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Immunological programing of immune cells varies in response to changing environmen-
tal signals. This process is facilitated by modifiers that regulate the translational fate 
of mRNAs encoding various immune mediators, including cytokines and chemokines, 
which in turn determine the rapid activation, tolerance, and plasticity of the immune sys-
tem. RNA-binding proteins (RBPs) recruited by the specific sequence elements in mRNA 
transcripts are one such modifiers. These RBPs form RBP–RNA complexes known as 
“riboclusters.” These riboclusters serve as RNA sorting machinery, where depending 
upon the composition of the ribocluster, translation, degradation, or storage of mRNA is 
controlled. Recent findings suggest that this regulation of mRNA homeostasis is critical 
for controlling the immune response. Here, we present the current knowledge of the 
ribocluster-mediated post-transcriptional regulation of immune mediators and highlight 
recent findings regarding their implications for the pathogenesis of acute or chronic 
inflammatory diseases.

Keywords: inflammation, stress granules, polysomes, mRNA stability, T cell maturation, thymic and peripheral 
tolerance

iNTRODUCTiON

The transcriptome of an immune cell is subjected to various stages of regulation in the nucleus and 
cytoplasm before being translated into proteins (1–5). In addition to the basic transcriptional and 
translational regulation, there exists an intermediate post-transcriptional regulatory (PTR) event, 
which programs the immunological response according to the changing environmental conditions. 
This PTR includes the various stages of regulation, including splicing, editing, translation, and decay 
of mRNAs. Gene transcription and nuclear processes leading to the formation of mature mRNAs 
in the nucleus are followed by nucleocytoplasmic mRNA trafficking and their exposure to a series 
of regulatory mechanisms in the cytoplasm. The various functions of dynamic ribonucleoprotein 
(RNP) complexes in coordinating these nucleocytoplasmic regulatory events have been shown to 
drive a plethora of immunological responses inside the cells (1–5). The first step in the nuclear 
post-transcriptional regulatory series is splicing, which involves intron removal and exon joining 
facilitated by spliceosome complex, formed from the “U” class of small nuclear RNPs (snRNPs). 
In some cases, splicing also includes a more complex event, the alternative splicing that involves 
the insertion or excision of specific introns, exons, or regulatory domains in the mature mRNA 
(6). This is mediated by different classes of RNA-binding proteins (RBPs), including heterogeneous 
nuclear RNPs (hnRNPs) and serine–arginine RBPs (SR RBPs) (7, 8). The second type of nuclear 
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TABLe 1 | Fate of transcripts determined by the interaction with specific 
RBPs.

Fate of 
mRNA

Subjected 
mRNA

RBP involved in interaction Reference

Stabilized IL-3 TTP (23)
IL-4 HuR (24)
IL-6 TTP and AUF1 (25, 26)
IL-8 KSRP (27)
IL-10 TTP (28)
IL-1β TTP (29, 30)
TNFα TTP, TIA1, FXR1, and HuR (17, 31–33)
GM-CSF TTP (34, 35)

Destabilized IL-3 TTP (10)
IL-8 TTP, AUF1, and AUF2 (10)
IL-10 TTP (10)
GM-CSF TTP and AUF1 (10)
TNFα TTP, AUF1, AUF2, TIA1, TIAR, and 

CUGBP1
(10)

COX2 TTP, AUF1, AUF2, BRF1, and BRF2 (10)
VEGF TTP (10)
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regulation is editing, which involves the alteration of the nucleo-
tide content of RNA and the subsequent protein translation. The 
most predominant form of RNA editing in mammals is aided 
by the adenosine deaminases acting on RNA (ADAR) family 
of double-stranded RNA-binding enzymes that are responsible 
for deamination of adenine to inosine (5). Once the functional 
mature mRNA transcripts exit the nucleus for translation in the 
cytoplasm, they are exposed to different classes of RBPs based 
on the mRNA’s cis-regulatory sequences. These RBPs aid in the 
careful orchestration of mRNA decay in stress granules (SG)/
processing bodies (P-bodies) or translation in polysomes, which 
collectively form an intricate post-transcriptional event (9).

Immune cells can sense and process a wide variety of extracel-
lular and intracellular stress signals via cellular stress sensors. 
Upon activation by cellular stress sensors, the α-subunit of 
eukaryotic initiation factor 2 (eIF2-α) is phosphorylated, result-
ing in the attenuation of active translational complex and poly-
some formation. This results in a pool of translationally stalled 
uncommitted mRNA transcripts, which then recruit specific 
RBPs. This recruitment is determined by the cis-acting regulatory 
elements, such as adenine–uridine-rich elements (AREs) at their 
3′-untranslated region (UTR), and forms a RNP complex known 
as a “ribocluster” (10). The RBPs in the “ribocluster” dictate the 
location and functionality of mRNAs, determining whether it will 
be translated or decayed (11). These processes are meticulously 
coordinated and intricately linked and depend upon the ability 
of RBPs to interact with the cis-elements, such as AREs at their 
3′-UTR of the mRNA transcripts (11, 12). The mRNA tran-
scripts of many immunological mediators, including cytokines 
and chemokines, have regulatory sequences, such as ARE at 
3′-UTR, which allow tight regulation and usage of mRNAs to 
fine-tune immunological responses as per the cellular require-
ment (13,  14). The emerging wealth of information regarding 
RBPs and riboclustering lends credence to its importance in the 
maintenance of immune homeostasis and programing of the 
immune response (14). This system has the potential to regulate 
a wide range of the immune response through the maintenance 
of equilibrium between synthesis and degradation of the mRNAs 
that drives immunological reactions, the innate inflammatory 
responses, immune cell fates, and adaptive host defenses. A bet-
ter understanding of riboclustering in regulating these integrated 
pathways might provide leeway toward a development of novel 
therapeutics. In this review, we present a survey of the current 
knowledge about riboclustering-mediated post-transcriptional 
regulation of immune mediators and further highlight recent 
findings regarding their implications in the pathogenesis of acute 
or chronic inflammatory diseases.

ALLieS iN RiBOCLUSTeRiNG

As introduced in the previous section, riboclusters of spliced 
mature mRNA transcripts and various RBPs control cytokine and 
chemokine mRNAs for either subsequent protein expression or 
exosomal decay (15). The assembly of these riboclusters is largely 
dependent on the 3′-UTRs (16), the binding of trans-factors like 
RBPs and non-coding RNAs, such as miRNAs. In this section, we 
discuss RBPs and cis-elements in more detail.

RNA-Binding Proteins
RNA-binding proteins, such as tristetraproline (TTP), T cell-
restricted antigen 1 (TIA1), TIA1-related protein (TIAR), 
ZCCHC11, Regnase-1 (also named Zc3h12a, Mcpip1), and ARE-
binding degradation factor 1 (AUF1), bind to specific cis-element 
sequences of cytokine and chemokine mRNAs to form RNP 
complexes (10). The various RNA-binding domains of different 
RBPs (14) that have been described so far include RNA recogni-
tion motifs (found in TIA1, TIAR, CUGBP2, AUF1, AUF2, and 
HuR), zinc finger domain (found in BRF1, BRF2, and TTP), 
and K homology domain [found in fragile X-related protein 1 
(FXR1P) and KH-type splicing regulatory protein (KSRP)] (14). 
Most of the RBPs are found to translocate between the nucleus 
and cytoplasm (17), and, therefore, riboclustering is hypothesized 
to dictate the cytoplasmic localization of the bound transcripts 
and thereby their fate. Various in vitro studies have shown that 
multiple RBPs gain entry onto an RNA transcript, suggesting 
a cooperative (18) or competitive (19) function by the RBPs to 
modulate the stabilization or destabilization of a common target 
transcript.

Adenine–Uridine-Rich elements
A few decades ago, clusters of AREs were identified at the 3′-
UTRs of newly cloned cytokine mRNAs transcript and were 
reported to regulate mRNA metabolism (20). The role of ARE 
in mRNA regulation was quickly confirmed by the decay of het-
erologous reporter transcripts fused to ARE sequences derived 
from the 3′-UTRs of granulocyte–monocyte colony-stimulating 
factor (GM-CSF) mRNA (21). These AREs can act as decisive 
cis-acting post-transcriptional gene regulatory elements (10). 
Table 1 provides an interaction profile of the ARE-bearing immu-
nological mediators and proto-oncogenes with specific RBPs. 
The basic structural components of these AREs are pentamers, 
nonamers, or clusters of adenine–uridine-rich repeats. These 
AREs can modulate the cytokine and chemokine levels in cells 
either independently or by recruiting different groups of RBPs. 
Table 2 shows the classification of AREs on the basis of sequence 
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TABLe 2 | Classification of ARe sequences on the basis of sequence 
features.

Class 
of ARe

Sequence feature  
of ARe

Position of 
ARe

examples of mRNAs 
bearing the ARe

Class1 Dispersed pentameric 
repeats of AUUUA

Within or near a 
U-rich region in 
3′-UTR

c-Myc and c-Fos

Class2 Overlapping non-americ 
repeats of AUUUAUUUA

Within or near a 
U-rich region in 
3′-UTR

GM-CSF and TNF

Class3 No distinct repeat 
sequences, U-rich region

3′-UTR c-Jun

The information is collected from the database of human ARE-bearing mRNAs created 
by Bakheet et al. (http://brp.kfshrc.edu.sa/ARED/) (22).
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information and destabilization kinetics. The information in 
the table is collected from the database of human ARE-bearing 
mRNAs created by Bakheet et  al. (http://brp.kfshrc.edu.sa/
ARED/) (22). This database also suggests that 8% of the mRNA 
transcribed from human genome bears AREs (22). Much later, 
it was found that various pro-inflammatory genes, such as those 
of cytokines, chemokines, and other pro-inflammatory proteins, 
undergo ARE-mediated decay (AMD) after being subjected to 
riboclustering (16). However, in the recent years, it has been 
pointed out that some of these mRNAs are not subjected to decay 
but rather are stabilized post-transcriptionally when bound to 
separate class of RBPs (14).

MeCHANiSM OF RiBOCLUSTeRiNG

Upstream Regulators involved in the 
Formation of Riboclusters
The endoplasmic reticulum (ER) is the site for the post- 
translational modification, folding, and sorting of proteins 
destined for the secretory pathway of the cell. Calcium disequi-
librium or disruption in post-translational modification leads to 
accumulation of misfolded or unfolded proteins in ER, resulting 
in ER stress, which can have negative implications on various 
cellular functions (36). Diseases, such as diabetes, cancer, and 
neurodegenerative disorders, are often associated with ER stress 
(37–41). ER stress triggers the activation of transmembrane 
signaling proteins, including activating transcription factor 6 
(ATF6), inositol-requiring protein-1α (IRE1α), and protein 
kinase RNA (PKR)-like ER kinase (PERK). This pathway helps 
to establish ER homeostasis by increasing chaperone expression, 
sequestering mRNAs from polysomes, and ER-assisted degrada-
tion (ERAD) of the misfolded proteins in the cytosol (42). During 
amino acid depletion, the intracellular sensor general control 
non-derepressible 2 (GCN2) gets activated by the accumulation 
of uncharged tRNAs, while HRI senses heme deprivation within 
the cell. As a part of the antiviral response, PKR gets activated by 
viral dsRNA, interferons, and growth factors (43). The four vital 
sensors of stress pathway, namely GCN2, PERK, PKR, and HRI, 
undergo activation by phosphorylation in response to the above-
mentioned stress conditions. Phosphorylated sensor molecules, 
in turn, phosphorylate eIF2-α (44) and prevent the recruitment 
of eIF2–GTP–methionyl initiator tRNA onto the 40S ribosomal 

subunit. This, in turn, leads to the translation initiation failure 
owing to stalled formation of 43S preinitiation complex and its 
subsequent binding to eI4F, and other factors required for the 
assembly of the active polysomes (44). Alternatively, nutrient 
deprivation or infection activates TSC proteins that negatively 
regulate the metabolic checkpoint control molecule mammalian 
target of rapamycin complex 1 (mTORC1). Upon deactivation 
of mTOR, eIF4E-binding proteins (eIF4E BP1 and BP2) are 
capable of inhibiting the formation of the preinitiation complex 
by preventing the interaction of eIF4F complex to the 5′ cap of 
mRNA (45). Thus, when cells are exposed to oxidative damage, 
infection, or nutrient deprivation, there is a transient decrease in 
global protein synthesis as a mode of adaptation to environmental 
stresses. This results in a pool of translationally stalled mRNAs 
and disintegrated translation machinery. These uncommitted 
mRNA transcripts then recruit specific RBPs, determined by the 
sequence elements in the regulatory domains, to form “riboclus-
ters” (10).

The composition of riboclusters is in constant flux, with some 
RBPs gaining or losing access during the mRNA’s journey from 
transcription to translation or decay. The RBPs in the ribocluster 
dictate the location and functionality of mRNAs as to whether it 
will be subjected to translation in polysomes, saved in a cache in 
SGs for further use, or otherwise decayed in P-bodies (11). All 
of these processes are highly coordinated and intricately linked 
and depend upon the ability of RBPs to interact with the regula-
tory sequences or structures present in the UTRs of the mRNA 
transcripts (11, 12). The presence of such regulatory sequences 
or elements in the mRNA transcripts encoding many immuno-
logical mediators, including cytokines and chemokines (13, 14), 
allows coordinated regulation and usage to tune immunological 
responses “on” or “off ” as per the cellular requirement.

The Downstream Process
In cells that are exposed to stress, various RBPs, such as TIA1 
and TIAR, interact with stalled mRNAs and propel translation 
preinitiation complexes to discrete cytoplasmic foci of SGs and 
P-bodies (46). P-bodies bear all the decay enzymes, including 
5′–3′ mRNA decay enzyme Xrn1, decapping enzyme, and oth-
ers (11). The sorted mRNA transcripts destined for translational 
arrest are delivered from the SGs to the P-bodies either for deg-
radation or temporary silencing. However, the RBP-mediated 
export of the mRNAs in the SGs from polysomes is reversible in 
nature (12). Higher concentrations of stabilizing factors, such as 
HuR, ensure the rescue of the transcripts from SGs and result in 
translation initiation, while increased recruitment of destabiliz-
ing factors, such as TTP, BRF1, BRF2, and others, leads to SG 
formation and subsequent mRNA decay (13, 47). TIA1 has been 
found to coprecipitate with KSRP from the TNFα ARE (14), 
which may explain the temporal sequence of events involved 
in post-transcriptional regulation of the TNFα mRNAs. After 
being bound to TIA1/TIAR, TNFα mRNAs are removed from 
polysomes and are targeted for decay within the P-bodies in 
association with KSRP (48). Figure 1 shows the current under-
standing of the mechanism that connects the stress pathway and 
post-transcriptional regulation of immunological mediators, 
including cytokines and chemokines.
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FiGURe 1 | The link between integrated stress pathway and riboclustering. General control non-derepressible 2 (GCN2), PKR-like endoplasmic reticulum 
kinase (PERK), protein kinase RNA (PKR), and heme-regulated initiation factor 2-alpha kinase (HRI) stress sensors get activated when the cell is subjected to 
specific stress conditions. PERK senses endoplasmic reticulum stress caused by misfolded or unfolded proteins, GCN2 senses accumulation of uncharged tRNAs 
under conditions of amino acid unavailability, and the HRI molecule senses heme deprivation within the cell. PKR gets activated by viral dsRNA, interferons, and 
growth factors. Upon activation, these sensor molecules undergo phosphorylation, which subsequently phosphorylate eukaryotic initiation factor 2-α (eIF2-α), 
preventing the recruitment of eIF2–GTP–methionyl initiator tRNA onto the 40S ribosomal subunit. This, in turn, leads to the translation initiation failure owing to 
retarded GTP–GDP exchange and stalled formation of 43S preinitiation complex. In cells exposed to stress, RBPs, including T cell-restricted antigen 1 (TIA1) and 
TIA1-related protein (TIAR), bind to stalled mRNAs and propel preinitiation complexes of translation to stress granules (SGs) for temporary silencing. The sorted 
mRNA transcripts, destined for translational arrest, are delivered to the processing bodies (P-bodies) for degradation using decay enzymes like 5′–3′ mRNA decay 
enzyme Xrn1, decapping enzyme, and others. RBP-mediated export of the mRNAs in the SGs from polysomes is reversible. Higher concentrations of stabilizing 
factors, such as HuR, ensure rescue of the transcripts from SGs leading to translation initiation, while increased recruitment of destabilizing factors, such as TTP, 
BRF1, and BRF2, leads to SG formation and subsequent mRNA decay in P-bodies.
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RiBOCLUSTeRiNG iN iNNATe iMMUNiTY: 
iNiTiATiON, PeRPeTUATiON, AND 
ReSOLUTiON OF iNFLAMMATiON

The immune system has to respond to invading pathogens by gen-
erating a pro-inflammatory response, which eventually has to be 
suppressed, allowing a return to homeostasis. In response to such 
changing immune microenvironments, riboclusters change their 

composition and cytosolic locations in the responding immune 
cells, and thereby play essential roles in driving the initiation 
through the resolution phase of inflammation by a prudent bal-
ancing of the pro-inflammatory and anti-inflammatory cytokines 
and chemokines. Pathogen products, such as lipopolysaccharides 
(LPS), dsRNA, and flagellin, are recognized by pathogen- associated 
molecular patterns (PAMPs) or PAMP-recognizing receptors 
(PRRs). Common PRRs, such as toll-like receptors (TLRs) and 
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NOD-like receptors (NLRs) (49–51), are present on/in immune 
cells, such as antigen-presenting cells (APCs). These receptors 
subsequently initiate a set of signaling cascades culminating in 
the activation of different transcription factors, such as nuclear 
factor kappa B (NF-κB), activator protein-1 (AP-1), interferon 
regulatory factors (IRFs), and CCAAT/enhancer-binding protein 
β (C/EBPβ) (52). The activation of different transcription factors 
is marked by an elevation in mRNA transcripts encoding for 
pro-inflammatory cytokines, such as IL-1β, IL-6, and TNFα (52).

Activation of these PRRs also triggers riboclustering via the 
p38-mitogen-activated protein kinase (MAPK) pathway, which 
phosphorylates TTP at specific serine residues (Ser 52,178) 
(53). Phosphorylation of TTP reduces its binding to cytokine 
mRNAs, allowing these mRNAs to be translated. The rever-
sion of TTP from its inactive phosphorylated state to its active 
(i.e., mRNA-destabilizing) dephosphorylated state is prevented 
by the recruitment of the 14-3-3 protein, which blocks the 
interaction of TTP with decay enzymes and phosphatase 2α, 
thus retaining its phosphorylated state (54). Alternative to the 
p38-MAPK signaling pathway, several other pathways have been 
identified in the regulation of cytokine expression, such as TNFα. 
Initiation factor eIF4G-mediated recruitment of Mnk1 (MAPK 
signal-integrating kinases) onto the 5′ cap-binding protein eIF4E 
results in phosphorylation and inactivation of translation silencer 
hnRNPA1, which regulates TNFα expression. This is manifested 
in the release of TNFα mRNA from hnRNPA1, followed by cap-
dependent translation initiation of TNFα upon triggering of this 
pathway (55–57).

In an analogous pathway, signals from growth factor activate 
the PI3-kinase pathway, which then activates protein kinase B/
AKT, which in turn phosphorylates the secondary modifiers 
BRF1 and KSRP. Phosphorylated BRF1 and KSRP phosphorylate 
TTP, as in the case of the p38-MAPK pathway. Upon phospho-
rylation, the TTP loses its ability to bind to cytokine mRNA, such 
as IL-3, thereby resulting in the stabilization and translation of 
IL-3, a major cytokine in hematopoiesis (58, 59). Figure 2 gives 
an overview of the signaling pathways involved in this process.

These pathways control the cytokines involved in the resolution 
of inflammation and maintenance of tissue homeostasis mainly 
through the production of anti-inflammatory mediators, such as 
IL-4, IL-10, and TGFβ (60). The decay of the pro-inflammatory 
cytokine mRNAs is another essential determinant of inflamma-
tory inactivation (60) and is promoted by the dephosphorylation 
of either the destabilization factor, TTP (53, 61), or that of the 
secondary modifiers BRF1 and KSRP. Once dephosphorylated, 
they tether to the subjected mRNAs leading to their sequestration 
to the SGs or P-bodies from the cytosol.

The importance of TTP is illustrated by the fact that TTP knock-
out mice are highly susceptible to severe inflammatory challenges 
marked by chronic lung and joint pathology, dermatitis, cachexia, 
and myeloid hyperplasia (60). However, these conditions can be 
ameliorated by blocking pro-inflammatory mediators TNFα, 
CCL3, IL-23, and IL-17 (62–66). Translational silencers TIA1 
and TIAR stall formation of translation preinitiation complexes 
and propel the arrested pro-inflammatory mRNAs from the poly-
somes to the SGs or P-bodies for degradation (9). Thus, deletion 
of TIA1 results in aggravation of syndromes in TTP-deficient 

mice (67). Furthermore, this pathway of mRNA homeostasis can 
be controlled by the anti-inflammatory cytokines IL-4, IL-10, and 
TGFβ, which promote TTP expression (68–70).

Besides TTP, dephosphorylation of Regnase-1 protein is also 
involved in the destabilization of inflammatory cytokine mRNA, 
such as IL-6. Upon TLR activation, Regnase-1 gets phosphoryl-
ated and deactivated in a similar manner to TTP. While in resting 
condition or anti-inflammatory state, dephosphorylation results 
in the activation of Regnase-1, allowing it to gain access to the 
3′-UTR of IL-6 mRNA and subject the latter to decay (71). 
Similarly, AUF1 is reported to form dimers and bind to AREs 
of pro-inflammatory mRNAs (72). Knockout studies show that 
AUF1-deficit mice are susceptible to acute and chronic inflam-
matory dermatitis because of high levels of pro-inflammatory 
cytokines. This clearly indicates that AUF1 is a crucial regulator of 
the immune response that attenuates the translation of selective 
pro-inflammatory cytokine transcripts (29, 73).

Other destabilizing factors, such as Roquin proteins 1 and 2, 
not only target the ARE sequences of the mRNAs but also bind to 
the constitutive decay elements (CDEs) of TNFα mRNA resulting 
in its exonucleolytic decay as mediated by TTP in ARE-mediated 
(AMD) (74). Indeed, knockout experiments suggest that mice 
lacking Roquin proteins are highly susceptible to TNFα-mediated 
inflammatory syndromes (75, 76).

Viral ssRNA and dsRNA are detected by the intracellular 
receptors TLR 7/8 and TLR 3/9, retinoic acid-inducible gene-I 
(RIG-I), melanoma-differentiation-associated gene 5 (Mda-5), 
and DHX33 [DEAH (Asp–Glu–Ala–His) Box Polypeptide 33], 
respectively (49, 77, 78). This interaction results in the production 
of interferons, which initiate several antiviral processes inside 
the cell. Interferon activates PKR, which triggers shut down in 
host translation through blockage of eIF2 (79). It also induces 
ADAR enzymes to control the translation or decay of the existing 
mRNAs by ARE-mediated post-transcriptional regulation (5).

Certain RBPs can both repress and de-repress inflammatory 
mechanisms, depending on the RNP configurations with which 
they are associated at a certain point of time. For example, the 
RBP HuR was initially thought to be a stabilizing RBP in the 
context of ARE-bearing mRNAs. However, mice lacking HuR are 
more prone to hypersensitive immune disorders due to increased 
levels of ARE-bearing pro-inflammatory molecules, which sup-
port a destabilizing role of HuR (18, 80). However, HuR can play 
both pro-inflammatory as well as anti-inflammatory roles (80), 
since HuR and TIA1 cooperatively inhibit translation of pro-
inflammatory cytokines, such as IL-1β and TNFα (18). On the 
other hand, HuR has been found to inhibit AMD by TTP and 
AUF1, while itself acting synergistically with TIA1 in promoting 
such decay process (18).

Additionally, other translational blockades are activated 
inside the cell in cooperation with RBPs that drive the anti-
inflammatory processes. When pro-inflammatory modulators 
reach a critical concentration; they drive autocrine and paracrine 
regulatory pathways. For instance, IFNγ directs diversion of 
ribosomal protein L13a onto GAIT (IFNγ-activated inhibitor 
of translation) elements of mRNA transcripts, such as CCL22, 
CXCL13, and CCL8, and curbs their translation (81–83). 
Moreover, the equilibrium between the inflammation and tissue 
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FiGURe 2 | Riboclustering-mediated signaling pathways that regulate innate inflammatory modulators, including cytokines/chemokines. There are 
two dominant pathways that mediate the process. Toll-like receptors (TLRs) bind to specific ligands, get activated, and induce p38-mitogen-activated protein kinase 
(MAPK) pathway via nuclear factor (NF)-κB pathway signaling intermediates. On the other hand, the growth factor receptors activate phosphatidylinositol 3-kinase 
(PI3K), activating protein kinase B (PKB/AKT), which phosphorylates BRF and KSRP. Both pathways contribute to post-transcriptional regulation of cytokine/
chemokine mRNAs. Upon phosphorylation by either of the above pathways, TTP gets inactivated and looses access from the 3′-UTRs of the mRNA transcripts, 
freeing them from SGs and allowing their translation, resulting in inflammation.
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homeostasis is maintained in part by the serine/threonine protein 
kinase B (Akt)/mTOR pathway (84). For example, during infec-
tion with virulent L. pneumophila (85), mTOR-activating kinase 
Akt gets degraded, and TSC proteins are released, culminating 
in the inhibition of mTORC1-mediated translation while pro-
inflammatory cytokines are readily translated (85). By contrast, 

during infection with avirulent L. pneumophila, mTOR complex 
1 (mTORC1) is activated by loss of TSC proteins, resulting in 
increased synthesis of immunoregulatory molecules and decay of 
mRNAs encoding for pro-inflammatory factors (86). The ability 
of mTOR to regulate translation inhibition and elevated expres-
sion of pro-inflammatory cytokines may be due to ARE-BPs. 
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Indeed, metabolic alterations that activate AMP-activated protein 
kinase can inhibit mTOR-related translation and destabilize 
RBPs (87, 88). Furthermore, the inactivated mTOR was still able 
to bind to the destabilizing RBP TIAR, thus leaving the 3′ARE 
sequences in the mRNA unoccupied (89). This renders the 
cytokine mRNAs to be ready for translation and could explain 
their higher concentrations in the absence of active TOR in the 
cell. Thus, the interactions with different ARE-BPs may be crucial 
in this mTOR-mediated counterbalance between perpetuation 
and repression of inflammation.

RiBOCLUSTeRiNG AND OTHeR POST-
TRANSCRiPTiONAL MODiFiCATiONS iN 
ADAPTive iMMUNiTY

Alongside the innate responses, the adaptive arm of the immune 
system plays a crucial role in the immune response. RBP-mediated 
riboclustering and other PTRs have been noted to be critical 
for maturation, selection, activation, and tolerance of adaptive 
immune cells. Although its role in B cell biology is not well stud-
ied, its role in the genesis and generation of T cell responses has 
been well-described. Below, we focus on some of these aspects.

T Cell Maturation and Thymic Tolerance
In the thymus, progenitor T cells develop into naive T cells 
via sequential developmental stages from CD4−/CD8− double 
negative (DN) T cells to CD4+/CD8+ double positive (DP) T 
cells, and finally to lineage-specific naive T cells with rearranged 
T cell receptor (TCR) αβ or γδ receptors. Each of these events is 
controlled in part by RNP complexes regulated by Notch–Delta 
and pre-TCR signaling. In developing thymocytes in the thymic 
cortex, Notch mRNA is controlled by AMD imposed by two TTP 
variants, ZFP36L1 and ZFP36L2 (90). Before the replacement of 
Notch receptor by a pre-TCR receptor, ZFP36L1 and ZFP36L2 
are subjected to Notch signaling induced phosphorylation (59). 
During the rearrangements of pre-TCR β receptor mRNAs, 
the upstream frame shift proteins (Upf1 and 2) are involved in 
removing the unfolded or misfolded variants (91, 92). Ribosomal 
protein S6, a major substrate of mTOR, also plays a major role 
in this process as S6-deficient mice exhibit blocked transition of 
DN to DP thymocytes due in part of the inability to counteract 
p53-mediated genotoxic shock resulting from the lack of func-
tional ribosomes (93). The successful transcription of the TCRα 
gene in DP cells is critical for the development of T cells, allowing 
expression of the complete receptor for lineage committed naive 
T cells and allowing them to leave the thymus to participate in 
the immune response in the periphery. TCRα gene transcription 
is attenuated by the splicing functions of CUGBP family of RBPs 
(94). Upon induction by pre-TCR signaling, the CUGBP family 
protein CUGBP Elav-like family member 2 (CELF2) cause rear-
rangements in the lymphoid enhancer-binding factor 1 (LEF1) 
transcription factor mRNA, allowing LEF1 to bind to the enhancer 
region of the gene encoding TCRα in the DP cells, leading to the 
development of the final mature TCR αβ complex (94).

T cells with mature TCR also bear CD3 receptor complexes, 
which transduce TCR signals from antigen-bound major 

histocompatibility complex (MHC). The strength of TCR–MHC 
interaction along with co-stimulation from the other accessory 
surface proteins guides the selection of non-self-reactive CD4+ 
or CD8+ cells (positive selection), or elimination of self-reactive 
CD4+ or CD8+ cells (negative selection) in the thymus. These 
intricately orchestrated selection processes are regulated at 
multiple stages by RBPs. The CD3ζ chain is the major signaling 
subunit of the CD3 receptor complex of the TCR. Proper splic-
ing of CD3ζ pre-mRNA is essential for effective TCR signaling, 
since improperly spliced CD3ζ mRNA lacking either a part of the 
coding region or a part of their 3′-UTR cannot recruit HuR, and 
the mRNA becomes prone to degradation. In the absence of func-
tional CD3ζ, the TCRαβ cannot deliver the proper signal required 
for T cell thymic selection, resulting in the removal of the T cell 
(95). CD3 chains also interact with ZAP 70, a TCR-associated 
kinase, which is phosphorylated by Lck, a receptor-proximal 
Src kinase. Lck is in turn activated by transmembrane tyrosine 
phosphatase CD45, which dephosphorylates the C-terminal 
inhibitory tyrosine residue (Tyr505) on Lck (96). CD45 exists in 
various alternatively spliced isoforms with different functions. 
The shorter isoform CD45RO is the less active isoform on the 
surface of immature T cells, while the longer one is the fully 
functional variant CD45RB and is expressed on the mature CD4 
and CD8 T cells. Serine/arginine-rich RBPs, arginine/serine 
splicing factor (ASF) and SRSF2, and the heterogeneous nuclear 
RNP hnRNPL are primarily responsible for alternative splicing of 
the CD45 pre-mRNA (97–99). The knockout experiments have 
identified that RBP HuR plays crucial role in TCR signaling by 
differential targeting of the mRNAs with AREs (100). The HuR-
deficit cells and hnRNPL-deficient cells show similar phenotypes 
in the migration of mature T cells from thymic cortex to the 
medulla and finally into the peripheral circulation (99, 101), sug-
gesting that this pathway also regulates the export of T cell from 
the thymus to the periphery. Figure 3 gives a brief overview of the 
role of PTRs in T cell development, maturation, and commitment 
in the thymus and periphery, respectively.

T Cell Anergy and Peripheral Tolerance
Once the T cells mature and leave the thymus, they can recognize 
the antigen in the secondary lymphoid organs. There are typically 
three sets of signals for successful T cell activation and clonal 
expansion. The first signal comes from the binding of the TCR to 
its cognate peptide-bound MHC on the APCs. The second signal 
is provided by co-stimulation from the CD28–B7 interaction. The 
third signal is imparted by the cytokines secreted by immune cells 
in the vicinity. The different isoforms of CD45 are expressed by 
naive, activated, or memory T cells. Naive T cells express a longer 
isoform of CD45 (CD45RA) while activated, and memory T cells 
express the spliced shorter form (CD45RO). This stage-restricted 
splicing phenomenon of CD45 is aided by hnRNPLL, a paralog 
of hnRNPL and PSF or polypyrimidine tract-binding protein 
(PTB)-associated splicing factor (102, 103). A genetic muta-
tion in hnRNPLL results in defective binding to CD45 mRNA, 
and improper alternate splicing result in decreased number of 
memory T cells (103).

The co-stimulatory signals from the CD28 superfamily 
prevent T cell anergy and allow the activated T helper cells to 
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differentiate. The T cell co-stimulatory molecules OX-40 and 
ICOS are under post-transcriptional regulation by the decay fac-
tors Roquin-1, Roquin-2, and Regnase-1 (104). The deletion of 
these factors either individually or in combination interfere with 
the T cell co-stimulation (76, 105). Furthermore, the miRNA-
mediated silencing of Roquin proteins leads to the activation 
of CD28, OX-40, and integrin LFA1 in CD4+ T cells (105). This 
subsequently activates the PIN1 prolyl isomerase, which targets 
the phosphorylated RBPs to form proline isomers (106). This 
alteration in the conformation of the RBPs reduces their affin-
ity for the ARE sites of translationally arrested transcripts. A 
similar level of control exists during T cell activation as a result 
of CD40 and CD40L interaction, with cytoplasmic stabilization 
of CD40L pre-mRNA being under the control of nuclear RNPs 
hnRNPL and nucleolin (107). By contrast, in the absence of CD28 
co-stimulation resulting in T cell anergy, mRNAs accumulate, 
ultimately leading to translational inhibition. This is controlled 
by the mTORC1 pathway (108).

Cytokine signaling imparts a tertiary function that is required 
for T cell activation, clonal expansion, and downstream effector 
functions. The IL-2 functions in autocrine signaling for the T 
helper cell proliferation. The 3′-UTR of IL-2 mRNA can recruit 
destabilizing factors TTP, Regnase-1, and the nuclear transcrip-
tion factor NF90 (109). Moreover, in primed CD4+ T helper cells, 
the IL-4 mRNA is sequestered in the SGs by the aid of TIA1 until 
a second exposure to the antigenic signal (110). The HuR can also 
stabilize the mRNA for other cytokines, such as IL-17, which was 
recently found to be responsible for autoimmune neuroinflam-
mation (111).

Once the mature T cells are out into the periphery, they 
undergo another round of scrutiny, distinctively called peripheral 
tolerance. Self-reactive T cells undergo elimination by apoptosis 
or programed cell death. This is controlled in part by the cell 
surface protein Fas/CD95. The Fas/CD95 undergoes alternative 
splicing, giving rise to two isoforms, a membrane-bound form 
that facilitates apoptosis and a soluble form that opposes the 
same. HuR, hnRNP C1, and PTB favor the inclusion of the sixth 
exon in Fas mRNA, while TIA1, TIAR, and hnRNPA1 block this 
process (112). The evidence for the regulation of this process 
by RBPs include that fact that HuR-deficit T cells are resistant 
to apoptosis (101, 113), and Fas splicing is arrested when U2 
snRNPs are cleaved by effector caspases (114). Given the role of 
Fas/FasL in autoimmune disorders, this suggests a link between 
PTRs and autoimmune disorders.

CONCLUSiON AND FUTURe PROSPeCTS

Immune cells exhibit a wide array of temporally and spatially 
regulated functions in response to a plethora of intracellular 
and extracellular signals. For example, during inflammation, 

cytokine mRNAs are induced and gradually subside when 
the causal agent is removed from the system leading to tissue 
homeostasis and regeneration. This prompt response of the host 
cell to the invader and subsequent return to homeostasis suggest 
the involvement of PTRs, including riboclustering. The mRNA 
transcripts encoding some of the major effector molecules of 
this immune response are either kept in cache until they are 
translated to manifest its effector machinery depending on the 
needs of the cell or are subjected to alternative splicing, lead-
ing to the formation of various isoforms of T or B cell surface 
molecules. There is strong evidence that riboclustering plays a 
critical role in this process, and can, therefore, be said to be 
a key immune-sorting mechanism for these cells. The PTR 
events are carefully orchestrated for precise coordination of 
regulatory actions of RBPs and non-coding RNAs, on coding 
RNA transcripts. Future research should focus on developing 
approaches to identify these specific RNA targets for individual 
RBPs, and the cumulative roles of these RNP complexes in 
response to various signals. To date, various approaches used 
to understand these functions include overexpression, knock-
down, or knockout experiments. However, these approaches 
come with significant caveats including the fact that a point or 
domain mutation in RBPs, complete shutdown, or overexpres-
sion in the cell may result in stress-related alterations that may 
be misleading in extrapolating the function of the RBP. Thus, 
system biological approaches or other experimental approaches 
promise to reveal more about the crucial regulatory system in 
the cell. Macromolecular tracer techniques and live cell imag-
ing can also be beneficial in this respect. The future research 
on riboclustering and elucidation of the molecular pathways 
involved may usher novel therapeutic approaches and decipher 
probable drug targets for inflammatory diseases, autoimmune 
disorders, and cancer.
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