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Pyruvate kinase (PK) is the enzyme responsible for catalyzing the last step of glycolysis. 
Of the four PK isoforms expressed in mammalian cells, PKM2 has generated the most 
interest due to its impact on changes in cellular metabolism observed in cancer as 
well as in activated immune cells. As our understanding of dysregulated metabolism in 
cancer develops, and in light of the growing field of immunometabolism, intense efforts 
are in place to define the mechanism by which PKM2 regulates the metabolic profile of 
cancer as well as of immune cells. The enzymatic activity of PKM2 is heavily regulated by 
endogenous allosteric effectors as well as by intracellular signaling pathways, affecting 
both the enzymatic activity of PKM2 as a PK and the regulation of the recently described 
non-canonical nuclear functions of PKM2. We here review the current literature on PKM2 
and its regulation, and discuss the potential for this protein as a therapeutic target in 
inflammatory disorders.
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iNTRODUCTiON

Cancer cells and most activated immune cells display a radical shift in metabolism becoming highly 
dependent on glucose, which is metabolized through an increased rate of aerobic glycolysis, a meta-
bolic state termed the Warburg effect (1, 2). Normal cell metabolism involves generating energy 
through a relatively low rate of glycolysis giving rise to pyruvate, which enters the mitochondrial 
tricarboxylic acid (TCA) cycle. Pyruvate undergoes a series of oxidizing reactions, thereby generat-
ing ATP. In contrast, cells displaying Warburg metabolism will instead rely on an increased rate 
of glycolysis to generate energy. Pyruvate is now diverted away from the oxidative phosphoryla-
tion of the TCA cycle and is converted to lactate by lactate dehydrogenase (LDH) in the cytosol. 
Since this process allows for ATP generation during low oxygen, it may provide an explanation 
for the tolerance of cancer cells to extreme local hypoxia providing the cells with obvious growth 
advantages compared to surrounding tissue and immune cells. The high rate of glycolysis ensures 
that the increased demand for biosynthetic precursors, including proteins, lipids, and nucleic acids, 
is met. As glucose is broken down to pyruvate, intermediates of glycolysis are used for nucleotide 
and amino acid synthesis as well as for nicotinamide adenine dinucleotide phosphate (NADPH) 
production through the pentose phosphate pathway (PPP). Furthermore, fatty acids, required for 
membrane lipid synthesis, are synthesized from citrate in the cytosol generating acetyl-CoA. This 
metabolic reprograming renders the cells highly dependent on glucose, which can lead to nutrient 
competition within the tumor microenvironment, a scenario that has been shown to directly con-
tribute to cancer progression (3). Interest in the metabolic state of immune cells during inflammation 
and infection has recently surged as it is becoming clear that resting immune cells display distinct 
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metabolic configurations compared to activated immune cells. 
Hence, the field of immunometabolism has evolved incorporat-
ing the concept that alterations in metabolism may influence the 
phenotype of immune cells and regulate transcriptional, as well 
as posttranscriptional events, upon activation.

Pyruvate kinase (PK) is the enzyme responsible for the final 
rate-limiting step of glycolysis, catalyzing phosphoenolpyruvic 
acid (PEP) and ADP to pyruvate and ATP. Due to the vast 
literature supporting the role of the PK isoform PKM2 as a key 
regulator of the metabolic changes observed in cancers [reviewed 
recently in Ref. (4, 5)], an interest in defining the potential role of 
this protein in inflammation has emerged. Here, we will review 
our understanding of PKM2’s regulation and functions in cancer 
and immune cells, and examine the current literature on its role in 
inflammatory disorders while discussing the potential in target-
ing PKM2 function therapeutically.

PKM2 GeNe eXPReSSiON

Pyruvate kinase isozyme type M2 (PKM2) is one of the four PK 
isoforms expressed in mammalian cells and is generally accepted 
to be the embryonic isoform, also expressed in cancer and normal 
proliferating cells such as lymphocytes and intestinal epithelial 
cells (6–8). PKM1 is the alternatively spliced product of the same 
Pkm gene (9–11). PKM1 has high PK enzymatic activity and is 
expressed in tissues with increased catabolic demands such as 
heart, muscle, and brain. The remaining isoforms PKL and PKR 
are expressed in the liver and red blood cells, respectively.

PKM1 and PKM2 are generated by exclusive alternative 
splicing of a pair of mutually exclusive exons of the Pkm pre-
mRNA. The full open reading frame is composed of 12 exons 
where inclusion of exon 9 will generate PKM1 transcript, and 
exon 10 is specific for expression of PKM2 (9, 11). Although 
only different by a small number of amino acids, the two gene 
products display distinct function and characteristics due to the 
isoform specific exons giving rise to structural differences in the 
fructose-1,6-bisphosphate (FBP)-binding site (discussed below) 
and dimer–dimer interface.

Two regulatory events have been identified resulting in 
reciprocal effects on the mutually exclusive exons 9 and 10, such 
that exon 9 is repressed and exon 10 is activated. First, three 
heterogeneous nuclear ribonucleoproteins (hnRNPs) polypy-
rimidine tract-binding protein (PTB, also known as hnRNPI), 
hnRNPA1 and hnRNPA2, have been shown to bind specifically 
and repressively to sequences flanking exon 9 resulting in exon 10 
inclusion (12). These hnRNP proteins are in turn controlled by 
c-Myc, contributing to deregulated PK mRNA splicing in cancer. 
Second, the serine/arginine-rich splicing factor 3 (SRSF3) will, 
through binding within exon 10, promote its inclusion, resulting 
in increased transcript for PKM2 (13).

Evidence supports a switch in the expression of PKM1 
in favor of PKM2 during malignant transformation such 
that expression of PKM1 decreases proportionally as the 
expression of PKM2 increases. However, this has recently 
been reevaluated, suggesting that upregulation of PKM2 is 
primarily due to the elevated transcriptional levels of the 
entire Pkm gene, where no decrease in PKM1 expression is 

observed, rather than due to a switch in isoform expression 
(7, 14, 15).

In addition, efforts to identify specific micro-RNAs (miRs) 
that target PKM2 expression have revealed a possible role for 
miR-let-7a, miR-122, miR-326, miR-133a, and miR133b (16–19); 
however further validation will be required.

ReGULATiON OF PKM2 ACTiviTY

Since PKM2 plays a critical role in the metabolic changes 
observed in cancer and inflammation, discovering the mecha-
nism of the regulation of PKM2 activity is important to our 
understanding of how alterations in cellular metabolism are 
controlled.

The enzymatic activity of PK is, in part, determined by the 
configuration of the enzyme into a tetramer, dimer, or monomer. 
PKM1 naturally exists as a stable tetramer, which allows for 
optimal binding of the substrate PEP. Experiments using partially 
denatured PKM1 demonstrate that the monomeric and dimeric 
forms retain only a fraction of the PK activity observed with 
PKM1 as a tetramer (20).

On the other hand, PKM2 requires binding of an activator in 
order to trigger high enzymatic PK activity (Figure 1). PKM2 can 
be allosterically activated by multiple endogenous regulators that 
affect binding affinity of PEP to the active site on the enzyme. One 
such example is FBP, an upstream glycolytic intermediate (21). In 
the absence of FBP, PKM2 even as a tetramer has a low affinity 
for PEP. Binding of FBP to PKM2, at a site distinct to the active 
PEP binding site, will promote and stabilize tetramer formation 
of PKM2 as well as increase PEP binding affinity, making the 
kinetic parameters of PKM2 almost identical to those of PKM1.

In addition to FBP, other non-glycolytic metabolites, amino 
acids, and small molecules also affect PKM2 activity. The small-
molecules DASA 58 and TEPP 46 are highly specific activators 
of PKM2 (22–24). They bind to PKM2, at a site distinct from 
the FBP binding site, resulting in PKM2 forming a tight tetramer 
with PKM1-like kinetic properties, an event that is resistant to 
inhibition by tyrosine phosphorylation (see below). In cancer 
cells, as well as in activated macrophages, the increase in PKM2 
expression and the decrease in overall PK activity will allow for 
glycolytic intermediates to be channeled into production of, for 
example, serine and glycine (23). This increased metabolic flux 
into serine and glycine biosynthetic pathways is critical for cancer 
cell survival [for review, see Ref. (25)]. It is, therefore, not surpris-
ing that a link between serine abundance and PKM2 activity has 
been reported, where serine is shown to act as a natural ligand 
and allosteric activator of PKM2 (26) (Figure  1). In a similar 
manner, cellular accumulation of the de novo purine nucleotide 
synthesis intermediate SAICAR promotes cancer cell survival 
through interaction of SAICAR with PKM2 (27). Since SAICAR 
is synthesized as a by-product of glutaminolysis and can be 
cleaved to provide the TCA cycle with fumarate, this interaction 
allows for a potential mechanism to convey cellular metabolic 
demands to PKM2.

Death-associated protein kinase (DAPk) is a serine/threonine 
kinase with tumor suppressor properties that was identified as 
binding to PKM2 in a yeast-two-hybrid screen (28). The direct 
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binding of DAPk to PKM2 increases the PK activity of PKM2 and 
provides another means of regulating the cellular glycolytic rate.

PKM2 enzymatic activity can also be allosterically inhibited. 
Binding of phenylalanine to a site distinct from both the active 
site and the FBP binding site will decrease the affinity of PEP 
to PKM2 through stabilizing PKM2 in an inactive tetrameric 
form (29, 30). Alternatively, the same site can be occupied by 
alanine, a scenario that promotes dissociation of PKM2 into 
a less-active dimeric form. Moreover, the thyroid hormone 
triiodo-l-thyronine (T3) stabilizes an inactive monomeric 
form of PKM2, an inhibitory event that can be overcome by 
binding of PKM2 to FBP (31, 32). Furthermore, tyrosine phos-
phorylation has been reported as a mechanism for negatively 
regulating PKM2, thereby promoting tumor growth (33). This 
phosphorylation event on tyrosine 105 (Y105) disrupts tetramer 

formation of PKM2 by releasing FBP, thereby regulating the 
switch from oxidative phosphorylation to aerobic glycolysis. In 
addition, Y105 phosphorylation of PKM2 by nucleophosmin–
anaplastic lymphoma kinase (NPM–ALK) results in decreased 
enzymatic activity of PKM2 in anaplasic large-cell lymphoma, 
supporting a role for NPM–ALK in the regulation of metabolism 
(34). Another kinase important in regulating PKM2 activity in 
hepatocellular carcinoma is the proapoptotic enzyme JNK-1, 
which phosphorylates PKM2 at threonine 365. JNK-1 activity 
in turn is negatively regulated by poly(ADP-ribose) polymer-
ase (PARP)14, which thereby regulates Warburg metabolism, 
and promotes cell survival and tumor growth (35). A role for 
O-GlcNAc transferase regulating serine phosphorylation and 
O-GlcNAcylation levels of PKM2 in colorectal cancer has also 
been reported (36).
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Shikonin and its derivatives are also inhibitors of PKM2 
 activity (37, 38). Shikonin is a naturally occurring naphthoqui-
none isolated from the herb Lithospermum erythrorhizon and 
has been investigated as a potential anticancer drug. Shikonin 
and its analog alkannin showed promising selectivity toward 
PKM2, since they did not inhibit PKM1 and PKL activity at IC50 
to PKM2 (38).

Superfluous production of reactive oxygen species (ROS), 
commonly associated with cancer cells, requires detoxification 
by the tripeptide glutathione (GSH). GSH in turn is maintained 
in the cell by the reduced form of NADPH, which is provided 
by the PPP. This increase in intracellular ROS has been shown 
to be alleviated by the inhibition of PKM2 through oxidation of 
Cys358 (39). This inhibitory event will promote glucose flux into 
the PPP, providing the reducing power required for ROS detoxi-
fication and promoting cancer cell survival during conditions of 
 oxidative stress.

NON-GLYCOLYTiC PROCeSSeS

In addition to being an important control point in glycolysis, 
PKM2, upon mitogenic, oncogenic, and LPS stimulation, also 
translocates to the nucleus where it regulates the expression of 
numerous proglycolytic enzymes (Figure  1). In cells activated 
with EGRF, ERK2 binds directly to PKM2 and phosphorylates 
Ser37 on PKM2, leading to recruitment of peptidyl-prolyl cis–
trans isomerase NIMA-interacting 1 (PIN1). PIN1 aids binding 
of PKM2 to importin α5, thereby facilitating translocation of 
PKM2 to the nucleus (40, 41). Modification of PKM2 through 
sumoylation by the SUMO–E3 ligase as well as acetylation by 
p300 acetyltransferase will prevent binding of PKM2 to FBP and 
promote nuclear translocation (42, 43). A recent study proposes 
a role for sirtuin 6 (Sirt6) in regulating nuclear localization 
of PKM2. Sirt6 will bind and deacetylate PKM2 at lysine 433, 
thereby promoting nuclear export resulting in reduced cell pro-
liferation and oncogenic properties of PKM2 (44). Furthermore, 
enhanced tetramer formation of PKM2 using TEPP 46 and 
DASA 58 will prevent nuclear localization of PKM2 (23, 45). In 
addition, nuclear PKM2 has been linked to caspase-independent 
programed cell death (46).

In cancer cells, PKM2 has been shown to function as a coac-
tivator of hypoxia-inducible factor 1-alpha (HIF-1α) (Figure 1). 
HIF-1α is a key mediator of the Warburg effect and was originally 
identified as part of a family of transcription factors responsive 
under conditions of low oxygen or hypoxia. HIF-1α plays a criti-
cal role in the induction and maintenance of aerobic glycolysis, 
partly through inducing expression of glycolytic enzymes. Prolyl 
hydroxylase 3 (PHD3) acts as a cofactor to PKM2, promoting 
HIF-1α transactivation of target genes including lactate dehy-
drogenase (LDH), the glucose transporter GLUT-1, and pyruvate 
dehydrogenase kinase-1 (PDK-1) (47, 48).

Expression of Jumonji C domain-containing dioxygenase 5 
(JMJD5) has been linked to carcinogenesis and regulates PKM2 
activity by binding and preventing PKM2 tetramers to form, 
thereby blocking the enzymatic activity and promoting nuclear 
translocation (45). PKM2 together with HIF-1α and JMJD5 are 
then recruited to the HRE element of LDHA (Figure 1). PKM2 can 

also bind and regulate the activity of octamer-binding transcrip-
tion factor 4 (Oct-4), a protein important for the maintenance 
and regulation of undifferentiated stem cells (49).

Recent findings propose a role for nuclear PKM2 as a tran-
scriptional coactivator of c-Src-phosphorylated β-catenin as well 
as in promoting phosphorylation of histone H3 by PKM2 in 
EGFR-activated cells (50, 51) (Figure 1). Numerous other reports 
have confirmed the protein kinase function of PKM2, where 
PKM2 catalyzes transfer of phosphate from PEP to serine, threo-
nine, or tyrosine residues on target substrates. Phosphorylation 
of histone H3 suggests a critical role for PKM2 in the epigenetic 
regulation of gene transcription in the metabolic switch observed 
during Warburg metabolism, as well as in G1–S phase transition 
of the cell cycle (51). Furthermore, PKM2 may also regulate 
the cell cycle through phosphorylation of important cell cycle 
regulators, including Bub3 and myosin light chain 2 (MLC2), to 
initiate cytokinesis (52). Nuclear PKM2 directly phosphorylates 
STAT3 on tyrosine 107-promoting transcription of MEK-5 (53). 
However, recent data failed to demonstrate PKM2-dependent 
phosphorylation in vitro using either PEP or ATP as phosphate 
donors, questioning the role of PKM2 as a protein kinase (54).

PKM2 AS A New PLAYeR iN 
iNFLAMMATiON

Understanding the intricate interplay between cell signaling 
and metabolic pathways has emerged as an important focus of 
research in the field of cancer and, most recently, in inflammation.

Inflammation is a well-controlled process triggered by signals 
from damaged tissue or infection aiming to re-establish tissue 
homeostasis. It is a complex reaction that starts with activation 
of the “front-line” resident leukocytes (i.e., macrophages and 
dendritic cells) that leads to activation of surrounding microcir-
culation, and recruitment of neutrophils and other leukocytes to 
infected/damaged foci (55). Therefore, the inflammatory response 
is an energy-intensive process that involves a dramatic switch 
from a resting to a highly active metabolic state. This metabolic 
reprograming thereby directs nutrients to the efficient genera-
tion of ATP and synthesis of macromolecules that are required 
for the production of proinflammatory mediators, cytoskeleton 
rearrangement, and proliferation by immune cells. In this realm, 
it is not surprising that such highly active inflammatory cells 
undergo a metabolic shift from oxidative phosphorylation to 
aerobic glycolysis, resembling the well-described Warburg effect 
found in tumor cells. Indeed, it is becoming increasingly clear 
that metabolic enzymes and their regulators, initially implicated 
in the control of cellular metabolism, also display critical roles in 
regulating immune cell functions. Thus, immune cell metabolism 
has become a new attractive target area for the development of 
potential therapies for inflammatory diseases.

Although the full picture in cancer progression still needs to 
be resolved, increased expression of PKM2 has been reported 
in a wide range of tumors. Accumulating evidence suggests a 
central role of this protein in regulating the Warburg effect and 
many biological processes in cancer cells, including proliferation 
and survival [for review, see Ref. (56, 57)]. Emerging evidence 
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has also implicated PKM2 as critical regulator of immune cell 
metabolism and functions via regulating the Warburg effect, sup-
porting its potential role in the genesis of inflammation. It has 
been shown that the expression of PKM2 is strongly increased in 
LPS-activated macrophages, mainly in a less-active monomeric/
dimeric conformation and phosphorylated state (23, 58, 59). As 
mentioned above, the less active monomeric/dimeric form of 
PKM2 drives aerobic glycolysis, while the active PKM2 tetramer 
provides pyruvate for the TCA cycle. Thus, the expression PKM2 
in LPS-activated macrophages adds another piece to the puzzle 
of metabolic reprograming toward aerobic glycolysis in activated 
macrophages. Meanwhile, LPS-induced PKM2 translocates into 
the nucleus and forms a transcriptional complex with HIF-1α 
that directly binds to the IL-1β promoter gene and activates its 
transcription. This highlights the interplay between metabolic 
reprograming and control of gene expression in activated mac-
rophages induced by PKM2. Driving PKM2 into tetramer con-
formation with DASA-58 and TEPP-46 inhibited LPS-induced 
nuclear translocation and, subsequent LPS-induced expression of 
IL-1β and a range of other HIF-1α-dependent genes. Accordingly, 
macrophages lacking PKM2 also showed reduced expression of 
the HIF-1α-responsive genes Il1β and Ldha in response to LPS 
(23). Moreover, it was also demonstrated that PKM2 functions 
as a regulator of high mobility group box-1 (HMGB1) release 
by activated macrophages through interaction and activation of 
HIF-1α (58). HMGB1 is a ubiquitous nuclear protein that can be 
released by activated macrophages and act as a potent proinflam-
matory cytokine (60). The knockdown or inhibition of PKM2 
using shRNA or shikonin, respectively, markedly reduces the 
release of HMGB1 by activated macrophages (58). Additionally, 
activation of colorectal carcinoma cells with LPS results in an 
increased production of TNF-α and IL-1β in a PKM2/STAT3-
dependent manner. Mechanistically, LPS induces PKM2 nuclear 
translocation and binding to the STAT3 promoter, enhancing its 
transcription and subsequent activation (61). A recent report has 
also directly implicated a critical role for dimeric PKM2 in the 
hyper-inflammatory behavior of macrophages from coronary 
artery disease (CAD) patients (59). It was shown that nuclear 
translocation of dimeric PKM2 results in phosphorylation of 
STAT3 in LPS-activated CAD macrophages, boosting IL-1β and 
IL-6 transcription. Forcing PKM2 into tetramer conformation 
with ML265 prevented its LPS-induced nuclear translocation 
and STAT3 phosphorylation. Thus, PKM2 seems to be a critical 
regulator of expression and secretion of proinflammatory media-
tors, highlighting the possibility of targeting this protein in the 
treatment of inflammatory and infectious diseases.

Indeed, inhibition of dimeric PKM2 by shikonin conferred sig-
nificant protection of mice against LPS-induced endotoxemia (58). 
Furthermore, mice treated with TEPP-46 showed reduced produced 
of IL-1β in response to LPS and Salmonella typhimurium-induced 
production in vivo (23). In line with these observations, studies in 
recent years have reported increased expression of PKM2 in different 
inflammatory disorders. The expression of PKM2 in intestinal tissue 
was found at high levels in patients with Crohn’s disease and positively 
correlated with disease activity scores or serum inflammatory markers 
(62). Moreover, elevated levels of PKM2 were found in stool samples 
from patients with active Crohn’s disease, suggesting that this protein 

can be a useful non-invasive marker for inflammatory bowel disease 
(63, 64). In accordance with this, expression of PKM2 was progres-
sively increased in intestinal tissue of mice undergoing TNBS-induced 
colitis (62, 65). Finally, proteomic analysis revealed that PKM2 was 
one of the 33 over-expressed proteins found in synovial tissue from 
patients with rheumatoid arthritis (66). These findings indicate that 
PKM2 expression is upregulated in a multitude of inflammatory 
disorders. However, further studies are warranted to understand the 
regulatory functions of PKM2 on different inflammatory conditions.

PeRSPeCTiveS AND CONCLUSiON

During the past years, metabolism and immunology have existed 
as two distinct fields of investigation, but there is now a general 
consensus that they intersect at several points. The concept of 
metabolic reprograming as a mechanism to drive an inflam-
matory response has mainly focused on how an immune cell’s 
metabolic status can directly influence its activity and function. 
In recent years, PKM2 has emerged not just as a key regulator of 
metabolic reprograming but also as a key player in controlling the 
transcription of critical genes in cancer cells, and most recently, 
in immune cells.

The current strategy for the treatment of inflammatory diseases 
is fundamentally based on interrupting the production or action 
of mediators that orchestrate the host’s response to tissue injury. 
An ideal drug to treat inflammatory disease would be able to both 
turn off the inflammatory response as well as activate the resolu-
tion program, including the induction of neutrophil apoptosis 
and polarization of macrophages into M2 (alternatively activated 
or pro-resolution) phenotype. Notably, recent studies show that 
PKM2 regulates the expression of proinflammatory mediators, 
prevents apoptosis, and drives macrophage polarization toward 
M1 phenotype (23, 58, 61, 67–69), indicating the potential of this 
enzyme as a target for the development of anti-inflammatory and 
proresolutive therapies.

Furthermore, recent studies have unraveled a notable involve-
ment of PKM2 in controlling the transcriptional activity of HIF-
1α and STAT3 pathways during inflammation. The expression 
and enzymatic activity of PKM2 can be regulated at multiple 
levels, including transcription, posttranslational modifications, 
and allosteric regulation of conformational stability. Therefore, 
PKM2 represents a novel potential target for the development of 
anti-inflammatory drugs.
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