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Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which inci-
dence increases with age. The disease affects the differentiation of hematopoietic stem 
or precursor cells in the bone marrow and can be related to abnormal cytogenetic and/
or specific mutational patterns. AML blasts can be sensitive to natural killer (NK) cell 
antitumor response. However, NK cells are frequently defective in AML patients lead-
ing to tumor escape. NK cell defects affect not only the expression of the activating 
NK receptors, including the natural cytotoxicity receptors, the NK group 2, member 
D, and the DNAX accessory molecule-1, but also cytotoxicity and IFN-γ release. Such 
perturbations in NK cell physiology could be related to the adaptation of the AML to the 
immune pressure and more generally to patient’s clinical features. Various mechanisms 
are potentially involved in the inhibition of NK-cell functions in AML, including defects 
in the normal lymphopoiesis, reduced expression of activating receptors through cell-
to-cell contacts, and production of immunosuppressive soluble agents by leukemic 
blasts. Therefore, the continuous cross-talk between AML and NK cells participates to 
the leukemia immune escape and eventually to patient’s relapse. Methods to restore or 
stimulate NK cells seem to be attractive strategies to treat patients once the complete 
remission is achieved. Moreover, our capacity in stimulating the NK cell functions could 
lead to the development of preemptive strategies to eliminate leukemia-initiating cells 
before the emergence of the disease in elderly individuals presenting preleukemic muta-
tions in hematopoietic stem cells.

Keywords: natural killer cells, acute myeloid leukemia, immunoediting, natural killer receptors, immune escape 
of cancer, aging and cancer

iNTRODUCTiON

In recent years, the field of cancer immunology has known a growing interest due to development 
of innovative therapeutic strategies in various malignant pathologies. Since the first hypothesis by 
P. Ehrlich at the beginning of the twentieth century suggesting that the organism could defend itself 
against tumor cells (1), through the “Immunosurveillance” theory developed by Burnett (2) and 
Thomas (3) in the late 1950s, and into the more recent “three Es of the immunoediting” suggested 
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by Schreiber et al. (4); scientists and clinicians learnt that not only 
cancers were capable of inhibiting the tumor-specific immune 
response but also host immune cells could potentially be restored 
or manipulated to eliminate tumors cells. Therefore, therapeutic 
strategies combining conventional chemotherapy treatments and 
reinforcement of the self anticancer immunity appear as very 
promising. Recent successes in the use of immune checkpoint 
inhibitors to restore the T-cell response against solid tumors are 
in favor of such approaches (5). Interestingly, the observation that 
immune cells need external interventions to recover an activity 
against the autologous tumors demonstrates, as a negative, the 
adaptation process engaged by tumor cells in order to expand 
despite the patient’s immune system. Leukemic diseases are 
particularly suitable to study the dialog with the immune system, 
as they develop in the same bone marrow (BM) environment as 
normal hematopoiesis, are well molecularly characterized and 
also because they invade the organism through the circulation 
network, so directly in contact with the circulating immune cells.

ACUTe MYeLOiD LeUKeMiA:  
A LONG-TeRM MALiGNANT PROCeSS, 
SiDe eFFeCT OF AGiNG

Acute myeloid leukemia (AML) is a heterogeneous group of 
diseases characterized by the proliferation of a hematopoietic 
progenitor clone blocked in its differentiation (6, 7). The block-
age can concern each maturation step of the myeloid precursors, 
including granulocytic, monocytic, megakaryocytic, and eryth-
roid precursors. In general, the disease develops in the BM, and the 
presence of malignant clones inhibits the normal hematopoiesis 
not only by reducing space available for healthy hematopoietic 
stem cells (HSCs) but also by direct inhibition (8). This inhibition 
leads to marrow failure associated with cytopenia. The annual 
overall incidence of the disease is 3.8 cases per 100,000 adults 
in western countries, but it increases to 15 cases per 100,000 for 
elderly over 60 years (9). Many advances have been made in the 
molecular characterization of the disease and the evaluation of 
molecular markers in specific cytogenetic AML subsets is now a 
standard procedure for patient’s diagnosis and risk stratification 
(9, 10). Moreover, attempts were also developed to categorize 
AML based on mutation profiling (11–13) or on gene expression 
profiling, associated or not with recurrent acquired mutations 
identified in routine diagnosis (14–17). Finally, a new paradigm 
is taking form in our understanding of the connection between 
aging and leukemia with the identification of recurrent mutations 
in genes involved in the epigenetic regulation of the HSCs genome 
(DNMT3A, TET2, and ASXL1), acquired with age in healthy HSC, 
and leading to clonal hematopoiesis associated with increases 
in the risk of hematological cancer, including AML (18–20). 
The demonstration that healthy HSC could integrate mutations 
originally identified in AML is coherent with the identification of 
leukemia stem cell (21), with the potential to initiate a malignant 
clone at the origin of the disease. Indeed, preleukemic HSCs, 
defined as a pool of HSC with recurrent DNMT3A mutations but 
without the additional mutations observed in AML blasts, were 
found in AML patients (22).

Altogether, these observations are in favor of the hypothesis 
that HSCs accumulate somatic mutations and give rise to AML-
initiating cells following a clonal selection process (23) at diagno-
sis and also after relapse (24). This long duration of the malignant 
development process, in parallel with patient’s aging, questions 
the nature of the stimuli leading to this evolution, why particular 
successive mutations are required to ensure AML survival and 
proliferation, and how the organism’s environment, including 
the immune system, can deal with the emerging preleukemic and 
leukemic cells.

THe NATURAL KiLLeR CeLL: A MAJOR 
ANTiTUMOR eFFeCTOR CeLL

Among the different immune partners, natural killer (NK) cells 
were defined, at the time of their discovery, as being capable to 
directly eliminate tumor cells (25–28). NK cells are lympho-
cytes from the innate immunity, therefore characterized by the 
absence of rearranged antigen-specific receptors, such as T-cell 
or B-cell receptors. This population was recently assigned to 
a newly described family of innate lymphocytes, comprising 
various innate lymphoid cells (ILCs) (29). Innate lymphocyte 
populations show some analogies with the subdivision observed 
for the T-lymphocytes family with the CD8+ cytotoxic T-cells, 
and the Th1, Th2, and Th17 CD4+ T-cells. Similarly, conven-
tional NK cells constitute the cytotoxic innate lymphocytes 
with capacities to eliminate infected or transformed target 
cells, whereas ILC subsets are capable to support the develop-
ment of the local immune response through the production of 
cytokines, such as IFN-γ (ILC1 subset), IL-5 and IL-13 (ILC2 
subset), or IL-17 and/or IL-22 (ILC3 subset). NK cells were first 
categorized as type 1 cells such as Th1 cells because of their 
capacity to produce IFN-γ, but the expression of perforin and 
granzymes authorized to distinguish the cytotoxic ILC, i.e., the 
NK cell subsets, and the helper ILC1 (30). This role sharing 
could suggest that innate and adaptive lymphocyte populations 
can interact and support each other to initiate and sustain the 
immune response (31).

Natural killer cells represent 5–10% of the blood lymphocytes. 
Two major NK cell subsets are present in blood and secondary 
lymphoid organs (32). The CD56dimCD16+ NK cells constitute 
the vast majority of NK cells in blood (90–95%). They are highly 
cytotoxic but can also produce significant amounts of cytokines, 
such as IFN-γ and TNF-α, after stimulation by a sensitive target 
(33). The expression of the FcγRIII CD16 ensures the capacity 
for NK cells in mediating the antibody-dependent cellular 
cytotoxicity (ADCC). By contrast, the CD56brightCD16low/− NK 
cell subpopulation is mainly found in lymph nodes whereas they 
represent about 10% of blood NK cells (32, 34). The CD56bright NK 
cells store less intracellular cytolytic vesicles containing perforin 
and granzymes than their counterpart, but they can secrete large 
amounts of cytokines in response to an inflammatory environ-
ment (32). In addition to the cytokine-mediated triggering, NK 
cell functions are regulated by a balance between inhibitory and 
activating signals provided through regulatory receptors on the 
cell surface (35).
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NK Cell Functions Are Tightly Regulated
Natural killer cells are tightly regulated by numerous receptors 
that either trigger or inhibit the cell’s functions. To allow the 
distinction between healthy and abnormal cells (i.e., infected or 
tumor “stressed” cells) is the ultimate goal of this balance. Indeed, 
NK cells detect modified target cells that display perturbations in 
the expression of surface ligands (35).

Through the recognition of some HLA class-I molecules on the 
target cell, receptors, such as some of the killer immunoglobulin-
like receptors (KIRs) or the lectin heterodimer CD94/natural 
killer group 2, member A (NKG2A), inhibit NK cell functions. 
Originally described as the “Missing self ” theory (36), the physi-
ological function of these receptors is to detect loss or reduction of 
the class-I antigen-presenting molecules on the surface of tumor 
cells, a frequent alteration observed in cancer cells (37) and viral 
infections (38) at the origin of the escape from T-cell-mediated 
immunity. The absence of HLA class-I molecules on the target 
cell surface will therefore lead to an absence of inhibition of the 
NK cell functions. However, chronic exposure of NK cells to HLA 
class-I loss tumor variants can also lead to NK cell anergy as an 
escape mechanism. Such anergy can be reversed in presence of 
IL-12 and IL-18 (39).

Optimal NK cell triggering will also require activation signals 
provided by activating receptors that detect ligands on the target. 
A majority of cancers of all cell types express, at variable levels, 
stress-induced molecules, including the MHC class-I-related 
chains A and B (MICA/B) and the UL16-binding proteins 
(ULBPs) (40). These proteins are recognized by the activating 
lectin-homodimer NK group 2, member D (NKG2D) recep-
tor on NK cells, resulting in the elimination of the tumor (41). 
Importantly, ataxia telangiectasia, mutated (ATM), and ATM-
and Rad3-related (ATR) protein kinases activation as a response 
to DNA damage can stimulate NKG2D-ligands (NKG2D-L) 
surface expression (42). Other pathways regulate the expression 
of certain NKG2D-L [reviewed in Ref. (43)] and participate in 
leukemic physiology, including alterations in the microRNAs 
repertoire (44), the heat shock stress pathway (45), which can 
induce MICA and MICB gene expression, or the activation of the 
PI3K pathway that is often constitutively activated in leukemia 
(46) and can stimulate the expression of the mouse NKG2D-L 
RAE-1. Stress signals associated with DNA damage response, 
including reactive oxygen species (ROS), can also promote the 
expression of the poliovirus receptor (PVR or CD155) recognized 
by the activating receptor DNAX accessory molecule-1 (DNAM-
1) (CD226) (47, 48). Interestingly, the DNAM-1 ligands PVR and 
Nectin-2 were observed on many cancers and DNAM-1 can col-
laborate with other activating NK cell receptors to mediate killing 
of tumor cells (49, 50). The natural cytotoxicity receptors (NCRs), 
such as NKp30, NKp44, and NKp46, were also implicated in the 
recognition of tumors and notably AML (51, 52) even if ligands 
are expressed at low levels (53). B7-H6, a ligand for NKp30, and 
MLL5, from which a short isoform is recognized by NKp44, can be 
expressed on AML blasts (54, 55). AML cells are also recognized by 
NKp46 (56), but the ligands involved have not yet been identified. 
Additional receptors or coreceptors can induce NK cell activation 
in a cell-to-cell interaction with a target, including the adhesion 
molecule lymphocyte function-associated antigen-1 (LFA-1), 

and the signaling lymphocytic activation molecule (SLAM) fam-
ily receptors, such as 2B4 (CD244), CRACC (CD319), or NTB-A 
(57). LFA-1 will bind to the intercellular adhesion molecules-1 
(ICAM-1 or CD54) expressed on most AML cells (56). The SLAM 
receptors will be involved in homotypic interactions, except 2B4 
(CD244), which will recognize CD48. To date, CD48 was the only 
SLAM family receptor frequently observed on AML cells (52).

A Direct Role for NK Cells in the Antitumor 
immune Response
The original identification of NK cells as tumor killers has been 
abundantly confirmed in a wide variety of cancers. The higher 
susceptibility of murine models lacking NK cells to spontaneous 
or carcinogen [methylcholanthrene (MCA)]-induced tumors was 
in favor of a direct role of these lymphocytes in the elimination 
of malignant cells (4). Numerous in  vitro and in  vivo models 
demonstrated the direct implication of perforin together with 
IFN-γ produced by cytotoxic cells, including NK cells (58, 59), or 
of the activating NK receptors (41, 50, 60). In addition, the death 
receptor pathways involving the Fas-ligand (FasL) receptor and 
the TNF-related apoptosis-inducing ligand (TRAIL), a member 
of the TNF family, both induced on NK cells by either IFN-γ or 
IFN-α/β, were also involved in the antitumor function of NK cells 
(61, 62). In human, an indirect evidence for a role for NK cells 
in vivo came from the observation of the association between the 
natural cytotoxicity quantified in blood and the risk of cancer 
(63). The positive correlation between solid tumor infiltrating 
NK cells and good prognosis also suggests that NK cells could 
directly eliminate tumor cells in vivo (4). Importantly, in addition 
to a direct cytotoxicity, NK cells promote the antitumor response 
through the production of IFN-γ, which is required for the early 
phase of Th1 priming and polarization in the lymph node (64) 
and also for the stimulation and polarization of macrophages (65).

AML eSCAPe FROM NK CeLLS: 
iMMeDiATe AND LONG-TeRM 
PROCeSSeS

In vivo AML sensitivity to NK cell-mediated cytotoxicity has been 
shown by Ruggeri et al. in patients treated by haploidentical HSC 
transplantation (66). This team reported a lower incidence of 
relapse in patients transplanted with graft containing alloreactive 
NK-cell clones against recipient cells. By contrast, the absence of 
such NK-cell incompatibility was associated with a high relapse 
rate (66, 67). This observation was based on the existence of 
KIR/KIR-ligand (i.e., HLA class-I molecules) mismatches in the 
responsive donor/recipient pairs. The absence of cognate ligands 
for the inhibitory KIRs allowed NK cell activation by AML cells 
and elimination of the leukemic target. This illustration of the 
“missing-self ” theory (36) found its counterpart in the observa-
tion that the activating KIR2DS1 can also provide a significant 
reduction of AML relapse in donor/recipient pairs where recipi-
ent expresses specific HLA-C ligands (68). According to these 
results, the selection of the donor may be of importance in order 
to optimize the graft-vs.-leukemia effect expected from the HSC 
transplantation. Therefore, haploidentical and umbilical cord 
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blood transplantations would be the most suitable transplanta-
tion settings to find KIR/KIR-ligands mismatches. A few studies 
analyzed the role of KIR/KIR-ligand mismatch in cord blood 
transplantation setting with contradictory results either dem-
onstrating the advantage of such treatment in myeloid leukemia 
(69) or, by contrast, showing a higher risk of acute graft-vs.-host 
disease without curative advantages after reduced intensity con-
ditioning (70). Cytomegalovirus (CMV) infection or reactivation 
in transplanted patients could explain these discrepancies, as 
CMV-driven NK cell expansion and maturation could participate 
in the reduction of the relapse risk (71). Clinical trials using infu-
sions of IL-2-activated haploidentical NK cells in AML patients 
showed encouraging results with in vivo expansions of donor NK 
cells and complete remissions (CR) in certain patients, suggest-
ing an antitumor NK-cell-mediated immune response (72, 73). 
However, patient’s autologous NK cells often show defects at 
diagnosis. Activating receptors, such as DNAM-1, and the NCR, 

such as NKp30 and NKp46, present reduced expression levels 
on NK cell surfaces in a large proportion of patients (74–76). 
The inhibitory receptor CD94/NKG2A can also be upregulated 
on patient NK cells (77). In parallel to the phenotypic pertur-
bations, cytotoxic activity and IFN-γ release are also decreased 
(76–78). These defects were associated with pejorative outcomes, 
including increased relapse risk and/or reduced overall survival. 
Interestingly, NK cell phenotype and function are normalized 
after chemotherapy treatment, underlying the role for AML 
blasts in decreasing NK cell’s abilities (75, 76). Altogether, these 
observations imply that AML inhibits the autologous NK cell 
response through several mechanisms (Figure 1).

Leukemogenesis and immune escape
Tumor microenvironment plays a critical role in the inhibition 
of the antitumor immune response (79). Leukemogenesis occurs 
mainly in the BM, the primary site for the healthy hematopoiesis. 
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This suggests that leukemia BM environment could modify the 
immune cell differentiation process and also that healthy immune 
populations may influence leukemogenesis. Such interference was 
demonstrated in myelodysplastic syndromes (MDS), a heteroge-
neous group of myeloid disorders displaying low to high risk to 
give rise to secondary AML (80). As observed in AML patients, 
blood NK cells from MDS patients show severe defects with 
downregulation of activating receptors, including NKG2D and 
DNAM-1 (81), reduced cytotoxic activity (81, 82), and increased 
apoptosis rate in response to IL-2 stimulation associated with 
reduced proliferation in vitro (82). Importantly, increased NK cell 
defects were also associated with high-risk MDS, characterized 
by higher International Prognostic Scoring System (IPSS) Score, 
presence of excess blasts, abnormal karyotype, and hypercellular-
ity (83). BM NK cells in MDS patients are also deeply affected 
by the disease, suggesting that MDS BM environment could 
play a role in those defects (81–83). In AML, BM environment 
influences healthy hematopoiesis by affecting BM cell popula-
tions. Notably, BM stromal cells show low proliferative rate as 
well as genetic and epigenetic alterations (84). Similar numbers 
of healthy CD34+CD38− HSC were found in the BM of AML 
patients and healthy individuals. However, normal CD34+CD38+ 
progenitors were found reduced in BM of AML patients likely 
resulting from a differentiation block at the HSC-progenitor 
progression (8). Consequently, similar to MDS, NK cell dif-
ferentiation in the BM seems to be affected by AML. A recent 
work by Vasold et al. suggested a role for mesenchymal stromal 
cells and hypoxia in the reduction of NK cell cytotoxic activity 
against autologous AML blasts highlighting the importance of 
the BM stroma in the emergence of abnormal mature immune 
cells in the peripheral blood (85). Connected to this observation, 
we recently described that AML cell transcriptional program is 
intimately associated with the deepness of the NK cell defects 
(76). NK cell deficiencies were associated with an increased risk 
of relapse. AML blast transcripts coding for proteins involved in 
cytokine/cytokine receptor and chemokine pathways were found 
severely diminished in patients with defective NK cells. In return, 
IFN-γ production by CD56bright NK cells is almost abrogated at 
diagnosis in those patients (76). Altogether, these observations 
would indicate that AML blasts can modify BM environment, 
including stromal, precursor, and mature immune cell popula-
tions. In addition, the immune pressure, notably provided by NK 
cells, could influence the AML transcription program leading to 
AML escape and a more pejorative outcome.

Cell-to-Cell Contact and Defective 
immunological Synapse
Interactions between immune cells and targets constitute a multi-
step process where first immune cells build conjugates with the tar-
get partner and then initiate a reorganization of proteins localized 
at the membrane at the cell-to-cell contact point [reviewed in Ref. 
(86)]. This includes actin mesh polymerization and centrosomes 
polarization (87). The supramolecular activation cluster (SMAC) 
recruits regulating NK receptors, in parallel with ligands on the 
target cell, together with costimulatory and adhesion molecules 
in order to integrate and amplify intracellular signaling. NK cells 

will therefore polarize cytolytic vesicles toward the immunological 
synapse (IS) (i.e., the target cell) and secrete perforin and gran-
zymes within the intercellular space (86). At the resolution of the 
synapse, NK cells express low levels of activating receptors and 
need a period of time to regain their full function (88).

Even if leukemic cells are sensitive to allogeneic NK-cell-
mediated lysis, alterations in the expression of some activating 
receptors, including NCR and DNAM-1, on the autologous 
NK cells suggest that NK-to-AML interactions can be defective 
in patients. Such observation has been made for T cells with a 
reduction in actin polarization and phosphotyrosine signaling in 
T-cell/AML blast conjugates (89). Reduction of NKR expression 
by autologous NK cells was partially associated with the pres-
ence of cognate ligands on AML cells as in vitro coculture of NK 
cells with AML cell lines or primary blasts decreases the NKR 
levels (56, 90). However, this phenomenon is not proportional to 
the ligand expression levels on the target, suggesting additional 
mechanisms controlling the profound NKR downregulation 
observed in vivo. When studying the IS between NK and AML 
cells, NK cells showed defects in the polarization of their cytolytic 
granules toward the IS against AML blasts (56). Consequently, 
defects in NKR expression may also be the result of a continuous 
exposure to ligands in incomplete cytotoxic synapses against 
AML blasts, leading to an exhaustion of the NK-cell cytotoxic 
activity. Therefore, NK cell cytotoxic activity is progressively 
switched off, whereas AML cells survive and proliferate. Whether 
the decrease in IFN-γ production observed in patients is also the 
result of perturbations in the IS or in downstream NKR signaling 
pathways requires further studies. The molecular mechanisms 
responsible of this cytotoxic defect need also to be identified. 
Inhibitory KIRs can reduce the autologous anti-AML response 
as demonstrated in autologous HSC transplantations (91). 
Nevertheless, inhibitory KIRs likely play a very early role in the 
building of the IS during polymerization of the actin network and 
would be only marginally implicated at later stages to inhibit the 
lytic granules’ polarization (86). Other receptors could be good 
candidates in the negative regulation of NK functions, such as 
CD96, as demonstrated by the higher resistance of Cd96−/− mice 
to solid tumors (92). On the other side, CD200 (also named OX2) 
expressed at high levels on some AML has been recently identi-
fied as a suppressor of patient’s NK cell cytotoxic and cytokine 
secretion functions in the antitumor response (93).

Soluble Molecules
In addition to cell-to-cell contact-based inhibition, NK cells’ 
functions are inhibited by various soluble molecules, including 
soluble ligands of regulatory NK receptors, cytokines, such as 
TGF-β or IL-10, metabolic compounds, such as ROS, and trypto-
phan or arginine catabolites.

Some AML clones have adopted strategies to inhibit NK cells 
with specific soluble compounds. To date, NKG2D and NKp30 
were the main targets described for such inhibition. Soluble 
ligands can be released by tumor cells into the extracellular envi-
ronment. NKG2D-ligands (NKG2D-L) and the NKp30 ligands 
B7-H6 are cleaved by metalloproteinases, either matrix metal-
loproteinases (MMP) or A disintegrin and metalloproteinases 
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(ADAMs) (94–99). Soluble NKG2D-L was found in the serum of 
patients with solid tumors or hematological cancers. Moreover, 
soluble MICA release is regulated by chaperones, such as ERp5, 
modulating MICA structure with the support of the heat shock 
protein GRP78 to induce conformational changes allowing its 
cleavage (100, 101). Despite a high heterogeneity in the surface 
expression of NKG2D-L by AML, the majority of patients shows 
soluble forms of MICA, MICB, or ULBP2, alone or more often in 
combination with up to five soluble NKG2D-L (102). As observed 
in solid tumors (103), the presence of soluble NKG2D-L in AML 
patients’ serum is associated with a reduction of the surface 
NKG2D expression leading to a decrease in NKG2D-mediated 
NK-cell’s activity (102). Importantly, a recent work by Deng et al. 
showed that the soluble form of MULT-1, a mouse high-affinity 
NKG2D-L, released by tumors, can stimulate NK-cell cytolytic 
function, and induce tumor rejection in mice (104). Activating 
soluble NKG2D-L was not identified in human yet, but such 
molecule, if it exists, could be of interest for inducing antitumor 
NK-cell function.

B7-H6 shedding by solid tumors seems to induce a reduction 
of the NKp30-mediated tumor cell recognition by NK-cells (96). 
In contrast to soluble NKG2D-L, this process would be due to 
a reduction of the B7-H6 expression on the tumor cell surface 
rather than to a direct inhibition of the NKp30 expression on the 
NK cell. No observation of B7-H6 shedding by AML has been 
made yet but the expression of B7-H6 on AML cells together with 
the reduction of expression of NKp30 on patient’s NK cells would 
justify studying this pathway in AML patients.

Soluble NKG2D and NKp30 ligands can be also released in 
the serum bound to tumor-derived exosomes (TEX) (105, 106). 
Exosomes from solid tumors or leukemia/lymphoma cells can 
present MICA, MICB, and ULBP molecules leading to an inhibi-
tion of the NKG2D-mediated NK cell activation (105, 107). In the 
same way, a reduction of NKp30 can be observed when NK-cells 
are incubated with B7-H6 positive exosomes produced by myeloid 
subsets in inflammatory conditions (108). By contrast, exosomes 
carrying BAG6, another NKp30 ligand, are necessary to activate 
NK cells in order to eliminate chronic lymphocytic leukemia 
(CLL) cells, whereas soluble BAG6 lead to tumor evasion (106). 
In addition, soluble galectin-3 produced by solid tumor cells 
works as an inhibitory ligand of NKp30 (109). In line with this 
observation, higher levels of galectin-3 gene expression in BM are 
an independent unfavorable prognostic factor for overall survival 
in patients with AML (110). Altogether, these observations would 
suggest that soluble or exosomes bound NKp30 ligands could 
also interfere, in parallel with other soluble ligands, with NK cell 
functions in AML patients.

Imbalance in serum cytokines can be responsible for perturba-
tions in the regulation of the antitumor response. In contrast to 
reduced TGF-β levels in plasma of AML patients as compared 
to healthy individuals (75, 111), IL-10 was found significantly 
higher together with the proinflammatory cytokines IL-6 and 
TNF-α. Curiously, high levels of IL-6 and low levels of IL-10 
are associated with poor outcome (111). Even if such cytokine 
environment is probably more related to the AML physiology, it 
still can influence immune cell properties. Indeed, high levels of 
IL-6 were shown to impair perforin and granzyme B expression 

and reduce NK cell cytotoxic activity in individuals with autoim-
mune diseases (112), with heart failure (113), and cancer patients 
treated with recombinant IL-6 (114).

In parallel, high levels of small immunosuppressive mol-
ecules, side products of the leukemic cell metabolism, can be 
released by AML blasts. ROS participate to NK-cell defects 
in the expression of activating receptors, such as NKp46 and 
NKG2D (115). Interestingly, they are highly produced by AML 
with specific mutation patterns, such as activating mutations 
in RAS family members or FLT3/ITD mutations (116, 117). 
Arginine metabolism is also enhanced in AML blasts leading to 
an immunosuppressive environment. High levels of production 
of active arginase II by AML blasts can induce an accumulation 
of this enzyme in the plasma of patients, resulting in significant 
inhibition of lymphocyte proliferation (118). In addition, the 
immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) 
is also expressed by leukemic blasts, whereas it is absent from 
normal hematopoietic CD34+ stem cells (119). IDO catalyzes 
tryptophan degradation by producing l-kynurenine, which can 
directly affect NK cell phenotype and cytolytic function through 
the inhibition of the cytokine-induced upregulation of NKp46 
and NKG2D (120). In addition, IDO activity can stimulate the 
emergence of CD4+CD25high regulatory T-cells (Tregs) (121) 
capable of inhibiting NK cell functions by TGF-β release (122) or 
IL-2 starvation (123).

AML AND CONveNTiONAL TReATMeNTS: 
ReSiSTANCe TO CHeMOTHeRAPieS

Acute myeloid leukemia treatment by conventional chemo-
therapy eliminates tumor blasts and leads to the achievement of 
CR in 70–80% of patients younger than 65 years (6). Elimination 
of circulating AML blasts allows the recovery of NK cell phe-
notype and functions (75, 76), and a sustained autologous NK 
cell activity can support a continued CR (124). However, at least 
half of patients will eventually relapse (6). A major limitation for 
success in chemotherapy of AML is dominance of drug-resistant 
subpopulations of cells. AML cells also can achieve the resist-
ance phenotype through modification of multiple and diverse 
pathways, such as inactivation of the mitochondrial apoptotic 
machinery, decreased expression of proapoptotic agents, upregu-
lation of antiapoptotic molecules, and promotion of drug efflux. 
Although daunorubicin (DNR) is the most efficient and widely 
used anthracycline to treat AML, resistance to this drug remains 
a critical problem (125–127). In this regard, the intrinsic and 
acquired resistance of AML to drug treatment remains a fun-
damental challenge for improving patient outcome. One of the 
consequences of acquisition of drug resistance by leukemic cells is 
the appearance of cross-resistance against immune effector cells. 
We have recently demonstrated that the acquisition of resistance 
to DNR resulted in the acquisition of cross-resistance to NK cell-
mediated cytotoxicity. MiR microarray analysis revealed that this 
cross-resistance was associated with miR-181a downregulation 
and the subsequent upregulation of MAP3K10 and MAP2K1 
tyrosine kinases and the BCL-2 (BCL-2 and MCL-1) family. 
These studies point to a determinant role of miR-181a in the 
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sensitization of leukemic resistant cells to DNR and NK cells and 
suggest that miR-181a may provide a promising option for the 
treatment of immuno- and chemoresistant blasts (128).

In contrast, previous studies showed that NKG2D-L can be 
upregulated on the AML cell surface after treatment with various 
molecules, including the histone deacetylase inhibitor valproic 
acid (VPA) (129, 130). In the same way, the administration of 
all-trans-retinoic acid (ATRA) can also increase the NKG2D-L 
expression levels on acute promyelocytic leukemia, a particular 
subtype of AML with a PML-RARA gene fusion (130). Importantly, 
such increased expression of NKG2D-L cannot be observed 
in patients treated with chemotherapy in absence of ATRA or 
VPA (130). These observations suggest that chemotherapy can 
stimulate an anti-AML NK-cell–mediated response. Recently, we 
showed that cytarabine-resistant cells become more susceptible 
to NK-mediated cell lysis as compared to parental cytarabine-
sensitive cells. The increased susceptibility correlates with the 
induction of ULBP 1/2/3 and NKG2D-ligands on target cells by a 
mechanism involving c-Myc induction (131). These studies could 
help to improve the efficacy of NK-cell-based therapy that allows 
for better designing of NK-based immunotherapy.

iMMUNOTHeRAPeUTiC STRATeGieS

Given the sensitivity of AML to NK-cell-mediated lysis, strategies 
to enhance or restore NK cell functions in patients could be of 
interest besides conventional chemotherapy. Numerous methods 
have been developed during the last few years in order to either 
modulate immunity against tumors using immunomodulatory 
drugs (IMiDs) or cytokines or to specifically target or activate 
NK cells against leukemia cells. Such treatments, used alone or in 
combination with chemotherapy, aim to eliminate chemoresist-
ant tumor cells.

immunomodulatory Drugs
Immunomodulatory drugs are structural and functional analogs 
of thalidomide (132). To date, two molecules have been approved in 
MDS, multiple myeloma (MM), or mantle cell lymphoma (MCL): 
lenalidomide and pomalidomide. Alone (for MDS or MCL) or 
in combination with dexamethasone (MM), as a second or third 
line of treatment, IMiDs improve both time-to-progression and 
overall survival of patients. Several studies have also explored the 
synergistic effect of IMiDs with rituximab for the treatment of 
CLL (133) or MCL (134). Beyond their direct effect on cancer 
cell proliferation and angiogenesis, these molecules stimulate 
antitumor effectors, including B, T, and NK cells (135). Hence, 
by their broad range of effects, IMiDs represent a novel strategy 
for immunotherapy as evidenced by numerous ongoing clinical 
trials, in many cancer settings, including AML (136).

In the case of NK cells, IMiDs increase the expression of 
activating receptors, notably NCR (137, 138). These molecules 
induce expansion of NK cells as confirmed by immunomonitor-
ing studies in several clinical trials (137, 139, 140). Enhanced 
NK cell ADCC or natural cytotoxicity is largely mediated via 
IL-2 produced by T cells (141). In addition, we have recently 
shown that lenalidomide enhances tumor cell recognition by 
NK cells by improving the stability of the immune synapse (56). 

Finally, IMiDs increase tumor infiltration by NK cells in murine 
models (142).

Cytokines
Several cytokines of the IL-2 family are essential for NK cell 
survival, expansion, and activation, but so far, only IL-2 has an 
approval for clinical use. In the family of IL-2, IL-15 and IL-21 
share some characteristics such as activation and proliferation of 
NK cells, and the common γ-chain for their receptor (143). IL-2 
is able to induce expression of NKG2D, NKp44, and NKp46 on 
NK cells (49, 82, 144). In MDS, however, following in vitro IL-2 
stimulation, NK cells do not recover a normal cytolytic activity 
when compared to healthy volunteers (82). Moreover, IL-2 fails 
to induce NK cell proliferation compared to healthy volunteers, 
but rather increases the rate of apoptotic NK cells (82). So far, the 
therapeutic use of IL-2 for the treatment of hematological malig-
nancies has been hampered by a peripheral toxicity (145) and an 
unwanted expansion of Tregs (146). Conclusions of clinical trials 
report modest antitumor activity when used as a monotherapy. 
Therefore, the use of IL-2, especially at high doses, might be 
restricted to ex vivo expansion of NK cells given problems of 
in vivo toxicity (145).

In contrast to IL-2, IL-15 and IL-21 may represent a bet-
ter alternative because these cytokines do not expand Tregs. 
Accordingly, many clinical trials currently aim to demonstrate 
an efficient NK cell-mediated antitumor response with in vivo or 
ex vivo IL-15-expanded NK cells in AML. Hence, in the absence 
of clinical approval for IL-15, several groups are testing the pos-
sibility to expand NK cells in vitro before reinfusion into patients.

IL-15 plays a major role in the proliferation, differentiation, 
survival, and functions of T and NK cells (147, 148). Ex vivo expo-
sure of NK cells from AML patients to IL-15 enhance NKp30, 
NKp46, NKG2D, and NKG2C surface expression. Accordingly, 
this increase of receptor expression correlated with an enhanced 
natural cytotoxicity against autologous AML cells (147, 149). In 
addition, in hematological malignancies, low levels of circulating 
IL-15 after BM transplantation are predictive of risk of relapse 
(150). In line, NK cell recovery in stem cell transplantation is 
strongly correlated with plasmatic concentrations of IL-15 (149).

The serum concentration of IL-15 increases dramatically 
following administration of cytotoxic agents (147, 150). For 
some authors, this elevation of serum IL-15 could be related to 
the depletion of lymphoid populations that normally consume 
circulating IL-15 or to inflammation induced by chemotherapy 
(149). In vivo injections of the IL-15/IL-15Rα heterodimer result 
in significant expansion of γδ, CD8+ T, and NK cells (148). 
Recently, this cytokine has become available for use in early phase 
clinical trials as an alternative to IL-2 (147, 148). IL-15 is currently 
assessed as a therapy for various solid tumors, including refrac-
tory metastatic melanoma, metastatic renal cell cancer.

IL-21 has been proven safe in phase I clinical trials with signs 
of clinical activity (151). IL-21 stimulation of NK cells mainly 
results in enhanced NK cell functions. Ex vivo, IL-21 is capable 
of inducing NK cell maturation and stimulates the produc-
tion of IFN-γ and cytotoxic properties of NK cells (152–154). 
Several clinical trials have reported the effect of IL-21 therapy on 
immune system after administration in patients with metastatic 
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melanoma and renal cell carcinoma (151). Although NK and T 
cell numbers were temporarily decreased during administration 
of IL-21, the cells had higher expression of CXCR3, hyaluronan-
mediated motility receptor (HMMR), IFN-γ, perforin, and gran-
zyme. In addition, NK cells from patients displayed an enhanced 
cytotoxicity capacity (151). These results were confirmed in a 
phase II trial for metastatic melanoma (155). In the absence of 
clinical approval, IL-15 and IL-21 are also used ex vivo to expand 
and activate NK cells for further infusion in patients. NK cells 
stimulated ex vivo by the leukemic cell line K562 expressing 
membrane-bound IL-15 or IL-21 showed a strong proliferation 
and cytolytic activity with a higher proliferation rate and an 
increase in telomere length for IL-21-activated NK cells (156). 
NK cells expanded ex vivo by membrane-bound IL-15 are cur-
rently infused into MDS or AML patients (phase I clinical trial 
#NCT02123836).

Bi- and Trispecific Killer Cell engager
Several monoclonal antibodies (mAbs) directed against tumor 
antigens have been generated and are currently used in the clin-
ics. The most famous therapeutic mAbs remains the anti-CD20 
rituximab, which is widely used to B-cell-related diseases and 
cancers. Several mechanisms of action have been identified and 
one of these is the recognition of the Fc part of the human or 
humanized IgG1 or IgG3 isotypes by CD16 expressed by NK 
cells and myeloid cells. Upon engagement of CD16, the cells are 
activated and kill the targeted cells. Unfortunately, several studies 
have shown that the polymorphism of CD16 and the engineering 
process may alter ADCC efficacy. Bispecific killer cell engagers 
(BiKEs) are engineered antibodies with dual specificity, for a tumor 
antigen like CD19 or CD20 for B-cell-related diseases and CD16 
targeting NK cells. The anti-CD16 part of the BiKEs bypasses the 
disadvantages of classical mAbs (157). For instance, AFM13, a 
BiKE targeting CD19 and CD16, has been recently tested in phase 
I and II trials (#NCT01221571 and #NCT02321592, respectively) 
in non-Hodgkin lymphoma.

In vitro studies demonstrated that CD33 × CD16 BiKEs trig-
ger NK cell activation against AML cell lines and primary targets 
through CD16 signaling, leading to cytokine and chemokine pro-
duction (158). As a consequence, significant increases in NK cell 
cytolytic activity led to induction of target cell apoptosis at high 
and low target to effector ratios. In a study based on NK cell isola-
tion from patients with MDS, authors showed that CD33 × CD16 
BiKE potently activates blood and marrow MDS–NK cells at all 
disease stages to lyse CD33+ MDS and CD33+ myeloid-derived 
suppressor cells (MDSCs) targets (159). Noteworthy, MGD006, a 
CD123 × CD3 BiKE is tested in a phase I trial (#NCT02152956), 
confirming the current explosive attention to BiKEs as potent 
therapeutic tools for AML and other cancers. In the same way, a 
CD30 × CD16 bispecific tetravalent chimeric antibody (TandAb) 
was used in a phase I clinical trial in patients with relapsed or 
refractory Hodgkin lymphoma showing good tolerance and 
tumor targeting (160). However, with respect to AML treatment, 
the use of BiKEs remains limited due to the heterogeneity of 
tumor antigen in this disease.

Recently, several new reagents were developed in attempt 
to enhance the targeting of malignant cells. Gleason et al. have 

generated a trispecific mAb (TriKE) directed against CD19, 
CD20, and CD16 (159). This TriKE, efficiently engaged NK cells 
against CD19+CD20+ leukemic targets, as proven by a strong 
cytotoxicity and IFN-γ production. To increase NK-cell activat-
ing properties, Miller et  al. have developed a TriKE targeting 
CD33 and CD16 that contains IL-15 (161). This reagent not only 
mediates CD16 directed cytotoxicity against CD33+ leukemic 
cells but also sustains NK-cell activation and persistence by the 
IL-15 linker.

In conclusion, targeted cellular immunotherapy with BiKEs 
and TriKEs are promising approaches in terms of effector cell 
retargeting and induction of efficient antitumor response and are 
currently being developed and evaluated for targeting of various 
malignancies (162, 163).

Antibodies Directed against NK Cell 
inhibitory Receptors
Among strategies to improve the recognition of tumor cells by NK 
cells, blocking the inhibitory interactions is appealing. Inhibitory 
molecules, such as KIR and NKG2A, are expressed at the sur-
face of NK cells and inhibit NK cell activation via their ligands 
(HLA-C and HLA-E, respectively). In the case of cancer patients, 
expression of KIR and NKG2A, as well as expression of their 
ligands at the surface of tumor cells, has been described in several 
solid cancers and leukemias (164–166). Subsequently, activation 
of NK cells is likely prevented and leads to NK-mediated immune 
evasion. Inhibition of these mechanisms by blocking antibodies is 
currently being assessed.

IPH2101 is a fully human IgG4 that blocks the interaction 
between the major subset of KIR (KIR2DL1, KIR2DL2, and 
KIR2DL3) and their cognate ligands (167, 168). A second genera-
tion of anti-KIR mAb, lirilumab (IPH2102/BMS-986015) with a 
stabilized hinge was generated (167, 168).

In vitro studies showed that IPH2101 augments NK cell- 
mediated lysis of KIR-ligand matched tumor cells and enhances 
NK cell-mediated ADCC against antibody-bound tumors 
(168–170). The therapeutic potential of IPH2101 has also been 
demonstrated in preclinical mouse models (171, 172), which have 
formed the basis for clinical trials evaluating IPH2101 in patients 
with cancer (173). Blocking NK inhibition with the anti-KIR 
IPH2101 antibody has been proven to be safe in early phase clini-
cal trials in patients with AML and MM (174, 175) and enhances 
ex vivo NK cell cytotoxicity against MM cells (175).

However, a phase II study in MM patients did not reveal last-
ing objective responses (173). IPH2101 has also been assessed 
in vitro in combination with lenalidomide and potentiates NK-cell 
cytotoxicity toward autologous myeloma cells. This combination 
is currently being tested in a phase I clinical trial in MM patients 
(#NCT01217203) (176). The second generation anti-KIR liri-
lumab was also shown to synergize with Lenalidomide to increase 
NK cytotoxicity of myeloma patients treated with Daratumumab 
(anti-CD38) (177). In vitro and in vivo lirilumab enhances NK 
activity against CD20+ lymphoma cells (167). With respect to 
AML, lirilumab is currently tested in patients in CR for long-term 
maintenance (#NCT01687387), and for the treatment of patients 
with refractory/relapsed AML (#NCT02399917). Although safe, 
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this therapeutic mAb did not induce impressive clinical improve-
ment so far. First of all, cytotoxic effectors expressing KIRs (NK 
cells, αβ CD8+, and γδ T cells) use other inhibitory KIRs that 
are not targeted by lirilumab (NKG2A, KIR3DL, and CD85j/
ILT2). In an autologous setting, it is likely that these cells may 
still remain tolerant to leukemic cells. In addition, lirilumab also 
recognizes KIR2DS1 and KIR2DS2; blocking these receptors 
may, in contrast, unfavor tumor cell clearance (168).

Noteworthy, a newly engineered mAb directed against 
NKG2A has been generated by Innate Pharma (IPH2201) and 
is currently tested in clinical trials (phase I/II) in ovarian cancer, 
squamous cell carcinoma, and refractory CLL (#NCT02459301, 
#NCT02331875, and #NCT02557516, respectively). It is tempting 
to speculate on the efficacy of this new reagent in AML treatment, 
as these cells are expected to express HLA-E.

Other inhibitory receptors, including PD-1, LAG-3, or TIM-
3, usually classified as “inhibitory checkpoint receptors” may 
influence NK cell activity. The increasing interest for the PD-1/
PD-1-ligands axis on T-cells in cancer therapy legitimated the 
analysis of PD-1 expression on NK cells in various pathological 
situations. In a mouse model of glioblastoma, NK cell functions 
against mouse glioma stem cells and the survival of the mice can 
be ameliorated by blocking either PD-1 or the PD-1 ligand B7-H1 
(also named PD-L1) (178). In human, data describing a role for 
PD-1 in the regulation of NK cells are relatively scarce. Wiesmayr 
et al. observed the expression of PD-1 on NK cells in pediatric 
patients with post-transplantation lymphoproliferative disorders 
caused by EBV infection. The presence of PD-1 was associated 
with a reduced expression of NKp46 and NKG2D and NK cell 
function impairment, and blocking the PD-1 inhibitory pathway 
could restore IFN-γ secretion (179). The PD-1/PD-L1 axis was 
also involved in the modulation of NK-cell functions against MM 
(180). Interestingly, IFN-γ can induce the expression of PD-L1 on 
AML cells leading to the inhibition of the antileukemic response 
mediated by T-lymphocytes (181) and NK cells (182). Therefore, 
the anti-PD-1 mAb Nivolumab is tested in a phase II clinical 
trial in AML patients in remission with high risk of relapse 
(#NCT02532231).

Chimeric Antigen Receptor–NK Cells
Another strategy to improve antitumor immunity has arisen 
from recent advances in cell genetic modification that have 
allowed the specific targeting of tumor cells by cytotoxic effec-
tors. Most of the tools generated are chimeric antigen receptor 
(CAR)-T cells, i.e., T cells engineered to express a receptor for 
tumor antigen (for instance, CD19 in the case of B-cell leukemia) 
coupled to activate signaling adaptors. The few clinical trials with 
CAR-T cells have obtained somewhat promising results that 
should be strengthened by other studies. Genetic modification 
of NK cells has been more recently performed, but not yet with 
myeloid tumor specificity. For instance, Töpfer et al. generated 
NK cell lines or primary NK cells targeting PSCA, a prostate 
cancer antigen (183). As expected, these cells react against PSCA 
positive tumor cell lines by secreting IFN-γ and killing these 
target cells. In line with this observation, several others have 

been designed, based on NK-92 or other NK cell lines (184–187). 
This new strategy is promising although the costs may remain a 
serious limitation.

CONCLUSiON

Acute myeloid leukemia is the most common myeloid leukemia, 
usually treated with a combination of anthracyclines and cyta-
rabine in a first attempt to achieve CR. The consolidation phase 
of the treatment aims to prolong CR and eventually to cure the 
disease. However, disease heterogeneity (cytogenetic and muta-
tion profile, deepness of BM failure, resistance to treatment) and 
patient’s general condition (age, secondary AML) led to an unfa-
vorable prognosis for many patients. Over time, AML develops 
various mechanisms to protect itself from the patient’s immune 
system and more precisely from NK cells. The long-term coexist-
ence of leukemia-initiating cells, and then tumor blasts, with NK 
cells, first in the BM and later in the periphery, can explain the 
emergence of NK cell defects together with immunoresistant 
AML cells. The antitumor function of NK cells, demonstrated after 
allogeneic HSC transplantation, justifies developing methods in 
order to restore, stimulate, or induce NK cell activity in AML 
patients. Treatments combining the elimination of the peripheral 
leukemic blasts using conventional chemotherapy, together with 
the chemoresistant leukemic-initiating cells, targeted by immune 
mediators, including NK cells, appear very attractive. However, 
we could consider the opportunity to stimulate NK cell antileu-
kemic functions before the emergence of the disease. Indeed, the 
recent observation of preleukemic mutations in healthy elderly 
individuals’ HSC questions the capacity of the immune system 
to eliminate or tolerate the presence of leukemia-initiating cells 
in the BM at advanced age. In that context, stimulating the 
immunosurveillance mediated by NK cells could be a promising 
preemptive strategy against AML.
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