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The recent success of checkpoint blockade has highlighted the potential of immuno-
therapy approaches for cancer treatment. Although the majority of approved immu-
notherapy drugs target T cell subsets, it is appreciated that other components of the 
immune system have important roles in tumor immune surveillance as well and thus 
represent promising additional targets for immunotherapy. Natural killer (NK) cells are the 
body’s first line of defense against infected or transformed cells, as they kill target cells 
in an antigen-independent manner . Although several studies have clearly demonstrated 
the active role of NK cells in cancer immune surveillance, only few clinically approved 
therapies currently exist that harness their potential. Our increased understanding of NK 
cell biology over the past few years has renewed the interest in NK cell-based anticancer 
therapies, which has lead to a steady increase of NK cell-based clinical and preclinical 
trials. Here, the role of NK cells in cancer immune surveillance is summarized, and several 
novel approaches to enhance NK cell cytotoxicity against cancer are discussed.
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OveRview

Natural killer (NK) cells were identified in 1975 as a unique lymphocyte population that is clearly 
distinct from the other lymphoid lineages, such as T- and B-cells. NK cells were shown to differ from 
adaptive lymphocytes in respect to their morphology as well as in their capability to kill tumor cells 
without prior sensitization (1, 2). Since their discovery, research over the past 40 years significantly 
improved our understanding of the regulation of NK cells and has established several essential roles 
of NK cells during development in healthy individuals and during disease that can be therapeutically 
utilized.

Natural killer cells are the founding member of the innate lymphoid cell (ILC) family and are 
generally grouped based on their organ of development and tissue localization: we distinguish 
bone marrow-derived or adult conventional NK (cNK) cells, thymic-derived, fetal liver-derived, 
liver-resident, uterine-resident, and intestinal-resident NK cells. Adult cNK cells develop from the 
common lymphoid progenitor in the bone marrow in mice and humans and are considered the 
major NK cell subset responsible for tumor immune surveillance, albeit a role of the other subsets 
cannot completely be ruled out. During murine adult hematopoietic development, NK cell pre-
cursors are thought to be derived from a common innate lymphoid progenitor (CILP) and then 
mature through several progenitor stages into mature NK cells and migrate to several lymphoid 
and non-lymphoid tissues (3, 4). Peripheral NK cell maturation is then defined by the differential 
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expression of CD11b, CD27, and KLRG1. Immature NK cells 
are defined as CD11b−CD27+KLRG1− and mature NK cells as 
CD11b+CD27+KLRG1− (M1) or CD11b+CD27−KLRG1+ (M2) 
(4–6). These different subsets differ in their ability to lyse target 
cells and their ability to secrete cytokines (5, 6). The mature 
CD11bhighCD27−KLRG1+ NK cells are the dominant population 
in non-lymphoid organs except for the liver, where a distinct 
TNF-related apoptosis-inducing ligand (TRAIL)+CD49b−CD11
blow expressing population exists (7–9).

In contrast to murine NK cell development, the NK cell pre-
cursor populations in humans are currently not as well defined 
(10). Mature NK cells make up around 5–20% of peripheral 
blood lymphocytes. They are usually defined as CD3−CD56+ 
lymphoid cells and are subdivided into two major subpopula-
tions, CD56dimCD16+ and CD56brightCD16− cells. CD56dim NK 
cells are the dominant subset in peripheral blood and spleen, 
express perforin, and are the most potent one in killing cancer 
cells (11–13). CD56bright NK cells represent the main NK cell 
subset in lymph nodes and tonsils, lack perforin expression but 
are efficient producers of cytokines, such as IFN-γ, in response 
to the interleukins (IL)-12, IL-15, and IL-18. Thus, this subset is 
considered to be one of the key regulators of immune responses.

A major difference between NK and T cells is that NK cells 
can kill target cells instantly without needing prior sensitization, 
giving the adaptive immune reaction enough time to mount an 
antigen-specific immune response. Although the speed in which 
NK cells can kill infected or malignant cells is a big advantage 
when fast immune reactions are required, the ready-to-kill status 
of NK cells could be potentially dangerous for the body. Thus, 
NK cell activation is tightly regulated by activating the inhibitory 
receptors and the balance of the signaling through these recep-
tors dictates if NK cells kill their target cells or remain inactive 
(14, 15). To prevent autoreactivity, NK cells express MHC class-
I-specific receptors such as the killer cell immunoglobulin-like 
receptors (KIRs) in human, the lectin-like Ly49 dimers in the 
mouse, and the CD94–NKG2A heterodimers which exist on 
both, mice and humans. Binding of MHC-I molecules to these 
inhibitory receptors prevents cytolytic activity against healthy 
cells. During cancer progression, cancerous cells often decrease 
or even loose the expression of MHC-I on the surface, which 
allows them to evade T cell recognition and killing. However, 
loss of the MHC-I-mediated inhibitory signal on NK cells results 
in NK cell activation and cancer cell killing if no other inhibitory 
signals are active. In addition to the loss of inhibitory receptor 
signaling, NK cells can be directly activated by activating recep-
tors, such as NKG2D, NKp30, NKp44, NKp46, 2B4, DNAM-1 
(CD226), or CD16 (4, 6, 14, 16, 17). Although the ligands for some 
activating receptors have not yet been identified, it is currently 
believed that activating ligands are not expressed on healthy cells 
but are upregulated on diseased cells and that signaling through 
the activating receptors will dominate over the MHC-I-mediated 
inhibitory signaling. Besides the direct ligand–receptor interac-
tion, NK cell functions are as well modulated by several cytokines. 
NK cells can be activated through type I interferons, IL-2, IL-12, 
IL-15, IL-18, and IL-21, whereas suppressive cytokines, such as 
transforming growth factor (TGF)-β or IL-10, can render NK 
cells inactive (18).

Several different pathways exist through which NK cells kill 
their target cells. On the one hand, NK cells induce apoptosis 
in their target cells by releasing lytic granules, such as granzyme 
B and perforin, via the formation of a lytic immunological synapse 
between the NK and target cells (19). Released perforin induces 
membrane perforation allowing the secretion of granzymes 
into the intracellular space inducing either caspase-dependent 
or -independent apoptosis. Another mechanism to kill is the 
induction of the death receptor-mediated apoptosis pathway. 
Here, FasL and TRAIL expressed on NK cells bind to Fas and 
TRAIL receptor triggering target cell apoptosis. In addition, NK 
cell-derived TNF-α can as well induce target cell apoptosis.

Despite the majority of current NK cell-mediated anticancer 
therapies focus on the lytic capability of NK cells, the indirect 
antitumor immunity capacity of NK cells should not be disre-
garded. NK cells are known to regulate the innate and adaptive 
immune response through the secretion of various cytokines, 
chemokines, adenosine, and growth factors (20, 21). NK cell-
derived IFN-γ induces dendritic cell (DC) maturation leading to 
increased IL-12 production. IFN-γ as well induces the differentia-
tion of CD8+ T cells into cytotoxic T cells (CTLs) and promotes 
the differentiation of CD4+ cells into Th1 T cells, which in turn 
promote the CTL response. NK cells not only enhance immune 
responses but also dampen T cell responses by either killing DC 
or inhibiting CD8+ T cell responses directly through IL-10 secre-
tion. Our current understanding of the immune modulatory role 
of NK cells is, however, still limited and a better understanding 
will certainly open the door to novel NK cell-based immuno-
therapy approaches.

evidence for the importance of NK Cells in 
Anticancer immunosurveillance
An essential role for NK cells in human immune surveillance 
has been clearly established. Defects in human NK cell develop-
ment or effector functions result in recurrent viral infections 
and in an increased risk of cancer development (22). Probably, 
the best evidence for the role of NK cells in anticancer immune 
surveillance comes from an epidemiological 11-year follow-up 
cohort study among a Japanese general population: the study 
demonstrated that high cytotoxic activity in peripheral blood 
lymphocytes is associated with reduced cancer risk, whereas low 
activity is associated with increased risk to develop various types 
of cancer (23). Subsequently, several other studies found that high 
levels of tumor infiltrating NK cells are associated with favorable 
outcome in patients with colorectal carcinoma, gastric cancer, 
and squamous cell lung cancer (24). Indicative of an important 
role of NK cells in tumor control, cancer cells have developed 
several strategies to escape from NK cell recognition. Tumor cells 
can upregulate ligands for inhibitory receptors or secrete immune 
suppressive factors, including TGF-β, IL-10, prostaglandin E2, 
indoleamine 2,3-dioxygenase (Ido), and adenosine (25–29). 
Shedding of ligands for activating receptors represents another 
potential strategy by tumor cells to reduce the amount of activat-
ing ligands on the surface of tumor cells and/or induce NK cell 
desensitization (30–33). However, a recent report questioned the 
shedding mechanism as a way to invade the immune surveillance. 
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In the mouse model, Deng et al. demonstrated that a shed form 
of the mouse NKG2D ligand MULT1 can lead to boosting of NK 
cell activity (34).

Despite ample evidence that NK cells participate in the fight 
against cancerous cells, very few therapeutical approaches cur-
rently exist that are targeting NK cells. However, support for 
the potential of NK cells as therapeutic targets is coming from 
approved cancer cell-targeting therapies as several drugs have 
been recently demonstrated to additionally modulate NK cell 
activity. In the next section, I will review the effect of a few of 
such therapies.

Cancer Cell-Targeting Drugs with  
NK Cell-Modulating Activity
Noteworthy, many targets of current cancer therapies are 
expressed in cancer cells and immune cells. It is therefore not 
surprising that few cancer therapies not only impact on cancer 
cell survival and proliferation but also influence the immune 
system. But because the majority of cancer-targeting drugs 
is generally tested preclinically for their efficacy and safety in 
xenograft models that lack a functional immune system, this 
effect is often not apparent. Indeed, recent studies have shown 
that radiotherapy or chemotherapies, such as Ara-C, cisplantin, 
or 5-FU, can lead to increased expression of NK cell activating 
ligands and thus enhance NK cell recognition and killing (35). 
More recently, several precision medicine drugs have additionally 
been demonstrated to increase NK cell-mediated tumor killing 
(36, 37). The proteasome inhibitor bortezomib, currently suc-
cessfully used in the treatment of multiple myeloma, can induce 
the expression of ligands of NK cell activating receptors. Another 
example is the immunomodulatory (IMiD) drug lenalidomide, 
which is approved for the treatment of multiple myeloma and 
myelodysplastic syndromes (MDS). Besides having a direct 
effect on cancer cells and angiogenesis, lenalidomide modulates 
the immune response by increasing the NK cell number in the 
periphery. The exact mode of action of lenalidomide on NK cells 
is currently not clear. Several modes of actions have been pro-
posed. Lenalidomide might increase NK cell activation indirectly 
by upregulating ligands on tumor cells and induce the expression 
of NK cell stimulatory cytokines such as T cell-derived IL-2 or 
directly by lowering the threshold for NK cell activation (38, 39). 
A better understanding of the mode of actions of lenalidomide 
on NK cells will be certainly crucial to design rational combina-
tion therapies. This is highlighted by the fact that lenalidomide 
in combination with the anti-CD20 antibody rituximab can lead 
to increased efficacy in B cell malignancies by enhancing the 
antibody-dependent cell-mediated cytotoxicity (ADCC) effect, 
but the combination with dexamethasone inhibits the immune-
stimulatory effect of lenalidomide on NK cells, potentially via 
suppressing IL-2 production in CD4+ T cells (40–42).

However, cancer-targeting drugs not always enhance the 
activity of immune cells, but in some cases, have been reported 
to exert detrimental effects on the immune system. Ibrutinib is a 
novel irreversible inhibitor of Bruton’s tyrosine kinase that shows 
promising effects in the treatment of mantle cell lymphoma 
(MCL) and chronic lymphocytic leukemia (CLL). Rituximab in 

combination with chemotherapy is currently standard of care in 
CD20+ B-cell malignancies and thus a potential combination of 
ibrutinib with rituximab is attractive. However, recent studies 
demonstrated that ibrutinib actually antagonizes the ADCC 
effect of rituximab in CD20+ B-cell lymphoma due to Ibrutinib 
irreversible binding to IL-2 inducible tyrosine kinase (ITK), 
which is required for FcR-stimulated NK cell function (43, 44).

Another example is ruxolitinib, a small molecule inhibitor of 
the JAK 1/2/3 signaling pathway. Ruxolitinib is currently approved 
for the treatment of myelofibrosis (MPN). As several cytokines 
regulate NK cell development and function via the JAK/STAT 
signaling pathway, patients who were treated with ruxolitinib 
had drastically reduced circulating NK cell numbers. In vitro 
studies further demonstrated that ruxolitinib potently inhibited 
the cytokine-induced cytolytic activity of NK cells (45). However, 
importantly, NK cell depletion by ruxolitinib was reversible as the 
NK cell levels rose back to normal values in patients who stopped 
ruxolitinib treatment. Thus, when combined with NK cell-based 
immunotherapies, proper scheduling of therapeutic drugs will be 
crucial.

Clinical or Preclinical Therapies 
Augmenting NK Cell Function
Checkpoint Inhibitors
PD-1
Checkpoint inhibitors are currently the most promising 
approaches among immunotherapies. Treatment with anti-
CTLA4 or anti-PD-1 antibodies restores T cell activity in cancer 
patients and has resulted in durable tumor regression in some 
patients. And the combination of both checkpoint inhibitors 
was able to further enhance the therapeutic benefit significantly 
(46, 47). The expression of PD-1, however, is not restricted to 
activated and exhausted T cells but can be detected on subsets 
of other immune cells and even on melanoma cells (48–51). 
A  recent report demonstrated that NK cells from multiple 
myeloma and renal carcinoma patients expressed PD-1 on their 
surface and engagement of PD-1 signaling reduced their cytolytic 
potential (Figure 1) (50, 51). Treatment of patient-derived PD-1+ 
NK cells with an anti-PD-1 antibody (pidilizumab, CT-011) was 
able to increase NK cell-mediated killing of autologous cancer 
cells in  vitro (50). A recent phase II trial tested the efficacy of 
pidilizumab with rituximab in patients with relapsed follicular 
lymphoma and found that the combination is well tolerated 
and indicated favorable therapeutic effects when compared to 
rituximab single treatment (52). The therapeutic benefit of re-
invigorating PD-1+ NK cells in cancer patients is currently not 
well understood, and the major therapeutical effect is certainly 
due to re-activation of exhausted T cells. However, a contribu-
tion of NK cells to the observed therapeutic benefit cannot be 
excluded, especially in hematological malignancies, and thus 
warrants further investigation.

TIM-3
TIM-3, also known as HAVCR2, is another immune checkpoint 
receptor that is currently being tested in preclinical models for its 
potential to re-invigorate exhausted T cells in cancer patients (53). 
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FiGURe 1 | Clinical and preclinical therapies augmenting NK cells 
function. mAb (gray)-mediated blockade of the interaction between inhibitor 
receptors (in black) expressed on NK cells with the respective ligands on 
tumor cells (or suppressor cells) results in increased cytolytic potential of NK 
cells. ADCC therapy: binding of mAbs (red) to tumor-specific antigens (TSA) 
results in the activation of NK cells via the activation of the activating receptor 
CD16 (red).
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Resting T cells express low levels of TIM-3, and its expression is 
strongly upregulated in activated and exhausted T cells. Antibody-
mediated blockade of TIM-3 signaling was able to reverse the 
exhausted phenotype of CD4+ and CD8+ T cells in melanoma 
patients proving the inhibitory function of TIM-3 in T cells (54). 
Human tumor-derived CD8+ T cells often coexpress TIM-3 and 
PD-1, and preclinical studies in several murine tumor models 
demonstrated that the combination of TIM-3 and PD1 blocking 
antibodies can significantly increase the reversal of T-cell exhaus-
tion. Like PD-1, TIM-3 expression is not restricted to T cells but 
can also be detected on murine and human NK cells (55, 56). 
In contrast to T cells, where TIM-3 surface expression marks 
dysfunctional T cells, TIM-3 is expressed on virtually all human 
NK cells and is further upregulated on cytokine-activated NK 
cells (Figure 1). Thus, TIM-3 expression is regarded as a marker 
for mature NK cells. Currently, the functional role of TIM-3 on 
NK cells is highly controversial. Ndhlovu et al. recently demon-
strated that crosslinking of TIM-3 via anti-TIM-3 antibodies on 
the human NK cell line NKL or on human PBMC-derived NK 
cells significantly decreased their cytolytic ability (57). In stark 
contrast to these findings, Gleason et al. showed that activation 
of TIM-3 through the ligand Gal-9 actually increased the produc-
tion of IFN-γ in NK cells (58). A more recent report suggested 
that the discrepancy between these two studies might origin from 
the different experimental layout as well as by the fact that NK cell 
lines and NK cells from healthy donors have been analyzed (56). 
Therefore, they tested the effect of TIM-3 blockade on NK cells 
derived from advanced melanoma patients. da Silva et al. found 
that TIM-3 surface expression increases with the progression of 
the cancer, TIM-3+ NK cells display an exhausted phenotype and 
that high expression levels correlated with poor prognosis. More 
importantly, when TIM-3+ NK cells derived from melanoma 
patients were incubated with anti-TIM-3-coated beads, TIM-3 
activation resulted in modest, but statistically significant decrease 
in IFN-γ secretion and degranulation. In summary, the function 
of TIM-3 on NK cells is currently controversial, and more detailed 

studies on the role of TIM-3 on NK cells derived from cancer 
patients are required to fully understand the role and therapeutic 
potential of TIM-3 blockade in NK cell therapy.

NKG2A
The heterodimer CD94/NKG2A is another checkpoint inhibitor 
complex whose expression is shared between T and NK cells 
(Figure 1). Human CD94–NKG2A/C/E heterodimers recognize 
the non-classical MHC class-I molecule HLA-E in humans 
and Qa-1 in mice, which is expressed on many lymphoid cells 
(59). The NKG2A chain of the CD94/NKG2A receptor contains 
two immunoreceptor Tyr-based inhibitory motifs (ITIMs) in 
its cytoplasmic tail and HLA-E/NKG2A interaction results 
in a dominant inhibitory signaling event that causes a strong 
decrease in NK cell effector functions. Several solid cancer and 
hematological malignancies use the upregulation of HLA-E 
expression as an immune escape mechanism in order to evade 
killing by NK cells and T cells (60, 61). Therefore, the use of a 
blocking NKG2A antibody could be another useful addition to 
the steadily growing list of T/NK cell-targeting immunotherapy 
approaches. Monalizumab (previously IPH2201) represents 
such an anti-NKG2A checkpoint inhibitor and is currently 
under clinical investigation. In a phase I/II trial, monalizumab is 
currently being evaluated in head and neck cancer and ovarian 
cancer. Furthermore, the effects of the combination of monali-
zumab with ibrutinib (CLL, phase I/II), cetuximab (head and 
neck, phase I/II), and duvalumab (solid tumors, phase I/II) are 
currently investigated.

TIGIT and CD96
TIGIT, CD96, and CD226 (DNAM-1) belong to the same 
immunoglobulin family of receptors that interact with nectin 
and nectin-like proteins (16). Although all three receptors are 
expressed on NK cells and can bind CD155 and CD112, ligand 
binding is triggering different responses (Figure 1). CD226 is an 
activating receptor that is important for NK cell-mediated tumor 
surveillance and ligand binding increases the cytotoxic potential 
of NK cells against target cells (16). On the other hand, TIGIT 
and CD96 contain ITIM motifs in their cytoplasmic domains and 
are inhibitory receptors. Although CD155 present on tumor cells 
can induce CD226-dependent immunosurveillance, the expres-
sion of CD96 and TIGIT on the same cell can counterbalance 
CD226 activity. While activation of TIGIT on human NK cells 
inhibited in  vitro cell killing of target cells, antibody-mediated 
blocking of TIGIT significantly increased the cytolytic activity 
(62). Using CD96−/− mice, Chan et  al. recently demonstrated 
that loss of CD96 expression resulted in improved tumor control 
of methylcholanthrene (MCA)-induced fibrosarcoma and lung 
metastasis (63). Although blockade of TIGIT in vitro increased the 
cytolytic activity of NK cells, the improved antitumor response in 
CD96-deficient mice was dependent on IFN-γ production by NK 
cells. It is currently not clear why NK cells express simultaneously 
two inhibitory receptors on the same cell to counteract CD226 
activation, but data from the Smyth group indicate that the two 
receptors control different NK cell effector functions: TIGIT may 
predominantly inhibit the cytolytic potential of NK cells, whereas 
CD96 regulates the production of IFN-γ (16, 63). Future research 
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FiGURe 2 | Regulation of NK cell activity. CDK8-mediated  
STAT1–Ser727 phosphorylation inhibits the cytolytic activity of NK cells. 
Similarly, Cbl-b-mediated ubiquitinylation of the TAM receptor results in 
reduced perforin, granzyme B (red granules), and IFN-γ secretion. TGF-β 
signaling reduces as well NK cell effector function and leads to 
downregulation of activating receptors (dotted receptor).
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will unravel which of these two receptors should be inhibited to 
increase tumor surveillance in human patients or if inhibition 
of both receptors simultaneously will result in improved NK/T 
cell-mediated cancer cell control.

Killer Cell Immunoglobulin-Like Receptors
Natural killer cells express inhibitory KIRs that recognize self-
MHC class-I molecules to prevent cytotoxicity against host cells 
(Figure 1). As tumor cells express the same MHC class-I mol-
ecules than healthy tissue, the interaction between self-HLA on 
cancer cells with KIRs on NK cells reduces the cytolytic activity 
of NK cells against tumor cells (64–68). Therefore, KIRs represent 
an interesting class of targets for NK cell-specific checkpoint 
inhibition. Following this reasoning, a humanized KIR-blocking 
monoclonal antibody (mAb), IPH2101, has been generated and is 
currently tested in clinical trials. IPH2101 is specific against three 
inhibitory KIRs, namely, KIR2DL-1, -2, and -3, that are specific 
for all HLA-C molecules. Preclinical in  vitro and in  vivo stud-
ies demonstrated that IPH2101-mediated blockade of KIRs on 
human NK cells significantly increased cytolytic activity against 
tumor cells (69–71). Importantly, no sign of autoimmunity was 
observed in treated mice. Confirming the results of the preclinical 
studies, no severe side effects were observed in clinical phase I 
and phase II trials in patients with acute lymphoblastic leukemia 
or multiple myeloma (72–74). Although the current clinical trials 
using IPH2101 as a monotherapy did not demonstrate significant 
antitumor efficacy, based on the encouraging preclinical data of 
IPH2101 and the recent success of combining checkpoint inhibi-
tors, there is still hope that the rational combination with other 
drugs can lead to improved clinical antitumor responses. Potential 
combination partners could be the above described checkpoint 
inhibitors and other IMiD drugs, such as lenalidomide or NK cell 
activating cytokines.

Redirection of NK Cell Cytotoxicity via Biologics
Antibodies recognizing tumor-specific epitopes represent a 
highly efficient strategy to direct the cytolytic activity of NK 
cells against malignant cells. One approach that is currently suc-
cessfully used in the clinics is ADCC-based therapies. NK cells 
express the activating surface receptor CD16 (FcγRIIIA), which 
specifically binds the constant region (Fc) of immunoglobulin G 
(IgG) antibodies. The interaction between CD16 on NK cells and 
the Fc portion of a tumor-specific IgG antibody bound on cancer 
cells results in the activation of NK cells and subsequently killing 
of respective tumor cells (Figure  1). Currently, several ADCC 
therapies are tested in clinical trials or are already successfully 
used in the clinics, such as α-CD20, α-GD2, α-Her2, and α-EGFR 
mAbs. The current status of ADCC therapies were summarized 
in recent review (75). However, it is important to mention that 
CD16 is expressed not only on NK cells but also on activated 
myeloid subsets. Therefore, several hematopoietic lineages are 
likely to contribute to the observed therapeutic effects of ADCC 
(75). Besides mAbs, bispecific or trispecific killer engagers (BiKEs 
and TriKEs) are currently developed. These antibodies are able to 
target either one (BiKE) or two (TriKE) different antigens on the 
tumor cell and bind to another epitope of the CD16 receptor lead-
ing to improved NK cell-mediated ADCC effect [for a review on 

BiKEs and TriKEs, please see Wang et al. (75) and Kontermann 
and Brinkmann (76)].

Targeting Immune Suppressive Signaling
Transforming Growth Factor-β
Secretion of TGF-β by tumor cells or the tumor microenviron-
ment has copious effects on tumor progression and on the 
immune system (77). During cancer progression, TGF-β can 
play a key role in tumor immune escape. TGF-β levels are often 
increased in the serum of cancer patients and elevated levels cor-
relate with systemic inhibition of the immune system and poor 
prognosis (78, 79). Like CD8+ T cells, NK cells from patients 
with elevated TGF-β levels displayed reduced cytotoxicity and 
had reduced expression levels of the activation markers, NKG2D, 
NKp46, or increased expression of NKG2A (Figure 2) (28, 80). 
Ex vivo treatment of patient-derived NK cells with neutralizing 
anti-TGF-β mAbs was able to restore activating receptor expres-
sion, proliferation, and cytokine secretion (29). Coculture of 
healthy human NK cells with human ALL blasts reduced their 
cytolytic activity and IFN-γ production. This effect was mediated 
by ALL-derived TGF-β as an anti-TGF-β blocking antibody was 
able to rescue NK cell functions (28). In line with a direct effect 
of TGF-β signaling on NK cell receptor expression and NK cell 
function, in  vitro incubation of human NK cells with TGF-β 
resulted in downregulation of NKp30 and NKG2D, inhibition 
of IL-15 induced NK cell proliferation and IFN-γ secretion (81). 
Therefore, targeting TGF-β signaling in NK cells represents an 
attractive immunotherapy approach in cancer patients with 
elevated TGF-β levels. However, due to the many functions of 
TGF-β in normal tissue, cancer cells, tumor microenvironment, 
and immune cells, developing potent inhibitors with a low toxic-
ity profile is challenging (82, 83). Currently, several approaches 
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to inhibit TGF-β signaling are pursued to increase efficacy and 
limit toxicity in preclinical and in clinical trials with various 
successes. Approaches include ligand traps, antisense oligonu-
cleotides, receptor kinase inhibitors, and peptide aptamers (84). 
In summary, while it is currently to early to judge if anti-TGF-β 
immunotherapies will become reality, preclinical studies yielded 
enough convincing results that interference with the TGF-β 
pathway is able to increase NK cell (and T cell) effector functions 
to warrant further new drug development.

eXPLORATORY TARGeTS – THe NeXT 
wAve?

intracellular Targets
The majority of approved immunotherapies target surface 
receptors on immune cells via mAbs that either inhibit protein–
protein interactions between immune cells and other cell types 
(antagonistic antibodies) or activate target receptor on certain 
immune cells (agonistic antibodies). Whereas in cancer-targeting 
therapeutic approaches small molecule drugs dominate, this class 
of therapies is conspicuously missing or at least under-represented 
in current anticancer immunotherapy approaches. Targeting 
intracellular proteins via small molecules significantly extends the 
pool of potential novel immunotherapy targets. Different inhibi-
tory receptors often use the same intracellular pathways to relay 
their inhibitory signal into the nucleus. Thus, by inhibiting such 
pathways, it might be possible to therapeutically affect several 
inhibitory receptors at the same time via inhibiting one molecule. 
The phosphatases Src homology region 2 domain-containing 
phosphatase (SHP)-1 (PTPN6) and SHP-2 (PTPN11) are two good 
examples as several inhibitory receptors on T cells and NK cells 
have been shown to recruit SHP-1 and/or SHP-2 after activation 
(85). Of course, targeting intracellular pathways with such broad 
activity can come with a cost, in this case, the potential increase 
of toxicity. Other advantages of small molecules over biologicals 
are excellently summarized in a recent review (86). In this next 
section, I will discuss a few recently published molecules that play 
a role in the regulation of NK cell function and might represent 
potential future targets for NK cell-mediated immunotherapy.

Casitas B-Lineage Lymphoma Proto-Oncogene-b
Post-transcriptional modification of proteins, such as ubiquitina-
tion, is an important regulatory mechanism for the fine-tuning 
of several pathways. Recent studies demonstrated that the E3 
ligase Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b) is 
a key regulator of the immune response against cancer (87). Cbl-b 
is highly expressed in most murine and human immune cells, 
including T and NK cells. The importance of Cbl-b in antitumor 
immune response was discovered when Cbl-b-deficient mice 
spontaneously rejected several different tumors (88, 89). Tumor 
rejection was first considered to be mainly mediated by CD8+ 
T cells. However, a recent study elegantly demonstrated that Cbl-b 
also plays a key role in NK cell-mediated tumor control. Deletion 
or pharmacological inhibition of Cbl-b increased the cytolytic 
potential, proliferative capacity, and IFN-γ secretion of NK cells 
in  vitro (Figure  2) (90). More importantly, tumor growth and 

metastasis were significantly decreased in Rag2−/−Cbl-b−/− mice 
when compared to Rag2−/−Cbl-bwt mice. Antibody-mediated NK 
cell depletion and inactivation via anti-NK1.1 and anti-NKG2D 
antibodies, respectively, abrogated this antitumor response, 
identifying the NK cell lineage as the main mediator of the 
observed antitumor effect in these mice. Furthermore, NK cell 
activity was completely dependent on the catalytic domain of the 
E3 ligase of Cbl-b. Through an in vitro ubiquitinylation screen 
of 9000 human proteins, the authors then identified the TAM 
receptor tyrosine kinases AXL, TYRO3, and MER as targets of 
Cbl-b. Indeed, activation of TAM receptors on wild-type NK 
cells via the natural ligand Gas6 suppressed IFN-γ secretion 
in vitro, whereas Cbl-b-deficient NK cells were resistant to this 
inhibition. These date therefore indicate that TAM or Cbl-b is 
potentially suitable targets for NK cell-mediated immunotherapy. 
Indeed, Paolino et al. developed a highly selective TAM kinase 
inhibitor, LDC1267, which increased the lytic activity of NK cell 
against B16F10 melanoma cells in vitro and in vivo in an adoptive 
transfer mouse model. Furthermore, intra-peritoneal injection of 
LDC1267 resulted in a decrease of micro-metastases in mice that 
were injected with the syngenic tumor cell line 4T1. In summary, 
interference of TAM receptor activity represents an interesting 
novel immunotherapy approach. Alternatively, a small molecule 
inhibitor of Cbl-b potentially could increase NK cell and T cell 
effector function against cancer cells (87). It is currently unclear 
how toxic such a small molecule would be as Cbl-b is expressed 
in many hematopoietic cell types. However, Cbl-b-deficient mice 
are viable and do not show signs of severe autoimmunity, thus a 
therapeutic window might exist.

CDK8
Natural killer cell development and functions are tightly regu-
lated by several cytokines, such as IL-2, IL-12, IL-15, or type I 
interferons. The JAK/STAT pathway is playing a central role in 
relaying the effect of these different cytokines into the nucleus. 
IL-2 and IL-15 promote NK cell development and homeostasis 
mainly via activation of the transcription factor signal transducer 
and activator of transcription protein 5 (STAT5) (91, 92). On the 
other hand, STAT1 plays an essential role on the regulation of 
NK cell effector function (93). Type I interferon and IL12 induce 
STAT1 activation, resulting in increased cytotoxicity and IFN-γ 
secretion. Not surprisingly, therefore, deletion of STAT1 results 
in impaired NK cytolytic activity in  vitro and reduced tumor 
rejection in vivo, despite normal numbers of NK cells, whereas 
STAT5-deficient mice lack NK cells completely (94–96). The 
activity of STAT1 is mainly regulated post-transcriptionally. For 
activation and translocation of STAT1 into the nucleus, STAT1 
has to be phosphorylated at tyrosine 701 (Y701) by the Janus 
kinase JAK. A recent report demonstrated a role of STAT1–Ser727 
phosphorylation in the regulation of the lytic potential of NK cells 
(96). Resting NK cells showed a basal level of STAT1–Ser727 
phosphorylation, which increased after in vitro stimulation with 
either IFN-β or IL-12. Interestingly, in contrast to Y701 phospho-
rylation, Ser727 phosphorylation resulted in an inhibitory effect 
on NK cell activity, indicating that phosphorylation of STAT1–
Ser727 represents a negative feedback in activated NK cells loop 
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to prevent over-stimulation. Ex vivo isolated STAT1–Ser727A 
mutant NK cells had increased lytic potential against a range of 
tumor cell lines in vitro and secreted increased levels of granzyme 
B and perforin. In vivo, STAT1–Ser727A mutant mice showed 
increased anticancer immunosurveillance against the murine 
tumor lines B16F10, 4T1, and a v-abl transformed leukemic cell 
line. Through the generation of Rag1−/− STAT1–Ser727A mice 
that lack B and T cells but have NK cells, Putz et al. demonstrated 
that the antitumor effect was strictly dependent on NK cell activ-
ity. Interestingly, By contrast, the molecules mentioned above 
which limited both, the production of lytic granules and IFN-γ 
secretion, STAT–1Ser727 repressed perforin and granzyme B but 
induced IFN-γ secretion slightly. The authors then identified the 
cyclin-dependent kinase 8 (CDK8) as the kinase responsible for 
the phosphorylation of STAT1 as Ser727 (Figure 2). Knock-down 
of CDK8 reduced STAT-1–Ser727 phosphorylation and slightly 
increased target cell lysis in an in vitro killing assay. Thus, phar-
macological inhibition of CDK8 kinase activity might represent 
an attractive approach to augment NK cell-mediated anticancer 
immunosurveillance. Currently, the open questions are if the 
same effect will be seen in human NK cells and how toxic a CDK8 
inhibitor will be given the broad expression of CDK8. However, 
CDK8 therapy could potentially have another positive anticancer 
effect: CDK8 has been previously shown to be an oncogenic 
driver in colorectal cancer, breast cancer, and melanoma (97–99). 
Therefore, one could envision that CDK8 inhibitors, on the one 
hand, induce tumor cell death and, on the other hand, stimulate 
NK cell activity.

EZH2
The H3K27 methyltransferase enhancer of zeste homolog 2 
(EZH2) is essential for many biological processes, including 
the regulation of immune responses, and is overexpressed in 
several cancers. Therefore, the pharmacological targeting of 
EZH2 is an interesting approach for future immunotherapies 
(100, 101). A recent study demonstrated a role of EZH2 in NK 
cell development (102). Absence of EZH2 in human and murine 
hematopoietic progenitors resulted in an increased commitment 
to the NK cell lineage. In addition, EZH2−/− NK cells expressed 
higher levels of NKG2D, IL2Rα, IL7Rα, and the lytic proteases 
granzyme A and B. The negative regulation of NK cell develop-
ment and function by EZH2 was dependent on its methyltrans-
ferase activity as pharmacological inhibition of EZH2 resulted in 
a similar phenotype when compared to EZH2−/− NK cells. These 
data suggest that EZH2 inhibitors may not only have an effect on 
cancer cell growth and survival but potentially can augment NK 
cell number and function in patients. However, this remains to be 
tested as the above-mentioned study mainly focused on the effect 
of EZH2 on in  vitro NK cell differentiation, and little data are 
currently available on the effect on mature NK cells. Nevertheless, 
several studies are testing the efficacy of adoptive transfer of ex 
vivo expanded NK cells as an immunotherapy approach. Thus, 
it will be of interest if the inhibition of EZH2 during the NK cell 
differentiation/expansion phase can lead to an increase in cell 
number and augment the activity of NK cells.

CONCLUSiON

Although the ability of NK cells to kill malignant cells efficiently 
has been demonstrated several decades ago, the potential of NK 
cell-based immunotherapy is often questioned due to modest 
clinical responses of current therapies. Recent advances in our 
understanding of NK cell biology yielded already in promising 
new therapeutic approaches and continuous investigation of the 
mechanisms that regulate NK cell function will result in improved 
and more efficacious therapies in the future.

Many of the above described targets are not specific to NK 
cells, but often also function in other therapeutically interesting 
immune cells, such as T cells. Although the close relationship 
between NK and T cells makes if often difficult to identify 
how much of the therapeutic effect is due to NK cell activity, 
therapies that activate both effector cells are highly interesting 
as they are able to combine the therapeutic effects of both cell 
types (103). Until recently, only few experimental approaches 
existed to test the potential of NK cells in antitumor therapy. 
The most common and most feasible approach represented the 
antibody-mediated depletion of NK cells to investigate tumor 
growth in the presence or absence of NK cells. However, due 
to the lack of specific NK cell markers that can be targeted for 
depletion, it is often unclear if other cell types, such as T cells, 
have been affected as well. Recently, a novel NK cell-less mouse 
model has been established via the conditionally deletion of 
Mcl1 in NK cells (Mcl1fl/fl NCR1Cre) (104). As MCL1 expression 
is essential for NK cell survival, virtually no residual NK cell 
subsets in all anatomical locations tested have been detected. As 
NCR1 is expressed as well on a subset of ILC3 cells in the gut, 
this mouse models lacked all NK cells and NCR1+ ILC3 cells. 
Nevertheless, this genetically engineered mouse represents an 
attractive model to test the specific role of NK cells in various 
disease settings.

Natural killer cell therapy as a monotherapy is unlikely to be 
curative for most, if not all, cancer types and a critical parameter 
for successful NK cell therapies will be the choice of combination 
partners. Therefore, future studies that investigate the interaction 
of NK cells with the other components of the immune system will 
be crucial for the optimal design of combination therapies.

In summary, while the potential of NK cell therapy is currently 
still not entirely clear, the recent advances in our understanding of 
NK cells certainly have resulted in novel, promising approaches, 
and it is very likely that future discoveries will continue to improve 
the efficacy of NK cell-based therapies.
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