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Membranous nephropathy (MN), a major cause of nephrotic syndrome, is a non- 
inflammatory immune kidney disease mediated by IgG antibodies that form glomeru-
lar subepithelial immune complexes. In primary MN, autoantibodies target proteins 
expressed on the podocyte surface, often phospholipase A2 receptor (PLA2R1). 
Pathology is driven by complement activation, leading to podocyte injury and proteinuria. 
This article overviews the mechanisms of complement activation and regulation in MN, 
addressing the paradox that anti-PLA2R1 and other antibodies causing primary MN are 
predominantly (but not exclusively) IgG4, an IgG subclass that does not fix complement. 
Besides immune complexes, alterations of the glomerular basement membrane (GBM) 
in MN may lead to impaired regulation of the alternative pathway (AP). The AP amplifies 
complement activation on surfaces insufficiently protected by complement regulatory 
proteins. Whereas podocytes are protected by cell-bound regulators, the GBM must 
recruit plasma factor H, which inhibits the AP on host surfaces carrying certain polyan-
ions, such as heparan sulfate (HS) chains. Because HS chains present in the normal 
GBM are lost in MN, we posit that the local complement regulation by factor H may be 
impaired as a result. Thus, the loss of GBM HS in MN creates a micro-environment that 
promotes local amplification of complement activation, which in turn may be initiated 
via the classical or lectin pathways by subsets of IgG in immune complexes. A detailed 
understanding of the mechanisms of complement activation and dysregulation in MN is 
important for designing more effective therapies.

Keywords: membranous nephropathy, igG4, complement, alternative pathway, factor H, heparan sulfate, 
glomerular basement membrane

iNtrODUctiON

One of the major causes of idiopathic nephrotic syndrome in adults, membranous nephropathy 
(MN) is an immune kidney disease is mediated by IgG antibodies that form glomerular subepithelial 
immune complexes (1). Histologic hallmarks of MN are granular capillary loop deposits contain-
ing antigen, IgG, and complement, an expansion of the glomerular basement membrane (GBM), 
subepithelial electron-dense deposits, and podocyte foot process effacement, but little glomerular 
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inflammation. Clinically, MN presents as proteinuria and often 
nephrotic syndrome. The natural course of the disease is vari-
able. While some patients spontaneously remit, up to 40% of MN 
patients progress to end-stage renal disease over a period of 
5–10  years. Another one-third of MN patients have persistent 
nephrotic syndrome, often with secondary complications of 
hyperlipidemia and hypercoagulability (2).

The current paradigm for the pathogenesis of MN has 
emerged from studies of Heymann nephritis, a rat model closely 
recapitulating human MN (3). The central pathogenic events are 
the formation of subepithelial immune complexes, which activate 
complement, thereby causing complement-mediated podocytes 
injury and proteinuria. This article overviews the mechanisms of 
complement activation and regulation in MN. The author further 
posits that complement activation in MN is exacerbated by GBM 
alterations, which impair normal complement regulation.

iMMUNe cOMPLeXes, tArGet 
ANtiGeNs, AND ANtiBODies  
MeDiAtiNG MN

Membranous nephropathy has a heterogeneous etiology. About 
25% of cases, classified as secondary MN, are associated with 
autoimmune disease (most often lupus nephritis), infections, 
toxins, drugs, or malignancy. More common is primary (idi-
opathic) MN, now understood as an organ-specific autoimmune 
disease. Subepithelial immune complexes may form by several 
mechanisms (4). In secondary MN, immune complexes typically 
form when “planted antigens” extrinsic to the glomerulus become 
lodged in the subepithelial space and subsequently bind IgG anti-
bodies. The target antigens are not always known. An example is 
cationic bovine serum albumin (presumably of dietary origin) in 
pediatric MN (5).

Relevant to primary MN, in the paradigm established in rat 
Heymann nephritis models, an intrinsic antigen located on the 
podocyte cell surface binds antibodies, forming in situ immune 
complexes, which are shed subepithelially. In rats, megalin is the 
major target of antibodies induced by immunization with crude 
Fx1A antigen (6). In human disease, the first podocyte antigen 
identified is neutral endopeptidase (NEP), targeted in rare forms 
of alloimmune MN (7, 8). NEP-deficient mothers who are allo-
immunized during a previous miscarriage produce anti-NEP 
alloantibodies that cross the placenta and bind to NEP in the fetal 
kidneys, causing antenatal MN.

Primary MN is mediated by IgG autoantibodies target-
ing proteins on the podocyte cell surface. Phospholipase A2 
receptor (PLA2R1), a glycoprotein from the mannose receptor 
family, is targeted by autoantibodies in ~70% of patients with 
primary MN (9). Another 3–5% of patients with primary MN 
have autoantibodies targeting thrombospondin type-1 domain-
containing 7A (THSD7A), another podocytes glycoprotein (10). 
Additional autoantibodies to proteins expressed intracellularly by 
podocytes (aldose reductase, manganese superoxide dismutase, 
and alpha-enolase), possibly generated after the initial injury by 
inter-molecular epitope spreading, are variably present in MN 
(11, 12); their pathogenic significance remains uncertain.

How antibodies causing MN mediate glomerular injury is 
incompletely understood. Human IgG comprises four subclasses 
with different effector ability (13). Most often in primary MN 
(but rarely in secondary MN), IgG4 is the major subclass of 
antibodies forming subepithelial immune complexes. IgG4 
antibodies are non-inflammatory because they undergo dynamic 
Fab arm exchange, swapping half-molecules to form bispecific, 
functionally monovalent IgG4 (14). Relevant to the focus of this 
article, IgG4 does not activate complement (15). This poses the 
conundrum of how complement is activated in primary MN.

cOMPLeMeNt ActivAtiON iN MN

The complement system is a component of the innate immunity, 
which provides host defense against pathogens and is also impor-
tant for the clearance of immune complexes and damaged cells 
and for immunoregulation (16). However, excessive complement 
activation or insufficient regulation causes tissue injury in many 
autoimmune or inflammatory diseases (17). Kidney glomerulus 
is particularly sensitive to complement-mediated injury (18).

Overview of the complement cascade 
and effector Mechanisms
Activation of the complement cascade is initiated by three 
pathways (classical, lectin, and alternative) converging toward 
the generation of C3 convertases, which cleave C3 into C3a and 
C3b. Addition of C3b to C3 convertases generates C5 convertases, 
which cleave C5 into C5a and C5b, activating the terminal com-
plement pathway. C5b sequentially binds C6, C7, C8 and C9, 
forming C5b–9. Effector molecules produced by complement 
activation include anaphylatoxins (C3a, C5a) that recruit and 
activate inflammatory cells, opsonins (C3b, iC3b) that bind to 
target surfaces and promote phagocytosis, and the membrane 
attack complex (C5b–9), which lyses cells.

Complement activation plays a key role in the pathogenesis of 
MN (3, 19, 20). In human and experimental MN, C3 and C5b–9 
commonly accompany IgG in subepithelial deposits (21, 22). 
C3d, a stable product of C3b breakdown, is found in glomerular 
deposits of all MN patients, while C3c staining (detecting C3b/
iC3b) may be absent in patients with less proteinuria (23), pos-
sibly reflecting inactive disease. In this regard, glomerular C3c 
staining indicates ongoing complement activation while C3d is a 
marker of past complement activation (24). The urinary excretion 
of C3dg and C5b–9 correlates with disease activity in primary MN 
(25–27). In Heymann nephritis, proteinuria can be prevented by 
the depletion of C3 and also of C6 (28, 29), the latter implicating 
podocyte injury by C5b–9 as a major effector mechanism, as 
first shown in perfused rat glomeruli (30). Sublethal injury by 
C5b–9 triggers maladaptive changes in podocytes that disrupt the 
glomerular filtration barrier and cause proteinuria, reviewed in 
detail elsewhere (31–33).

classical Pathway
The classical pathway is initiated when C1q binds to immune 
complexes containing IgM or certain IgG subclasses. Consequent 
activation of C1r and C1s cleaves C4, eventually forming C4b2b, 
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FiGUre 1 | Alternative pathway amplifies complement activation on 
pathogen surfaces but not on host surfaces protected by 
complement regulatory proteins (crP). (A) C3b is continuously 
generated in fluid phase due to tick-over. C3b deposited on complement-
activating surfaces (such as microbes) binds factor B, which is cleaved by 
factor D to form the C3bBb convertase, thus amplifying C3b generation.  
(B) On the surface of host cells, such as podocytes, membrane-bound CRPs 
(illustrated by CR1) catalyze factor I-mediated proteolytic inactivation of C3b 
to iC3b and C3d. CR1 also accelerates the decay of C3bBb convertase, if 
present (dotted line). (c) The extracellular matrix, such as the normal GBM, 
contains heparan sulfate chains (green), which recruit factor H from plasma 
to inactivate surface-bound C3b in a manner similar to cell-bound CRPs.
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the C3 convertase of the classical and lectin pathways (LPs). 
Among human IgG subclasses, IgG3 and IgG1 strongly bind 
C1q and activate complement, while IgG4 does not (13). In 
antenatal alloimmune MN, complement-fixing IgG1 anti-NEP 
alloantibodies are associated with severe proteinuria, whereas 
IgG4 anti-NEP cause limited disease (34). Likewise, in active and 
passive Heymann nephritis, only complement-fixing subclasses 
(sheep γ1, rat IgG2b) induce proteinuria (28, 35).

Paradoxically, in primary MN, subepithelial immune com-
plexes contain predominantly (but not exclusively) IgG4 (36), 
which neither binds C1q nor activates complement. C1q staining 
in primary MN is absent (37) or weak, as detected using more 
sensitive staining (21). In patient sera, quantitative immunoas-
says of anti-PLA2R subclasses also show a prevalence of IgG4, 
which on average comprises ~50% of anti-PLA2R IgG (38). 
Smaller proportions of IgG1 (~9%) and IgG3 (~6%) are also 
found, which may be sufficient to activate the classical pathway, 
albeit inefficiently.

The role of IgG4 antibodies in MN – whether they are protec-
tive or pathogenic – remains a conundrum. In 5–10% of patients 
seropositive for anti-PLA2R1, IgG4 autoantibodies are negative 
(39). A unique case of recurrent MN features monoclonal IgG3-
kappa anti-PLA2R1, associated with glomerular C1q deposition 
(40). Therefore, IgG4 antibodies are not absolutely required 
for primary MN. Interestingly, IgG1 is prevalent in the earlier 
stages of primary MN, as in secondary MN, while IgG4 staining 
(inversely correlated with C1q) prevails at later stages of primary 
MN (41). This suggests that IgG autoantibodies undergo a sub-
class switch from IgG1 to IgG4 during disease progression, as a 
temporal model of IgG function proposes (42). If so, the classical 
pathway may be more important in early MN, while other path-
ways become dominant as disease progresses (43).

Lectin Pathway
The LP is initiated when mannan-binding lectin (MBL) or ficolins 
bind to patterns of carbohydrates present on pathogens or dam-
aged self, activating MBL-associated serine proteases to produce 
C2b4b. MBL binds to “G0” glycoforms of IgG that lack terminal 
sialic and galactose residues on the conserved N-glycan in the 
Fc region, activating the LP (44). IgG–G0 glycoforms comprise 
~25% of all IgG in normal human sera, but are increased in some 
autoimmune diseases (45). Glomerular deposition of MBL occurs 
in some MN patients (21, 46), suggestive of the LP activation. 
This is consistent with preliminary studies reporting that affinity-
purified anti-PLA2R1 IgG4 autoantibodies bind MBL, promoting 
C4 deposition (47). Further studies extending these investigations 
to other IgG subclasses and other pathways are needed to clarify 
the contribution of the LP to overall complement activation by 
anti-PLA2R1 autoantibodies.

Alternative Pathway
The alternative pathway (AP) is constitutively active at low 
levels. Slow spontaneous hydrolysis of the thioester bond of C3 
(“tickover”) generates C3(H2O), which in the presence of factors 
B and D produces C3(H2O)Bb, the initial C3 convertase of the AP. 
This cleaves C3 to C3b, unmasking the reactive thioester, which 
allows C3b to attach covalently to surfaces. Unless inactivated by 

complement regulatory proteins (next section), surface-bound 
C3b binds factor B, allowing cleavage by factor D to form C3bBb, 
the major C3 convertase of the AP. C3bBb cleaves additional C3 
molecules, generating more surface-bound C3b (Figure  1A). 
Through this positive feedback loop, the AP amplifies complement 
activation, even when C3b is initially produced by other pathways 
(48). Amplification is limited by the intrinsic instability of C3bBb, 
which decays when Bb dissociates irreversibly. Properdin stabi-
lizes surface-bound C3bBb, significantly extending its half-life 
(49). In addition, properdin tethered to surface-bound C3b or 
tissue glycosaminoglycans may direct AP activation by providing 
a platform for C3bBb convertase assembly (50–52).

Glomerular deposition of factor B found in MN biopsies pro-
vides circumstantial evidence that the AP is activated in disease 
(21). Moreover, MN was reported in a patient with C4 deficiency 
(53), in which the classical and LPs are not functional. In pre-
liminary studies, we evaluated the role of the AP in experimental 
MN in mice. Mice immunized with α3(IV) collagen NC1 domain 
develop subepithelial immune complexes and proteinuria, 
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recapitulating clinical and morphologic hallmarks of MN 
(54, 55). In factor B−/− mice, without a functional AP, glomerular 
C3c and C5b–9 deposition and proteinuria were prevented, while 
circulating and kidney-bound IgG were unchanged (56). These 
findings imply that the AP is required for complement activation 
and proteinuria in experimental MN.

cOMPLeMeNt reGULAtiON iN MN

Activation of complement, and in particular that of the AP, must 
be closely regulated to avoid damage to the host. This is achieved 
by cell-associated and fluid-phase complement regulatory pro-
teins (CRP).

cell-Bound complement regulators
Glomerular cells express several membrane-bound CRPs, which 
inactivate the C3/C5 convertases of all pathways in the immediate 
proximity of cell surfaces (20). These include decay-accelerating 
factor (DAF, CD55), which inhibits complement activation by 
accelerating the dissociation of all convertases, membrane cofac-
tor protein (MCP, CD46), which catalyzes the proteolytic inacti-
vation of C3b/C4b by factor I, and complement receptor 1 (CR1, 
CD35), which has both decay-accelerating and cofactor activity 
(Figure 1B). In addition, cells are protected by membrane-bound 
CD59, which inhibits the formation of C5b–9.

Studies of experimental MN demonstrate the protective role of 
membrane-bound CRPs. In active Heymann nephritis, comple-
ment activation and proteinuria are dependent on the formation 
of function-blocking antibodies to Crry (the rodent equivalent of 
human CR1) and CD59, which are present in crude preparations 
of Fx1A antigen used to induce disease (57). Anti-Fx1A antibodies 
used to induce passive Heymann nephritis also contain anti-Crry 
and anti-CD59 antibodies, which in  vitro inhibit complement 
regulation on rat podocytes, allowing complement activation via 
the AP (58, 59). Although autoantibodies to podocyte CRPs have 
not been described in human MN, staining for CR1 on podo-
cytes is decreased in MN and other glomerular diseases (60). 
An acquired loss of CR1 may increase podocyte susceptibility to 
complement-mediated attack.

Fluid Phase complement regulators: 
Factor H
The major regulator of the AP in the fluid phase is factor H, 
an abundant plasma glycoprotein is composed of 20 domains 
named short consensus repeats (SCRs). Factor H inhibits the 
AP by accelerating the decay of the C3bBb convertase and by 
catalyzing proteolytic inactivation of C3b to iC3b by factor I (61, 
62). These complement regulatory activities are mediated by the 
amino-terminal SCR1–4 of factor H (63), which are necessary 
and sufficient to inhibit the AP in the fluid phase.

Factor H also inhibits the AP on host surfaces carrying certain 
polyanions as markers of self. Factor H has two distinct hepa-
rin-/glycosaminoglycan-binding sites, located in the SCR7 and 
SCR19–20 (64), which recognize heparan sulfate (HS) chains in 

a tissue-specific manner (65). In addition, SCR20 binds specific 
sialic acid structures (66). Recognition of these host-specific 
polyanions enables factor H to discriminate between self and 
pathogen surfaces. Surface polyanions increase the affinity of fac-
tor H for surface-bound C3b, exposing its complement regulatory 
domains to inactivate C3b (67–69). Consequently, host surfaces 
coated by HS (or sialic acid) are complement non-activators 
because they recruit factor H effectively to inhibit the AP (70–72). 
In contrast, surfaces lacking these polyanions do not bind factor 
H, allowing complement activation and amplification. Impaired 
attachment of factor H to polyanions on glomerular endothelial 
cells, as a result of mutations or inhibitory autoantibodies, causes 
atypical hemolytic uremic syndrome, even though AP regulation 
in plasma is normal (73–76).

Loss of Glomerular Heparan sulfate in MN 
May impair Local AP regulation
Lacking protection from cell-bound CRPs (in contrast to 
podocytes), the GBM must recruit plasma factor H for local AP 
regulation. Putative ligands are HS chains attached to agrin core 
protein, which are particularly abundant in the normal GBM 
(77). Indeed, factor H (as well as its carboxyl-terminal domains 
SCR19–20) binds to glomeruli in a manner that can be inhibited 
by heparin, suggesting interactions with glycosaminoglycans 
(78). In functional assays, HS from the eye Bruch’s membrane 
inhibits the AP (79). Similarly, glomerular HS proteoglycans 
may recruit factor H to locally inhibit the AP in the GBM 
(Figure 1C).

A striking loss of HS chains from the GBM (detected by 
staining with mAb JM403) occurs in human MN, while staining 
for agrin core protein is unaltered (80). The loss of GBM HS, 
correlated with complement deposition and albuminuria, is reca-
pitulated in active and passive Heymann nephritis (81, 82). The 
underlying mechanism may be an upregulation of heparanase in 
glomeruli (83). Heparanase, a beta-d-endoglycosidase, is the only 
mammalian enzyme that degrades HS chains. Rarely expressed in 
normal tissues, heparanase is upregulated in various pathologic 
conditions (84). An upregulation of glomerular heparanase 
occurs in Heymann nephritis, which is prevented by C3 deple-
tion (85). Increased glomerular staining and urinary excretion of 
heparanase occurs in human MN (86).

We postulate that in MN, the acquired loss of glomerular HS 
chains would impair the ability of factor H to inactivate C3b 
deposited within the GBM (Figure 2A). Thus, alterations of the 
GBM composition in MN may lead to the local dysregulation 
of the AP. Similar to pathogen surfaces, the altered GBM would 
allow amplification of complement activation, which in turn may 
be initiated via the classical (or lectin) pathway by subsets of 
IgG1/IgG3 (or IgG–G0) in immune complexes. By itself, the loss 
of GBM HS appears insufficient to trigger sustained glomerular 
complement activation in the absence of glomerular immune 
complexes; for instance, glomerular C3c is absent in diabetic 
nephropathy despite the loss of GBM HS chains. Therefore, sub-
epithelial immune complexes and the local AP dysregulation may 
both contribute to complement activation in MN, synergistically 
and by distinct mechanisms.
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FiGUre 2 | Dysregulation of the alternative pathway in MN. (A) In MN, 
subsets of IgG1/3 or IgG–G0 in subepithelial immune complexes may 
activate the classical or lectin pathway. C3b thus generated attaches to 
nearby targets in the GBM or on podocytes. The loss of heparan sulfate in 
the GBM in MN impairs recruitment of factor H and inactivation of C3b. As a 
result, the altered GBM resembles a pathogen surface that promotes C3b 
amplification. (B) Therapy with CR2–fH fusion protein overcomes the effects 
of the AP dysregulation in MN. CR2–fH is targeted at sites of complement 
activation in the GBM where iC3b or C3d are present, thus restoring the local 
inhibition of the AP.
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cONcLUDiNG reMArKs: cOMPLeMeNt 
As A tHerAPeUtic tArGet iN MN

More specific and effective therapies for treating MN remain 
a significant unmet need (87). Current therapies for MN rely 
on non-specific immunosuppression with cytotoxic agents or 
calcineurin inhibitors (along with low dose steroids), which have 
toxic side effects and are sometimes ineffective (88). A more 
specific intervention, the depletion of B cells by rituximab (an 
anti-CD20 monoclonal antibody) has yielded promising results 
in small studies, though not all patients respond (89–91). Even 
when immuno-suppressive therapies work, pathogenic antibod-
ies persist for many months and cause additional injury. Clinical 
improvement is further delayed as the reduction of proteinuria lags 
behind immunological remission (disappearance of antibodies) 
by several months (92, 93). Complement inhibition may prevent 
further glomerular damage until pathogenic antibodies disappear.

There are few clinical studies of complement inhibitors in 
MN. Eculizumab is a humanized IgG2/IgG4 mAb that inhibits 

terminal complement activation by binding to C5 and prevent-
ing its cleavage. A randomized trial of eculizumab in MN did 
not show significant reduction in proteinuria after 16  weeks 
(94), perhaps because of an insufficient dosage regimen (20). Of 
note, blocking complement at the level of C5 does not affect the 
upstream C3 convertases. It is therefore possible that excessive 
glomerular C3 deposition may also interfere with the glomerular 
filtration function, independent of C5b–9 formation. In Cfh−/− 
mice (a model of C3 glomerulopathy, a kidney disease caused by 
the AP dysregulation), the ablation of C5 improves survival and 
reduces glomerular inflammation (mediated by C5a), but does 
not reduce proteinuria or glomerular C3 staining (95).

Therapeutic inhibition of the AP has the potential to limit 
amplification of complement activation, which may be beneficial 
in MN. Supporting this concept are our preliminary studies 
showing that the genetic ablation of factor B in mice uncouples 
subepithelial immune complexes from glomerular C3 deposi-
tion and proteinuria in experimental MN (56). Effective agents 
for systemic inhibition of the AP in  vivo include anti-factor B 
monoclonal antibodies and anti-sense oligonucleotides (96, 97).

Another attractive strategy would be to correct specifically 
the local dysregulation of the AP, which can be achieved by 
using complement inhibitors targeted to sites of complement 
activation (98). The poster child for this approach is CR2–fH, a 
fusion protein comprising a fragment of complement receptor 
2 (CR2) that recognizes C3b breakdown products (iC3b, C3dg, 
and C3d), linked to the complement inhibitory domains of factor 
H (99). CR2–fH reduces complement-mediated kidney injury in 
mouse models lupus nephritis and C3 glomerulopathy (100, 101). 
Because C3b breakdown fragments are deposited in the glomeruli 
in MN, CR2–fH can bind at these sites to inhibit the AP even in 
the absence of HS chains (Figure  2B). In summary, a detailed 
understanding of the mechanisms of complement activation and 
dysregulation in MN is necessary to inform the design of safer, 
more effective, and specific therapies.
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