kidney and non-myeloablative bone mar-
row transplantation results in a reduction of donor-alloreactive 
T cell clones. However, this decrease was neither observed in the 
patient that failed to respond to the tolerant inducing protocol 
nor in patients with standard immunosuppressive regimens. Pre-
transplant identification of donor-reactive T cell clones before 
transplantation could thus be a means to track the activation of 
the immune system by allogeneic graft. The studies of Emerson 
(96) and Morris (97) showed that the anti-donor fingerprint is 
stable over-time in healthy volunteers. Given the design of the 
assay, only pre-existing clones could be tracked. It would be of 
great value to compare the anti-donor clone repertoire before and 
after transplantation, starting each time from a direct MLR assay 
to investigate if new anti-donor T cells arise after transplantation. 
Indeed, infections that occurred frequently after transplantation 
could generate virus-specific T cells with an allogeneic cross-
reactivity potential (71). Moreover, not all proliferating cells after 
6 days of MLR are per se donor-specific as proliferation of T cells 
could also be linked to bystander stimulation (98).

CONCLUDiNG ReMARKS

Will transplant immunologists be able to track the rise and the 
expansion of donor-specific T cells and would this approach be 
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widely available and useful to the clinical management are still 
open questions. High-through put techniques that have recently 
emerged are certainly an important step forward. Nevertheless, 
the high cross-reactivity of T cells is a major hurdle to identify the 
trigger of the expansion of donor-reactive T cells, as donor anti-
gen, viral peptides, and other environmental antigens can lead 
to the selection of donor-specific T cells. While promising, the 
study of TCR alteration has not overcome the double difficulties 
of offering an accessible technical presentation of the data and a 
validated correlation with clinical outcomes. Therefore, longitu-
dinal studies to test the reactivity of recipient T cells against donor 
antigens at different time points are needed.
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